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Spatio–Temporal Attention-Based Deep Learning
Framework for Mesoscale Eddy Trajectory Prediction

Xuegong Wang , Chong Li , Xinning Wang , Lining Tan, and Jin Wu

Abstract—Accurate prediction of mesoscale eddy trajectories
requires efficient models with large-size available data instances to
capture the main eddy characteristics. However, there is a lack of
salient attention mechanisms that can recognize the demand of ex-
tracting the aggregated features over multidimensional eddy data
sources. Additionally, deep learning techniques are very important
for eddy trajectory prediction to dynamically capture properties of
mesoscale eddies in the South China Sea. In this article, we propose
a spatio–temporal attention-based deep learning framework that
can orchestrate heterogeneous data integration and propagation
trajectory forecast together. It consists of a novel autoencoder
equipped with channel and spatial attention mechanisms (CSA-
encoder), and a gated recurrent unit (GRU) network with temporal
attention layer (TA-GRU). CSA-encoder compresses stereoscopic
eddy data with convolutional layers and generates the small-scale
and high-quality dataset as the input of TA-GRU. The finer grained
TA-GRU method is extended to accurately predict eddy trajectories
with more valuable imagery information so that the temporal at-
tention mechanism can automatically select relevant regions within
the next 14 days. Our cross-validation results demonstrate that our
framework averagely achieves a lower distance error (9 km) and
54% performance improvement over the baseline GRU technique
in the next one day, and outperforms two state-of-the-art techniques
of long short-term memory and recurrent neural network by 54.9%
and 65.6%, respectively.

Index Terms—Attention mechanism, autoencoder, gated
recurrent unit network, mesoscale eddy, trajectory prediction.

I. INTRODUCTION

THE mesoscale eddy has proven itself as a viable ocean
phenomenon for a better understanding of heat and mass

transfer, nonlinear energy transport, global climate change,
and marine resource distribution [1]–[4]. It also has a sig-
nificant influence on annual subduction rate within the main
thermocline [5] and phytoplankton dynamics in the low sea
level [6]. Hence, there is an emerging need of precisely pre-
dicting mesoscale eddies’ trajectories in advance, so that the
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safe navigation of offshore platforms, submarines, and fishing
boats can precede the appearance of environmental hazards
induced by powerful eddies [7], [8]. Furthermore, forecasting
eddy trajectories can help marine scientists analyze the seasonal
and interannual variability of characteristics beforehand, so in
situ observation instruments are deployed to track and monitor
a particular eddy from its generation to disappearing.

A major challenge for eddy trajectory prediction is posed
by data manipulation of heterogeneous eddy data [9]–[11],
including multidimensional data processing, high-density data
compression, and heterogeneous data combination. Large-scale
eddy data residing in different sources make traditional data
mining mechanisms unable to fully comprehend relationships in
mesoscale eddy data. Furthermore, due to the satellite-based ob-
servation limit, dynamic model prediction capacity, such as nu-
merical simulation and statistical analysis, may diminish as the
marked increase of high-resolution data [12]–[15]. To achieve
high forecasting performance, such conventional methodologies
are mainly based on representative physical models and massive
heterogeneous eddy data to make features comprehensive, which
increase the consumption of computation resources. In addition,
they require different types of eddy data to analyze sufficient
mesoscale eddy attributes [16]. But multidimensional eddy data,
including sea level anomaly (SLA), water temperature (WT), sea
surface height (SSH), and sea surface temperature (SST), which
cover sea surface and undersea parts of the whole eddy, have
not been integrated or refined to enhance trajectory prediction
performance.

Compared with aforementioned techniques, deep learning-
based approaches allow computational layers that are composed
of multiple processing neurons to automatically study represen-
tations of eddy data. Hence deep learning-based models are pro-
posed to learn the hidden characteristics for tracking [17]–[19]
or identifying mesoscale eddies over a short period of time, such
as PSPNet [20], Deepeddy [21], and OEDNet [22]. Such models
only supervisedly learn eddy features with a single dataset on
the surface of the ocean (either SLA data or SAR images)
instead of integrating heterogeneous eddy data. Therefore, how
to design a reasonable data management strategy that integrates
heterogeneous eddy data and unifies high-dimensional eddy
features becomes the key issue to be addressed.

Another challenge for time-sequence trajectory prediction is
that current techniques cannot capture the correlation between
multiple eddy characteristics over a long period of time [23],
[24], lacking an efficient stage to focus on the important vertical
and horizontal areas of mesoscale eddy data blocks. Since the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8812-5841
https://orcid.org/0000-0002-1742-0963
https://orcid.org/0000-0002-6053-4464
https://orcid.org/0000-0001-5930-4170
mailto:xuegong_wang@stu.ouc.edu.cn
mailto:lichong7332@ouc.edu.cn
mailto:wangxinning@ouc.edu.cn
mailto:tg.dracula@gmail.com
mailto:jin_wu_uestc@hotmail.com


3854 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

trajectories of eddy are time sequences, neural networks which
have a capability of memorizing data of previous moments are
essential for the time-sequence prediction, such as RNN [25],
LSTM [26], and GRU [27]. The LSTM algorithm is utilized to
predict the trajectories and properties of eddies with only few
eddy physical characteristics from single 1-D dataset, which has
a lack of other higher dimensional datasets for supplementing
adequate mesoscale eddy information [28]. The Conv-LSTM
is also applied to nowcast the evolution of eddies with SLA
data [29], but without the spatial attention mechanism so that
this network cannot focus on key eddy areas or ignore irrelevant
noneddy attributes importing an adverse effect on network con-
vergence. This challenge demands an attention mechanism that
can be in favor of deep learning-based models for high accuracy
of eddy trajectory prediction. Though there are many works on
attention-based deep learning strategies for classification and
recognition [30]–[33], they are all oblivious of refinement of
stereoscopic eddy data.

To be specific, for these existing both traditional and deep
learning methods, eddy prediction faces several challenges in
the following aspects.

1) Stereoscopic Structure: Different from other sea surface
phenomenons, mesoscale eddy is stereoscopic with a di-
ameter of hundreds of kilometers and a depth of more
than thousands of kilometers. But existing eddy prediction
models just exploit a single sea-surface dataset without
considering its stereoscopic features, which makes it diffi-
cult to recognize mesoscale eddies by inadequate features.

2) Heterogeneous Datasets: Although there are heteroge-
neous eddy datasets (e.g., SLA and WT) to characterize
and evaluate the process of eddy activities, no methods can
satisfy the temporospatial requirement of multiple eddy
data combination. There need to be more datasets imported
and fused to describe eddy’s stereoscopic structure. But
the critical eddy features are submerged with massive
irrelevant information in data combination, which may
introduce distraction on information processing and eddy
prediction.

3) Continuous Time Sequences: Mesoscale eddy data include
both spatial and temporal information in continuous time
sequences. For different eddy prediction networks, the
data at different time steps can produce different efforts
on eddy forecasting performance due to other insignificant
temporospatial characteristics. And the temporal charac-
teristics of mesoscale eddies can be weakened by unim-
portant step data and the difficulty of predicting eddies can
be aggravated.

