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Abstract—The distinction of similar classes has always been the
core issue in image classification. In this article, a new hierarchical
classification process based on three-dimensional attention soft
augmentation (HC-3DAA) is proposed to improve the accuracy of
classifiers, especially for the accuracy between similar classes. In
HC-3DAA processing, the merging matrix is first constructed based
on the validation confusion matrix to measure the similarity among
different classes. Specifically, the 3-D attention soft augmentation
module combined with CutMix is designed for guiding the network
model to focus on the key discriminative features. Then, the ex-
tracted 3-D feature differences between similar classes are inserted
into the attention module for the reclassification to get higher
classification accuracy. To evaluate the performance of HC-3DAA,
CutMix models with different feature dimensions and the HC
module are separately discussed on two widely used hyperspectral
datasets. Two different classifiers 3-D convolutional neural network
and ResNet are included in the comparative analysis. Besides,
experimental results also demonstrate that the proposed HC-3DAA
outperforms several state-of-the-art attention-based methods.

Index Terms—Data augmentation, hierarchical classification
(HC), hyperspectral image, similar classes reclassification, three-
dimensional (3-D) attention neural network.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) has hundreds of con-
tiguous bands, which provide rich spectral information

for material identification. Based on the spectral and spatial
characteristics, the HSI classification assigns each pixel of an
HSI to a certain label and has been one of the most pervasive
tasks among the applications of HSI [1]–[4].

Over the past years, numerous HSI classification methods
have been proposed aiming at effective feature extraction and
accurate classification results, such as the maximum-likelihood
classification (MLC) method [5], random forest [6]–[8], and
support vector machine (SVM) [9]–[12]. These methods have
been exploited for solving varied and numerous classification
problems. However, the MLC, random forest, and SVM are
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characterized as “shallow” models [13] as compared to deep
networks which are able to extract hierarchical, deep fea-
ture representations. Recently, deep learning, which is mainly
characterized by deep networks, has been proposed and has
been quite successful in solving a wide range of problems,
such as natural language processing [14], [15], computer vision
[16]–[19], etc.

In hyperspectral image classification, some deep-learning-
based methods, such as deep belief network [20], stacked au-
toencoder (SA) [21], recurrent neural network (RNN) [22]–[24],
and deep convolutional neural networks (CNNs) [25]–[27], have
achieved encouraging performance because of its excellent per-
formance in deep feature extraction. DBA, SA, and RNN are
usually exploited to extract only spectral features from spectral
signatures. However, it is not enough for satisfactory classifica-
tion accuracy. The CNN can extract not only the spectral features
but also the spatial features from the hyperspectral image. It has
better performance in the HSI classification task and has become
one of the most popular deep frameworks in deep-learning-based
methods. However, there are two issues in the CNN network de-
sign for hyperspectral image classification: 1) how to efficiently
get the discriminative features among different classes; 2) how
to avoid the overfitting problem to get a robust model. To tackle
these problems, many promising strategies have been proposed,
in which the attention mechanism and data augmentation are two
grateful methods and have proved to be effective for encouraging
classification accuracy.

The attention mechanism is inspired by the human visual sys-
tem to capture key features from images for classification [28]–
[30]. Zhang et al. [31] and Diao et al. [32] captured salient areas
of an image using saliency detection, which can be regarded as
the early attention mechanism. Hu et al. [33] used a squeeze-and-
excitation (SE) module to guide CNNs to automatically learn
the different importance of different channel features. However,
SENet only focuses on which layers of the channel level will
have stronger feedback ability, it does not get the attention in
the spatial dimension. Then, a convolutional block attention
module [34] was proposed and applied attention to both spec-
tral and spatial dimensions. Li et al. [35] proposed a dynamic
selection mechanism in CNNs named selective kernel unit, in
which multiple branches with different kernel sizes were fused
using softmax attention. Y. Cao et al. [36] constructed a global
context network with lightweight property, which generally
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outperforms SENet on major benchmarks for various recogni-
tion tasks. Recently, Mou and Zhou [37] designed a network unit,
which was termed the spectral attention module, that made use
of a gating mechanism to adaptively recalibrate spectral bands
by selectively emphasizing informative bands and suppressing
less useful ones. However, similar to the SENnet, this method
only used the attention module in the spectral dimension. Sun
et al. [38] proposed a spectral-spatial attention network (SSAN)
to capture discriminative spectral-spatial features from attention
areas of HSI cubes and the attention module was embedded after
every spectral and spatial kernel. It has been proved that SSAN
outperformed several state-of-the-art methods.