Theoretically, the network’s ability to focus on key eddy
areas and time steps can be realized by spatial and temporal
attention mechanism. Recently, to detect temporal and spatial
characteristics, the attention mechanism as a new technique has
been applied to predict SST, SSH, and ocean current. Equipped
with time-step attention mechanism, LSTM method can obtain
better prediction results with temporal correlations of SST data
than traditional LSTM [34]. In [35], self-attention mechanisms
are used to discover features of ocean current time steps for im-
proving forecast accuracy rate in the next ten days. The majority

of time-based attention mechanisms contribute to helping neural
network pay more attention to more important time characteris-
tics, ignoring other significant properties, such as diverse spatial
features. An LSTM model for SSH prediction [36] attempts to
import both time and space attention mechanisms, but just hori-
zontal ocean surface data samples are used instead of underwater
data instances. We observe that both time and space attention
mechanisms may carry high prediction accuracy, but for eddy
time data, corresponding spatio–temporal attention mechanisms
have not been exploited. Hence we devise spatio–temporal at-
tention module to automatically learn the key contributions of
heterogeneous eddy data covering eddy’s stereoscopic structure,
including original trajectory data, sea level anomalies, and water
temperatures for precisely forecasting different eddy types.

For overcoming these aforementioned problems, it is im-
perative to integrate attention mechanisms with deep learning
approaches with a comprehensive dataset. To this end, we pro-
pose a spatio–temporal attention-based deep learning framework
to improve the forecasting performance of eddy trajectories
with heterogeneous eddy data. Based on the observation that
the time and space attentions improve the forecasting quality,
our framework exhibits a complementary effect that contributes
to multidimensional eddy data integration with channel and
spatial attention modules. It also traverses and downloads di-
verse datasets from three ocean institutions indicating detailed
coverage of mesoscale eddies from sea surface to sea bottom. In
addition, temporal attention-based GRU network dynamically
concentrates on the key eddy attributes.

In summary, the main contributions of this article are summa-
rized as follows.

1) In order to solve the first challenge caused by stereoscopic
eddy structure, we combine heterogeneous eddy features
including sea surface and undersea data, and construct a
new multidimensional dataset to cover the whole stereo-
scopic structure of eddy, for subsequently predicting eddy
trajectories in the SCS. A data processing module automat-
ically downloads and combines heterogeneous eddy data
from three main institutions, including eddy trajectory
data, SLA data, and WT data. In addition, it efficiently
extracts, concatenates, and processes the eddy center area
data from multiple satellite missions in the SCS.

2) We propose an attention-based eddy trajectory forecasting
framework to overcome the second and third challenges,
mainly including a channel and spatial attention-based au-
toencoder (CSA-encoder) and a temporal attention-based
GRU network (TA-GRU), to further focus on critical eddy
regions and time steps, incorporating and aggregating
spatio–temporal eddy features. By taking attention mech-
anisms into trajectory prediction, more key information
can be refined from multiple eddy data and the effec-
tiveness and performance of trajectory prediction are also
improved.

3) We evaluate the spatio–temporal attention-based mecha-
nism and analyze the prediction performance in compar-
ison to other deep learning-based methods. Experimental
results illustrate our novel framework achieves the lowest
daily center error of 9 km on average, and preserves a
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lower center error for next 14-day forecasting. Compared
to traditional methods, such as RNN, LSTM, and GRU,
our method obtains approximately 65%, 56%, and 53%
accuracy improvements.

The rest of this article is organized as follows. Section II
summarizes the related work, including prediction networks
without attention mechanisms and prediction networks with
attention mechanisms. In Section III, data construction, structure
of CSA-encoder and TA-GRU are explained in detail. Section IV
evaluates the data compression results of CSA-encoder and pre-
diction performance of TA-GRU network, respectively. Finally,
Section V concludes this article.

II. RELATED WORK

A. Prediction Networks Without Attention Mechanisms

The deep learning networks, such as RNN, LSTM, and GRU,
can memorize the previous data and their moments for time
sequence problems. However, there are some differences among
the prediction networks. For example, RNN method can calcu-
late the current cell state with the output of previous cells, but its
chain derivation causes gradient exploding and vanishing when
involving long sequence input [25]; LSTM alleviates RNN’s
gradient problems, using three gates (input, forget, and output
gates) to balance the current input and previous state in the
cell [26]; GRU simplifies LSTM structure with two gates (update
and reset gates), bringing nearly a 1/3 parameter reduction [27].

To improve the prediction performance of sea surface data,
several studies designed time-series predicting networks, based
on RNN, LSTM, and GRU’s memorizing capability. For in-
stance, Song et al. merged ResNet and LSTM for enhancing
SLA prediction performance [37]. Chen et al. [39] combined
LSTM and migration learning method for ocean image process-
ing [38], and Fan et al. utilized CNN+LSTM to apply accel-
eration of turbulence flow simulation. Ma et al. [29] proposed
a Conv-LSTM network to predict SSH data and then obtained
approximately 60% matching eddies on the next seventh day.
Guo et al. [40] applied ConvGRU to design encoder–decoder
model for nowcasting convective weather based on radar data.
Xie et al. [41] also used dynamic GRU-based encoder–decoder
to achieve predicting future SST code, aiming to solve the
long-scale dependence problem. Based on LSTM and extra
trees (ET) algorithms, Wang et al. [28] proposed a model for
mesoscale eddy property prediction with 1-D eddy property
data. Song et al. [42] proposed a dual path GRU method for
sea surface salinity prediction to improve detection accuracy in
the 14 days. Liu et al. [43] incorporated the social force model
into LSTM network (SFM-LSTM), whose loss function was
reconstructed by offset distance and direction, leading to more
robust vessel trajectory prediction in different water areas. In
addition, LSTM and GRU methods are also applied in the fields
of the trajectory prediction of hurricanes [44], sea ice [45], and
oceanic flows [46], since they can capture and memorize the
time information hidden in data sequences.

But all the aforementioned studies just adopted 1-D or 2-D
data on the ocean surface [47]–[49], ignoring undersea data,
which contain more features than surface data. Especially, due
to the mesoscale eddy’s stereoscopic structure, its underwater

scale is ten times greater than the sea surface scale [50], [51].
A data fusion approach is required to obtain the comprehensive
eddy data with both high spatial resolution and high temporal
frequency for mesoscale eddy detection.