The attention-mechanism-based methods mentioned above
usually obtain the discriminative features by designing the struc-
ture of the CNN network. The network structure can be partic-
ularly complex. Besides, the features selected by the attention
module are poor in interpretability and intuitiveness. So, data
augmentation can be a more direct and effective way for HSI
classification.

Recently, several promising strategies of data augmentation
based on regional dropout [39]–[44] have been proposed to en-
hance the performance of CNN classifiers. The regional dropout
methods erase random regions on the input to improve gener-
alization and localization. They have proved to be effective for
guiding the model to attend to not only the most discriminative
parts of objects but rather the entire object region. However, the
informative pixels’ removal can cause information loss in the
image. To tackle this problem, Zhang et al. [45] mixed training
samples by interpolating both the image and labels, which
certainly improved the classification performance. A recently
developed strategy called CutMix [46] overcome the problem
of Mixup [45] that samples tend to be unnatural after the mix
of training samples. Instead of simply mixing pixels, it replaced
the partial region of one image with a patch region in another
image. CutMix shared similarities with Mixup which mixed two
samples by interpolating both the image and labels. But the
enhanced sample was more natural. It was shown that CutMix
had a better performance than Cutout and Mixup. However,
the original ∗∗∗∗2-D CutMix only focuses on the enhance-
ment of spatial information so the spectral information in HSI
is omitted.

Both attention mechanism and data augmentation show their
benefits in HSI classification. No matter what type of method, it
can usually achieve satisfactory results in classes with obvious
differences. Therefore, the final classification performance of
a classifier is mainly limited by the accuracy among similar
classes. These similar classes can often belong to one same
big category (tree, grass, etc.), or be made of similar materials
(roof and road that are made of concrete, etc.), or be spatial
adjacency (bare land, grassland, etc.), and so on. Then the
discriminative features to distinguish these similar classes tend
to focus on some specific spatial and spectral characteristics
and the others can be redundancy and interference, which will
affect the discrimination of the classifier. The unique assets of
hyperspectral images are their rich spectral and spatial content,
so it is more necessary for HSI to extract discriminative and
efficient features for the classification task.

In this article, the following questions are addressed based on
the research status mentioned above.

1) Since different spectral bands and spatial pixels contribute
not equally to a CNN for classification tasks, how to task-
drivenly find informative features and suppress redundant
ones?

2) Since both the attention mechanism and data augmentation
have good use in feature extraction, how to combine these
two methods to get the informative 3-D features more
effectively?

3) Since the key issue of classification tasks is the differ-
entiation of similar classes, how to design a reasonable
classification structure for these classes so that it can obtain
more accurate classification accuracy?

Motivated by the above problems, we design a three-
dimensional attention soft augmentation (3DAA) module for
analyzing the significance of different spectral bands and spatial
regions of the HSI image. Besides, we design a new classifica-
tion process named hierarchical classification (HC) to help the
classifier better focus on the distinction between similar classes
for more precise classification accuracy. The main contributions
are listed as follows.

1) The 3DAA module: A spectral-spatial (3-D) feature ex-
traction module that combines the attention mechanism
and data augmentation. The 3-D attention mechanism is
used to guide the CNN to attend to the most discriminative
features of HSI. Besides, the 2-D CutMix is expanded to
3-D CutMix and adopted into the attention part for better
performance in feature extraction.

2) The HC process: To further improve the classification
accuracy of similar classes, the HC process is designed as
a coarse-fine two steps method. HC first measures the sim-
ilarity between classes based on the initial classification
results of validation samples and then the similar classes
are precisely reclassified on the premise of avoiding inter-
ference from the other classes.

The rest of this article is organized as follows. First, Section II
introduces the proposed method named the HC based on 3-D
attention soft augmentation (HC-3DAA). Second, Section III
verifies the proposed approach and presents the correspond-
ing analysis and discussion. Finally, Section IV concludes the
article.