B. Prediction Networks With Attention Mechanisms

To capture critical spatial or temporal information, respec-
tively, space and time attention mechanisms are proposed for
improving the performance and effectiveness [52], [53]. For
space attention mechanism, there are channel and spatial atten-
tion layers. Channel attention layer applies maxpooling layer,
avgpooling layer, and multilayer perceptron (MLP) to generate
1-D channel attention vector for three channels of color images,
and similarly, spatial attention layer concatenates maxpooling
and avgpooling layers, and utilizes MLP to obtain 2-D spatial
feature map for all image pixels [54]. Temporal attention layer
introduces temporal weight vectors into time-series predicting
networks, assigning different attention weight values to different
hidden states [55]. And the combination of channel, spatial
and temporal attention mechanisms can capture the hidden
spatio–temporal features comprehensively in object predicting
and tracking [56]. However, current oceanographic prediction
techniques rarely combine space and time characteristics with
attention mechanisms [57]. Though mesoscale eddies have pro-
lific spatial and temporal attributes, there is a salient lack of the
application of spatial and temporal attention mechanisms in the
fields of eddy recognition and prediction [58], [59].

Recently, several spatio–temporal attention mechanisms have
since been developed to classify or predict sea surface data,
such as SSH and SST. Feng et al. [60] applied time attention
mechanism and temporal convolutional network to construct
full-feature and partial-feature prediction models for large-scale
SST data, achieving similar accuracy with less data. Based
on spatial attention mechanism, Ren et al. [30] proposed a
dual-attention U-Net for pixel-level segmentation of sea ice and
open water, with better classification results than the original
U-Net. Thongniran et al. [61] combined space-attentional CNN
and GRU, to accurately forecast ocean currents with HF radar
dataset. Liu et al. [36] added time and space attention mecha-
nisms into LSTM and assigned reasonable weights for the data at
each time step, which improved the accuracy of SSH prediction
and proved the feasibility of attention modules. In addition,
there are also attention-based methods for tropical cyclone track
prediction [62] and ocean front detection [63], indicating the
significant accuracy improvements by either temporal or spatial
attention mechanism.

However, the majority of attention-based techniques just
exploited a spatial or temporal attention mechanism, while
spatio–temporal attention mechanism can lead to more accuracy
improvement theoretically and empirically. For mesoscale eddy
prediction, attention mechanism has not been used to enhance
the detection accuracy and effectiveness. Hence to further obtain
higher eddy forecasting accuracy, our predicting framework first
integrates channel, spatial and temporal attention mechanisms,
and focuses on critical eddy’s vertical and horizontal regions ac-
cording to the principal time steps. Furthermore, our framework
further optimizes channel and spatial attention mechanisms to
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Fig. 1. Flow graph of spatio–temporal attention-based deep learning framework for eddy trajectory prediction. (a) Multisource data construction part extracts,
combines, and processes heterogeneous datasets in the SCS from three institutions. (b) CSA-encoder utilizes attention mechanisms, encoder, and decoder to
identify, compress, and restore eddy characteristics. (c) TA-GRU executes iterative prediction for eddy trajectories, with temporal attention layer implemented.
(a) Multi-source data construction. (b) Data compression of CSA-encoder. (c) TA-GRU trajectories prediction network.

make them more suitable for eddy datasets. In summary, most
prediction models just exploit the single sea surface data rather
than the combination of heterogeneous data, and these tech-
niques ignore the integration of spatial and temporal attention
mechanisms that can acquire some critical spatio–temporal char-
acteristics.

III. METHODS

In this section, we design and implement the deep learning-
based framework shown in Fig. 1 for mesoscale trajectory
prediction. In Fig. 1(a), for collected TCME, SLA, and WT
datasets from different institutions, the data extraction part in
Section III-A withdraws the SCS’s regional information from
TCME and the combined data of SLA and WT. Then the refined
data instances are processed by zero-mean normalization. We
can observe that in Fig. 1(b) the CSA-encoder designed in
Section III-B achieves data compression of SLA and WT, whose
channel and spatial attention mechanisms can make the learning
module concentrate on more distinctive areas. Additionally,
TA-GRU with temporal attention layer in Fig. 1(c) proposed
in Section III-C iteratively trains a trajectory prediction model
with processed trajectory sequence samples, and finally applies
renormalization to the intermediate results.

A. Data Construction

1) Heterogeneous Eddy Data: In our study, heterogeneous
multidimensional datasets are involved. The datasets include
SLA, WT, and trajectory characteristics of mesoscale ed-
dies (TCME), which are shown in Fig. 1(a). SLA is pro-
vided by Copernicus Marine Environment Monitoring Service
(CMEMS).1 WT is from the Center for Ocean-Atmospheric
Prediction Studies (COAPS),2 and TCME is downloaded from

1[Online]. Available: https://marine.copernicus.eu/
2[Online]. Available: https://www.hycom.org/

TABLE I
FEATURES DESCRIPTION OF TCME

archiving, validation, and interpretation of satellite oceano-
graphic data (AVISO).3 All of three datasets are stored in
NetCDF files.

There are 624 465 global eddy trajectory records contained by
TCME, consisting of nine features, such as longitude, latitude,
speed, radius, amplitude, type, time, life, and track. Table I
describes these features in detail. All datasets have the same
temporal resolution of one day, but own different time ranges.
SLA’s time range is from January 1st 1993 to December 27th
2018, WT is from January 1994 to December 2015, and TCME
is from January 1993 to September 2019. In consideration of
different time spans of these datasets, the eddy data in the
overlapping time period are chosen for training and testing,
which is from January 1994 to December 2015. The sizes of
TCME, SLA, and WT in the SCS are approximately 19.1 MB,
3.81 GB, and 31.9 GB, respectively.

The spatial resolution of SLA is 1/4◦, and WT’s is 1/12◦. WT
has 40-layer vertical data with the depth from 0 to 5000 m, while
SLA has only one-layer data on the surface of the sea. In [64],
we can see that eddies own a stereoscopic structure, indicating
that eddies not only exist on the surface of the ocean but they
can also extend to a depth over 2000 m. That is the reason why
the WT data are chosen to supplement SLA and TCME datasets

3[Online]. Available: https://www.aviso.altimetry.fr/en/home.html

https://marine.copernicus.eu/
https://www.hycom.org/
https://www.aviso.altimetry.fr/en/home.html
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TABLE II
CORRESPONDENCE BETWEEN LAYER AND DEPTH FOR WT DATA IN

MULTIPLE LAYERS

Fig. 2. WT data variation in the SCS on January 1st 1993. The color from
blue to yellow indicates a temperature range of 0–40 ◦C, and the gray area
means uncollected WT data points. (a) 10-layer WT data. (b) 20-layer WT data.
(c) 30-layer WT data. (d) 40-layer WT data.

in our experiment. Table II shows the relationship of the number
and depth of these 40 layers. We can find that data density is not
uniform, as the data density becomes smaller and the distance
interval becomes larger. WT from 1 to 20 layers cover the data
of the depth [0, 100] with the interval of 2 or 5 m. In our study,
layers 21–33 cover the water temperature of 125–1000 m, and
34–40 layers include the water imagery of 1000–5000 m. The
variations of 10, 20, 30, and 40-layer WT data are shown in
Fig. 2, corresponding to 25, 100, 700, and 5,000 m depth in
Table II, respectively, where the gray area means uncollected
data points. From Fig. 2(a)–(d), water temperature in the SCS
drops from 25.94 ◦C to 2.78 ◦C, and uncollected area, caused
by sampling costs and submarine topography, gradually expands
with the water depth increasing. Evidently, the water temperature
of the SCS nearly decreases to 0 ◦C with 40-layer water data
and data collection has pertinent issues and challenges so that
the uncollected area is enlarged in Fig. 2(c) and (d).

Fig. 3. Diameter distribution of cyclonic and anticyclonic eddy trajectories
in the SCS from January 1993 to September 2019. Both of them conform the
Rayleigh distribution, whose peak value are between 160 and 180 km. The
number of anticyclonic eddies is 1928, higher than the cyclonic (1669).

TABLE III
EDDY DIAMETER DISTRIBUTION TABLE (JANUARY 1993 TO SEPTEMBER

2019 IN THE SCS)

2) Eddy Data Processing: In order to avoid overfitting in
neural networks for trajectory prediction in the SCS, we expand
the geographic scope with the range of 0◦–25◦N and 100◦–
125◦E. In TCME dataset of Fig. 1(a) provided by AVISO, all
original global mesoscale eddy records (including nine features
detailed in Table I) are mixed disorderly. So first, we iterate
over all records and judge whether eddy center is within above
geographic region. Each trajectory in the SCS is identified
according to track feature, with seven features selected to be
input: longitude, latitude, speed, radius, amplitude, type, and
time. Meanwhile, we choose the center location (longitude,
latitude) in the next day as the ground truth for our framework.
In particular, the time feature of mesoscale eddies starts from
January 1st, 1950, and its format is converted to the number of
days for highlighting seasonal features of eddies.

Because of different spatial resolutions of SLA (1/4◦) and
WT (1/12◦), extra WT data points are filtered out to set its
resolution to 1/4◦, making their horizontal data matched. Al-
though they have different vertical layers (1 and 40), these
horizontal-matched data can be combined directly to generate
41-layer data. In addition, 12×12 SLA and WT grid data points
around eddy centers are collected along with the longitude,
latitude and time of eddy centers provided by TCME, covering a
geographic area of 340× 340 km approximately. In our diameter
distribution analysis, given by Fig. 3 and Table III, the percentage
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Fig. 4. Visualization of the new data covering the whole eddy with the size of
41×12×12, including 1-layer SLA and 40-layer WT normalized data.

of eddy diameters of less than 300 km approximately reaches
93.57%. Therefore, we select 12×12 grid points as the main
representation of eddy properties. The data are purified for SLA
and WT, and we convert -2 147 483 647 of SLA and -30 000
of WT into -1, to avoid a performance loss of deep learning
networks, such as accuracy reduction and low convergence rate.

To integrate the three different datasets of various eddy fea-
tures, normalization is required for removing the variations that
affect data-processing efficiency. Here 1-D-zero-mean normal-
ization is used to tackle anomaly values in TCME, and to build
a high-quality data collection, 3-D-zero-mean normalization
method for 3-D data is designed in SLA and WT data collections
as follows:

μ =
1

NsNiNjNk

Ns∑
s=1

Ni∑
i=1

Nj∑
j=1

Nk∑
k=1

xs,i,j,k (1)

σ =

√∑Ns

s=1

∑Ni

i=1

∑Nj

j=1

∑Nk

k=1 (xs,i,j,k − μ)2

NsNiNjNk
(2)

x′
s,i,j,k =

xs,i,j,k − μ

σ
(3)

where μ is the mean value of all original 3-D data and σ
means standard deviation. s represents sample index, i, j, and
k are indexes of three dimensions (channel, height, and width).
Ns,Ni,Nj , andNk correspond to the total number of above four
indexes separately. xs,i,j,k is the data point located at channel
i, height j, width k in the sample s, and x′

s,i,j,k stands for a
normalized data point. xs,i,j,k is subtracted by μ to make new
mean value equal to 0, and then divided by σ to ensure that new
standard deviation is 1. Newly generated data satisfy the normal
distribution condition after two zero-mean normalizations.

After abovementioned data processing and construction of
SLA and WT data, the visualization of our layered data for one
eddy is shown in Fig. 4, whose size is 41×12×12. Layer 1 stands
for 12×12 SLA data and the remaining layers (Layers 2–41)
stand for 12×12 WT data. Each layer includes dissimilar WT

features of 12×12 pixels except the first layer of SLA data. To
discriminate the layered eddy information, we normalized the
1-layer SLA and 40-layer WT data. It is observed that each layer
contains different eddy features and the missing information
becomes evident when the WT layer gradually increases to 41
(the dark blue [−1] represents the missing values). Then this new
dataset will be sent to our CSA-Encoder for data compression
and feature detection.

B. CSA-Encoder Design

As shown in Fig. 5, we design a channel-spatial attention-
based convolutional autoencoder (CSA-encoder), to execute
data compression, denoising, and feature detection. In our ex-
periment, it is constituted by an encoder and decoder, with
channel and spatial attention modules in front of the encoder. The
attention modules weight original data and output attentioned
data to the encoder for data compression. The encoder then
exports compressed data which are flatten and supplemented
to the input data of TA-GRU. And the decoder finally expands
compressed data to output restored data, taking the original data
as the target.

Based on convolutional block attention module (CBAM) [54],
two improved convolutional attention modules, such as channel
and spatial attention modules are designed to refine eddy spa-
tial characteristics. And CBAM calculates channel and spatial
weights with both maxpooling and avgpooling layers. Because
CBAM unsupervisedly recognizes image data in the range from
0 to 255, it does not demand a minpooling layer which always
outputs 0. While the minimum values of our normalized eddy
data are negative instead of 0, which prompts us to add min-
pooling layers to two modules for identifying characteristics
from negative values automatically.

Fig. 6 shows the design of channel attention module. In this
module, 41×12×12 input data are sent to global maxpooling,
global avgpooling, and global minpooling layers, for aggregat-
ing and compressing information of maximum, average, and
minimum values separately. Two convolutional layers (Conv1
and Conv2 in Fig. 6) are set to process the aggregated data
and generate three corresponding 1-D weight vectors: Wmax,
Wavg, and Wmin in Fig. 6. The sum of three vectors is processed
by sigmoid function σ to gain channel attention weight vector
Wc, which pays different attention to channels of input data.
The kernel sizes of Conv1 and Conv2 in Fig. 6 are set to 1×1
by (5) for making the channel attention weights’ dimension
match the combined data of SLA and WT. Furthermore, (4)
executes summation and realizes sigmoid function on three
weight vectors updated by global pooling and convolutional
layers, to integrate three pooled data to the vector Wc. Then
multiplied by each channel of original data by (6), the channel
attention weight Wc makes convolutional neural networks fo-
cus on valuable channels and ignore unimportant channels. In
(4), MaxPooling, AvgPooling, and MinPooling represent three
global pooling layers, whose output size is 41×1×1. Equa-
tion (5) means that Convc consists of two 2-D convolution layers
(Conv1 and Conv2) and sigmoid function. The dimension of
Conv1 is calculated by 41

r × 1×1, where r (compression ratio)
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Fig. 5. Structure of CSA-encoder. (a) Convolutional attention modules calculate channel and spatial weights of original data points, and multiply both of them to
obtain attentioned data. (b) Encoder utilizes convolutional and maxpooling layers to compress data, which is output and flatten for TA-GRU. (c) Decoder increases
the dimension of compressed data and restores it to complete original data by deconvolutional and upsampling layers. (a) Attention mechanism. (b) Encoder.
(c) Decoder.

Fig. 6. Channel attention module. Calculated by maxpooling, avgpooling,
minpooling layers, and convolutional layer, 1-D channel attention vector Wc

ensures that 41 channels can gain different attentions.

is set to 3. So the dimension of Conv1 is 14×1×1, while Conv2
is 41×1×1 for expanding dimension. In (6), Wc represents 1-D
channel attention weight vector, Ic is original 3-D input data, and
Oc means weighted data output by channel attention module

Wc = σ(Convc(MaxPooling(Ic)) (4)

+ Convc(AvgPooling(Ic))

+ Convc(MinPooling(Ic)))

Convc = Conv241×1×1(σ(Conv114×1×1)) (5)

Oc = Wc � Ic. (6)

To generate spatial attention weights for spatial attention
mechanism in Fig. 5(a), the output Oc of channel attention
module is set to be the input Is of spatial attention module in
(7). Illustrated by Fig. 7, spatial attention module also contains
maxpooling, avgpooling, minpooling layers, and a convolu-
tional layer, but pooling layers’ outputs are concatenated to
3×12×12 data through (8), instead of being summarized in
channel attention module. Then the concatenated data are sent
to convolutional layer Convs (including Conv1 in Fig. 7), where
configuration parameters are given by (9) for setting kernel size

Fig. 7. Spatial attention module. Using maxpooling, avgpooling, minpooling
layers, this module applies 2-D spatial attention matrix Ws to 12× 12 area for
focusing on spatial characteristics.

to 1×1. After being processed by the sigmoid function, 2-D
spatial attention weight matrix Ws is calculated and multiplied
by original data through (10), for making data points more
relevant while training prediction model. We can obtain the input
Is from output of channel attention module Oc. Ws represents
2-D spatial attention weight matrix, and Os is final spatial atten-
tion output. The concatenated result dimension of MaxPooling,
AvgPooling, and MinPooling layers is 3×12×12, and Convs

layer’s dimension is 1×12×12. After 2-D convolutional layer
and sigmoid function conduct data compression in the size of
12×12, Ws applies spatial weight matrix to all data points in Is

Is = Oc (7)

Ws = σ(Convs([MaxPooling(Is) (8)

AvgPooling(Is)

MinPooling(Is)]))

Convs = Conv11×12×12 (9)

Os = Ws � Is. (10)

In CSA-encoder, the encoder component is displaced in
Fig. 5(b), which contains two convolutional layers (Conv1 and
Conv2 in Fig. 5) and two maxpooling layers with tanh activation
function. There are 60 kernels in first convolutional layer and
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TABLE IV
STRUCTURE AND PARAMETERS OF ENCODER

TABLE V
STRUCTURE AND PARAMETERS OF DECODER

80 kernels in the second layer, to execute dimension reduction
twice for efficiently compressing eddy data. The refined data
with the size of 80×2×2 can be sent to our decoder in Fig. 5(c).
Table IV displays encoder’s configuration in detail. Contrary to
encoder, the decoder in Fig. 5(c) has two deconvolutional layers
(Conv3 and Conv4 in Fig. 5) and two upsampling layers. The
first deconvolutional layer (Conv3) consists of 80 kernels and
the second layer (Conv4) owns 60 different kernels, to achieve
dimensional expansion and interpolation for data restoration.
Decoder’s properties are listed in Table V.

C. TA-GRU Design

The time sequence prediction problem requires network own-
ing memory ability, such as RNN, LSTM, and GRU, which can
memorize the data of previous moments to calculate the future
data. But RNN has gradient explosion and extinction problems,
and LSTM network has massive parameters in input gate, forget
gate, and output gate. Compared with RNN and LSTM, GRU
owns less parameters, as GRU cell only has two gates: update
gate and reset gate, given by

zt = σ(W zxt + Uzht−1) (11)

rt = σ(W rxt + Urht−1) (12)

where xt is 1-D input vector at time step t and ht−1 means GRU
hidden state at time step t− 1 output by last GRU cell. W z ,
Uz or W r, Ur are weight matrices of update gate or reset gate,
which will be optimized in training. The range of zt and rt are
between 0 and 1 after sigmoid function σ, to decide memorized
part and forgotten part in

h′
t = tanh (Wxt + rt � Uht−1) (13)

ht = zt � ht−1 + (1− zt)� h′
t (14)

where W and U are also weight matrices, h′
t presents new

candidate state, and ht means final state of this GRU cell.Uht−1

is processed by rt to drop out the information that should be
forgotten, and is added to Wxt. Then the sum is compressed
by tanh function, to calculate h′

t. By zt and Hadamard product
� (also as known as the elementwise product), the proportions
of h′

t and ht−1 get adjustment, and output ht. If in last GRU
cell, ht is the final result of the current GRU layer. Otherwise,
ht will be sent to next cell to be its input state, and repeat above
calculation recurrently.

But the output of traditional GRU network only relies on
hidden state of the last cell, which ignores all previous cells’
states. To avoid this drawback, we design a temporal attention
layer between GRU hidden layer and FC output layer. This
temporal attention layer can collect hidden states at all time
steps, and then creates and adjusts different temporal attention
weights for different time steps. Finally, the product of states and
corresponding attention weights goes through fully connected
layer, producing prediction results with the same dimension of
ground truth.

Fig. 8 shows the structure of GRU hidden layer and the
temporal attention layer. The GRU hidden layer consists of seven
(equal to the number of input days) GRU cells (Cellt−1, Cellt,
Cellt+1, etc). In Fig. 8(a), the update and reset gate in Cellt bal-
ance the last state ht−1 and input xt by σ, � and tanh functions,
and then calculate state ht, which will be sent to Cellt+1 for
calculating the next state ht+1. The cell structures of TA-GRU
and traditional GRU are similar, but their processing methods of
hidden states are completely different, as traditional GRU net-
works (as well as RNN and LSTM) only gather information from
the last state hn, while TA-GRU memorizes all states (h1, h2, ...,
hn). As shown in Fig. 8(b), the vector of all states (< h1, h2, ...,
hn >) is entered into the temporal attention layer and calculated
by (15), which uses a transition vector ωT to generate temporal
attention weight vector α. And then (16) multiples attention
weights [α1, α2, ..., αn in Fig. 8(b)] and hidden states one by
one, obtaining attentioned hidden states < h′

1, h
′
2, . . . , h

′
n >, to

help TA-GRU focus on states in vital days

α = softmax(ωT tanh(< h1, h2, . . . , hn >)) (15)

< h′
1, h

′
2 . . . h

′
n >= tanh(α� < h1, h2, . . . , hn >) (16)

In (15),< h1, h2, . . . , hn >means the vector of hidden states
at all time steps, α is 1-D temporal attention weight vector
for hidden states. The states from GRU are calculated by tanh
function to convert values into −1 to 1. ωT is a transition vector,
which is used to adjust α dynamically by hidden states. For
the product of < h1, h2, . . . , hn > and ωT , softmax function
ensures that the summation is 1. In (16), by Hadamard product
�, attention weights in α are multiplied by original states, to
obtain temporal attentioned states < h′

1, h
′
2, . . . , h

′
n >.

IV. VALIDATION RESULTS

A. Experiment Configuration

Our experiment environment is Python 3.6 with PyTorch 1.6
deep learning library. The development platform is Windows 10
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Fig. 8. Architecture of TA-GRU hidden layer and temporal attention layer. (a) Hidden layer of TA-GRU uses update and reset gates to obtain cell hidden states
from input time sequences. (b) Temporal attention layer of TA-GRU gathers all states, and utilizes temporal attention weight vector α to generate attentioned states.
(a) GRU hidden layer. (b) Temporal attention layer.

system, and a graphical card of NVIDIA 2070 with 8 G RAM
is used to train networks. Since all of three original datasets are
NetCDF files, the netCDF4 library is utilized to read these data
files. In data processing, NumPY library is involved, providing
the data format of ndarray, which is used to store and process
heterogeneous eddy data

Ang = sin2(
latpred−lattrue

2 ) (17)

+ cos(lattrue) cos(latpred)

× sin2(
lonpred−lontrue

2 )

Dis = 2× 6370× arcsin(Ang). (18)

The mean square error (mse) is selected as the loss function
of the CSA-encoder and TA-GRU, to measure latitude and
longitude errors between network output and ground truth. Since
latitude and longitude errors represent distinct distances, (17)
and (18) are imported for calculating mean distance center
errors. latpred and lattrue indicate predicted and true latitudes
as well as longitude parameters. Equation (17) can obtain the
Earth’s center angle Ang between predicted and true points.
Then (18) utilizes Ang to get the geographic distance Dis
between predicted and true locations.

And the mini-batch gradient descent (MBGD) and adaptive
moment estimation (Adam) algorithms are utilized to execute
mse loss reduction, whose batch size is 250. Three decreas-
ing learning rates are implemented in different training stages:
0.0003 in epoch 0–750, 0.000045 in epoch 750–2500, and
0.000007 after epoch 2500, to accelerate the early loss decline
speed and make the final loss approximate local optimal solution.

For 2718 eddy trajectories provided by TCME, we select
70%, 15%, and 15% of trajectory records as training, validation,
and test sets, respectively. After feeding training datasets into
our framework, 10 000 epochs can be executed if there is no
overfitting problem. Our TA-GRU exploits a sliding prediction
method, as the prediction result of the first day can be used as the

input for the second day’s prediction. Hence the neural network
can predict the trajectories of the next seven days or more in
turn.

B. Comparison of MSE Loss in CSA-Encoder

To investigate the influence between input layer number and
mse loss in CSA-encoder, we compare the results for both chan-
nel and spatial attention mechanisms with different numbers
of input data layers (Total Input Data Layers: 1, 6, 11, 16,
21, 31, 41) in Table VI . For 1-layer input data with an SLA
layer or a WT layer, our CSA-encoder with both channel and
spatial attention achieves the lowest MSE loss by 0.4453 and
0.4039. Since channel and spatial attention in CSA-encoder
can selectively capture the eddy characteristics through multiple
data input layers, the autoencoder gains the lowest loss among
different cases. In the case of input data with 6 and 11 layers, due
to more involved information, CSA-encoder gains loss of 0.2814
and 0.2667, better than other no attention-based autoencoders or
the cases of one input layer. Similarly, as the layer number rises
to 16, 21, 31, and 41, the mechanism with both channel and
spatial attention still achieves lower losses by 0.2702, 0.2750,
0.2886, and 0.3111 than normal encoder without channel and
spatial attention chosen as our baseline by 0.2810, 0.2950,
0.4032, and 0.4190, respectively. If only channel attention or
spatial attention is selected, the encoder just averagely achieves
6.8% performance improvement in 1, 6, 11, 16, and 21 input
layers (accordingly, 1SLA+5WT layers, 1SLA+10WT layers,
1SLA+15WT layers, and 1SLA+20WT layers) than the base-
line, while our CSA-encoder can achieve 10.2% improvement
than the baseline. When input WT layer number grows from
0 to 10 (from 0 to 25 m), the mse loss reduces from 0.44 to
0.26 gradually, since added WT data bring more valid eddy
information. However, the center axis of a eddy is listed rather
than vertical perpendicular to the Earth ground, deeper WT
layer will be deviated from eddy center [65], [66]. Therefore,
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TABLE VI
COMPARISON OF AUTOENCODER LOSSES WITH DIFFERENT INPUT LAYERS AND

ATTENTION MODULES

11 input layers with both attention mechanisms gain the lowest MSE loss of 0.2667.
The bold texts mean the lowest values of MSE loss, campared with the adjacent results
with different configurations between two horizontal lines.

deeper layers only provide a part of the eddy information and
the signal-to-noise ratio may also be increasingly worse. So,
contrary to 0–10 layers, when WT layer number increases from
15 to 40 (from 50 to 5000 m), loss value rises from 0.27 to
0.31 instead of reducing, since larger distance deviation and
noise data in 15–40 WT layers compromise data quality and
autoencoder performance. When the input layer numbers are set
to 6, 11, 16, and 21, we can obtain similar losses in detail, as
shown in the following Table VII.

Furthermore, to probe the effect of compressed data layer
number on CSA-encoder’s mse loss, the results with different
compressed layer numbers (compressed data layers: 1, 5, 10,
20, 30, 40, 50, 60) are compared in Table VII. For four input
layer number cases of 6, 11, 16, and 21 (1SLA+5WT layers,
1SLA+10WT layers, 1SLA+15WT layers, and 1SLA+20WT
layers), 1-layer compressed data have losses of 0.4680, 0.4549,
0.4953, and 0.5429, always larger than other compressed layer
numbers between 5 and 60, since its highest compression ratio
(99.54%, 99.75%, 99.83%, and 99.87%) induces majority of
eddy information to be lost. For six-layer input case, with the
compressed layer number increasing from 1 to 30, the mse loss

TABLE VII
FINE-GRAINED COMPARISON OF CSA-ENCODER LOSSES WITH DIFFERENT

LAYERS OF COMPRESSED DATA

Data with 1 SLA layer, 11 WT layers, and 30 compressed layers get the lowest MSE
loss of 0.2528.
The bold texts mean the lowest values of MSE loss, campared with the adjacent
results with different configurations between two horizontal lines.

keeps reducing from 0.4680 to 0.2637, since there are more
related data retained. Similarly, for other input layer numbers
like 11, 16, and 21, the compressed layer number growth also
brings more related information, helping CSA-encoder decrease
loss by 46.48% averagely. However, when compressed layer
number climbs to 40, 50, and 60, the six-layer input data case
gets rising loss values of 0.2733, 0.2740, 0.2764, which are
3.5%, 3.7%, and 4.5% higher than loss value of 30 compressed
layers, because more layer data also introduce more redundant
information. Other cases of input layer number (11, 16, and
21 layers) also get the similar rising losses when compressed
layer numbers are 40, 50, and 60, with about 0.35%, 3.1%, and
5.5% loss increasing, compared to 30 compressed layers. The
lowest loss value, 0.2528, appears in the case of 11 input layers
(1SLA+10WT layers) and 30 compressed layers, contributed by
more input characteristics and less redundant compressed data.
So we select 30-layer compressed data encoded by 1 SLA layer
and 11 WT layers, for data compression of CSA-encoder and
subsequent trajectory prediction of TA-GRU.

Fig. 9 further examines mse losses of decoded eddy data
with different numbers of learning epochs. The subfigures of
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Fig. 9. Comparison of MSE loss between decoded data and ground truth in data range: [−2, 2]. Gray area in ground truth are for uncollected or missing eddy
data points. In epoch 0-5000, the MSE losses of SLA and WT decrease from 0.87, 0.95 to 0.23, 0.26, respectively. (a) Loss:0.87, Epo. 0. (b) Loss:0.36, Epo. 500.
(c) Loss:0.26, Epo. 1000. (d) Loss:0.25, Epo. 2000. (e) Loss:0.23, Epo. 5000. (f) Ground Truth. (g) Loss:0.95, Epo. 0. (h) Loss:0.38, Epo. 500. (i) Loss:0.29, Epo.
1000. (j) Loss:0.27, Epo. 2000. (k) Loss:0.26, Epo. 5000. (l) Ground Truth.

Fig. 10. Channel attention weights variation from epoch 0 to 5000. 11 bars mean different attention weight values for 11 input channels, where blue bar (1)
means attention weight for SLA data, and orange bars (2–11) represent ten weights for WT data. The sum of 11 weights is always 1 during a period of learning
eddy properties. (a) Epoch 0. (b) Epoch 500. (c) Epoch 1000. (d) Epoch 2000. (e) Epoch 5000.

Fig. 9(a)–(f) demonstrate SLA losses and the ground truth. In
this experiment, our attention mechanisms reduce SLA loss from
0.87 to 0.23 when the epoch number increases from 0 to 1000.
Likewise, for decoded WT data of mesoscale eddies, the mse
loss is reduced from 0.95 to 0.26 with the increasing epochs
in Fig. 9(g)–(k). In the ground truth of Fig. 9(f) and (l), the
gray color points stand for the missing eddy data. We find that
our CSA-encoder can generate new data points to compensate
the gray area of Fig. 9(f) and (i) in Fig. 9(c)–(e) and (i)–(k). It
is obvious that more iterative training procedures can gradually
reduce the mse loss from 0.26 to 0.23 with the epochs increasing
from 1000 to 5000.

To explore how channel attention mechanism works well
in training procedure, Fig. 10 displays 11 attention weights’
variation for 11 input layers (1 SLA layer and 10 WT layers)
in epochs 0, 500, 1000, 2000, and 5000. Although each weight
keeps varying in training, the summation of 11 weights is always
set to 1 by softmax function. In epoch 0 [Fig. 10(a)], the initial

weights follow a normal distribution, so the sixth layer of the
combined data gets highest weight of 0.11, the first and last
layers gain lowest weights of 0.075. However, from epoch 0
to epoch 5000, the weight of SLA data (blue bar) gradually
increases from 0.075 to 0.133, while 10 weights of other WT
layers (10 orange bars) tend to decrease to similar values (about
0.09) in epoch 5000. Shown in Fig. 10(e), SLA gets highest
channel attention weight of 0.133 in epoch 5000, which is 47.7%
higher than WT layers,’ since SLA contains fewer missing
data points and more intuitive information, beneficial to loss
minimization.

C. Prediction Result of TA-GRU

In order to examine the working process of temporal attention
mechanism, Fig. 11 illustrates the variation of the temporal
attention weights for seven-day input data in training, where
seven bars represent seven attention weight values for seven
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Fig. 11. Seven temporal attention weights variation from epoch 0 to 5000. Seven bars represent attention weights for seven-day input data, respectively. The
temporal attention is allocated to seven weights dynamically in training, whose sum value is always 1. (a) Epoch 0. (b) Epoch 500. (c) Epoch 1000. (d) Epoch
2000. (e) Epoch 5000.

TABLE VIII
1-DAY PREDICTION RESULTS WITH DIFFERENT DATASETS AND ATTENTION MODULES

Case 11 achieves the lowest MSE loss of 0.0009 and smallest center distance error of 9.0812 Km, outperforming cases 1–10, whose advantage comes from the three listed attention
mechanisms and the heterogeneous data integration.
The two bold entities show the lowest MSE loss and center error among the 16 cases respectively.

input days. The X-axis of Fig. 11 denotes the input weights of
temporal attention for seven days, which approximately equals
to 0.14 because the summation of temporal attention of 7 input
channels is 1 (each weight is 1/7). In Fig. 11(a), the initial
temporal attention weights are allocated to seven days with an
average value of 0.1429. Fig. 11(b)–(e) show that 1–4 days’
weights drop by 77.28% from epoch 500 to 5000. On the
contrary, the weights of 5–7 days increase by 100.02% averagely.
After training 5000 epochs in Fig. 11(e), weights of 1–4 days
are reduced continuously to 0.0051, 0.0155, 0.0206, and 0.0691,
while the data of 5–7 days gain higher weights, which are 0.1561,
0.2148, and 0.5188, respectively. Fig. 11(e) reveals that TA-GRU
assigns more than 94% attention to the eddy data in 5–7 days.
Hence TA-GRU can pay more vital attention to the data in more
recent days which supply more real-time properties instead of
outdated information of previous days.

Table VIII is applied to verify the effects of different datasets
and attention mechanisms on prediction performance, where
one-day forecasting errors in 11 different cases are compared.
For Case 1 in Table VIII, TA-GRU with only TCME features
gains the highest mse loss of 0.0045 and largest distance error
of 19.99 km, since 1-D features in TCME contain less eddy
properties. The results of Cases 2, 3, and 4 prove that the addition
of SLA and WT indeed reduces distance error to 17.1898 km,
and the loss of two datasets is lower than one dataset alone
(with approximately 5.4% reduction). Cases 5–7 select the same
datasets (TCME, SLA, and WT) and the different methods with
one attention mechanism. The experimental results show that
spatial, channel and temporal attention mechanisms reduce dis-
tance errors to 14.3752, 14.5707, and 13.9877 km, respectively,

and the method with all the three attention mechanisms achieves
12% error reduction lower than other methods. In Cases 8–10,
different schemes with two attention mechanisms are involved
for same three datasets, demonstrating further error reduction
(15.2% on average) compared to a single attention mechanism
applied in Cases 5–7. Case 11 preserves the best prediction per-
formance with three datasets (TCME, SLA, and WT) and three
attention mechanisms (channel, spatial, and temporal attention),
by 0.0009 mse loss and 9.0817 km distance error for next one
day, which is 54% lower than the baseline GRU without extra
datasets or attention mechanisms.

Table IX shows the distance error results of TA-GRU and
traditional RNN, LSTM, GRU, which make sliding predictions
of the eddy center positions for 1–7 days, 10th day, and 14th
day. For TCME dataset in Table IX, our TA-GRU achieves
the lowest distance errors for seven-day continuous prediction,
10th and 14th-day forecasting. Compared with the networks
with TCME dataset, such those networks with TCME, SLA,
and WT datasets incur 17% degradation of distance errors on
average, indicating SLA and WT datasets improve the prediction
performance. In the last row of Table IX, we can observe that
TA-GRU with all three datasets obtains the lowest loss and
distance error for 1–14 days, with one-day error of 9.08 km,
seven-day error of 23.86 km, and 14-day error of 59.06 km.
In contrast with traditional RNN, LSTM, and GRU, TA-GRU
can bring 65.6%, 54.9%, and 54.1% distance error reduction,
respectively, as attention mechanisms help TA-GRU identify
eddy’s spatio–temporal characteristics more accurately.

Five forecasting curves of longitude and latitude are illus-
trated in Fig. 12(a) and (b) separately, reflecting four seven-day



WANG et al.: SPATIO–TEMPORAL ATTENTION-BASED DEEP LEARNING FRAMEWORK FOR MESOSCALE EDDY TRAJECTORY PREDICTION 3865

TABLE IX
CENTER DISTANCE ERROR COMPARISON WITH DIFFERENT NEURAL NETWORKS AND MESOSCALE EDDY DATASETS (KM)

TA-GRU with temporal attention mechanism achieves the best performance in three eddy datasets TCME, SLA, and WT for seven-day continuous prediction, 10th day
and 14th day nowcasting in future.
These bold values are the smallest center distance errors in 1-14 days, which are compared with results of the same column.

TABLE X
COMPARISON OF COMPUTATIONAL TIME FOR DIFFERENT NEURAL NETWORKS

3GRU is the fastest with 2.050 Ms, TA-GRU is 0.18 ms longer than GRU, since temporal attention layer brings extra parameters, such as α
and ωT , and LSTM is the slowest with 2.384 ms as its cell structure is the most complicated among the four networks.
The bold values respresent the average computational time for the first ten columns in the corresponding row.

prediction results of TA-GRU, GRU, LSTM, RNN, and the
ground truth of the eddy trajectory. It is obvious that the red
curve of TA-GRU is much closer to the ground truth (black
curve) than GRU, LSTM, and RNN, since TA-GRU iteratively
captures more eddy properties. Compared to GRU, LSTM, and
RNN, TA-GRU has 38%, 45%, and 65% distance error declines,
respectively. In Fig. 12(b), for the inflection point (9.13◦N ) of
ground truth’s latitude on the third day, TA-GRU’s inflection
point (9.14◦N ) appears approximately on the fourth day, while
the inflection points (9.15◦N , 9.14◦N , 9.13◦N ) of GRU, LSTM,
and RNN occur on the fifth day. Hence TA-GRU leads to the
lower latency for longtime trajectory prediction.

D. Computational Time Result of TA-GRU

Table X shows the the computational time results of baseline
RNN, LSTM, GRU, and TA-GRU, which repeats prediction
experiments ten times and achieves the average time costs. In
the four networks, GRU’s time is the lowest with 2.050 ms, since
there are less parameters (zt, rt,W,U, h′

t, etc.) in its simplified
two-gate cell structure. And RNN preserves the second least
time consumption of 2.107 ms, which is 2.7% longer than
GRU. TA-GRU achieves the computational time of 2.235 ms,
which is 0.18-ms longer than baseline GRU. As TA-GRU adds
temporal attention layer after the GRU hidden layer, there are
more parameter vectors (such as α, ωT , and h′, which causes
approximately 0.6-KB extra storage space in memory), which
slightly increases the computational complexity by approxi-
mately 9% time prolongation. Obviously, LSTM leads to the
largest time cost by 2.384 ms, which is 16% longer than GRU

and 7% longer than TA-GRU, as LSTM has the most parameters
in every operation cell of three gates.

In comparison, the new temporal attention mechanism in-
creases the computation time of TA-GRU by 0.18 ms over
baseline GRU and 0.13 ms over RNN, but it also reduces
time by 7% (0.15 ms) compared to LSTM with more complex
cell structure. In addition, although our TA-GRU causes more
computational efforts than GRU and RNN, the computational
overhead is negligible as TA-GRU gains approximately 65%,
55%, and 54% distance error reduction over traditional RNN,
LSTM, and GRU.

V. CONCLUSION

In this article, utilizing multidimensional datasets covering
eddy stereoscopic structure, a spatio–temporal attention-based
deep learning framework is proposed to accurately predict tra-
jectories of mesoscale eddies in the SCS, which consists of three
parts: 1) data construction and processing, 2) data compression
by CSA-encoder, and 3) forecasting network TA-GRU. The
heterogeneous datasets in the SCS are extracted, combined,
and processed first. To capture critical spatial features in het-
erogeneous eddy data, CSA-encoder is proposed to deduct
redundant data, denoise, and compress data. The channel and
spatial attention mechanisms in CSA-encoder are dedicated to
vertical and horizontal space feature detection, and temporal
attention mechanism in TA-GRU contributes to capturing key
time sequence characteristics, which reduces the mse losses
significantly. Our cross-validation results show that our fore-
casting framework with spatio–temporal attention mechanisms
achieves the lowest forecasting error whose range is from 9 to
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Fig. 12. Predicted results through four different neural networks in future
seven days. The black line is ground truth and the red represents our predicted
latitude and longitude by TA-GRU. The predicted results of TA-GRU are the
closest to the true eddy trajectories. (a) 7-Day Longitude Prediction. (b) 7-Day
Latitude Prediction.

23 km in seven-day prediction, and provides 57%, 44%, and 42%
prediction performance improvements compared to traditional
RNN, GRU, and LSTM with single TCME. CSA-encoder and
TA-GRU can also be applied to eddy trajectory prediction in
other ocean regions, such as the East China Sea and the North
Indian Ocean.

The improved accuracy proves the significant advantages of
our framework over previous eddy predicting networks, which
provides the strategies applying heterogeneous data and spatio–
temporal attention mechanisms for other prediction of oceanic
phenomenons which own stereoscopic structure and time-series
data. Meanwhile, in the future, it is worth further exploring the
impact of more related datasets on the performance of eddy
trajectory prediction, such as geostrophic flow velocity, ocean
salinity, wind farm, and submarine topography.
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