II. PROPOSED METHOD

A. Framework of the Proposed Method

The framework of our proposed HC-3DAA is shown in Fig. 1.
The whole framework consists of two main parts: the 3-D
attention soft data augmentation module combined with CutMix,
the HC process for reclassification of similar classes.

First, sliding windows with fixed sizes are used to divide
the HSI into patches. Then all patches are then divided into
several batches and input into the 3DAA module. In the 3-D
CutMix part, the dropped region of every patch in one training
batch is replaced by the same region of one randomly selected
sample. The trainable 3-D attention module is then applied to the
mixed patch to extract discriminative features of HSI. Second,



MIAO et al.: HIERARCHICAL CNN CLASSIFICATION OF HYPERSPECTRAL IMAGES BASED ON 3-D ATTENTION SOFT AUGMENTATION 4219

Fig. 1. Framework of HC-3DAA for HSI classification. The whole framework consists of two main parts: the 3-D attention soft data augmentation module
combined with CutMix, the HC process for reclassification of similar classes.

Fig. 2. Architecture of the 3DAA module. The proposed 3DAA module consists of two main parts: the 3-D CutMix part and the 3-D feature attention part. This
module aims at generating augmented training samples, which can be effective for guiding the CNN classifier to attend on discriminative features of HSI.

the feature-weighted data are input into the CNN classifier for
training and testing to get the initial classification results on
validation and testing samples. Then, the merging matrix using
validation samples is designed to measure the similarity among
classes. Two classes with similar features will be merged into one
big category. Every category will be reclassified after retraining
and retesting. Finally, the initial coarse classification map will
be corrected using the reclassification map of every category one
by one.

B. 3DAA Module

The proposed 3DAA module consists of two main parts:
the 3-D CutMix part and the 3-D feature attention part. This
module aims at generating augmented training samples, which
can be effective for guiding the CNN classifier to focus on
discriminative features of HSI. Fig. 2 illustrates the architecture
of the 3DAA module.

Original 2-D CutMix only used spatial information in RGB
images. But for HSI, the spectral information should also be
utilized. So in this article, the CutMix method is expanded from
2-D to 3-D to get a better fit for the subsequent 3-D attention
part.

Let Xi ∈ RB×W×W denotes a 3-D training patch with B
bands and sliding window size W . y represents the label
of Xi. Then, the training batch can be represented as X =
[(X1, y1), (X2, y2), . . . , (Xn, yn)], where n is the batch size.
The purpose of 3-D CutMix is to generate a new training batch
X̃ = [(X̃1, ỹ1), (X̃2, ỹ2), . . . , (X̃n, ỹn)] by replacing a 3-D re-
gion Bb̄×x̄×ȳ in Xi(i = 1, 2, . . . , n) with the same region of
one randomly selected sample XR. The label of the new sample

X̃i(i = 1, 2, . . . , n) is also the mixed label of yi and yR. We
define the combining operation as

X̃i = M�Xi + (1−M)�XR

ỹi = λyi + (1− λ)yR (1)

where M ∈ {0, 1}B×W×W is a binary mask whose values are
0 in Bb̄×x̄×ȳ and 1 in the other regions. � is elementwise
multiplication. Like 2-D CutMix, the combination ratio λ is
sampled from the uniform beta distribution Beta (1, 1).

The position of the 3-D cropped regionBb̄×x̄×ȳ is represented
as [(rb1, rb2), (rx1, rx2), (ry1

, ry2)], in which b̄ = b2 − b1, x̄ =
x2 − x1, and ȳ = y2 − y1. The position is uniformly sampled
according to

rb1 ∼ Unif (0, B) , rb2 = B(1− λ)
1
3

rx1 ∼ Unif (0,W ) , rx2 = W (1− λ)
1
3

ry1 ∼ Unif (0,W ) , ry2 = W (1− λ)
1
3

(2)

to make the cropped region meet (b̄× x̄× ȳ)/(B ×W ×W ) =
1− λ.

The 3-D CutMix part can enhance the performance of the
3-D attention part in feature extraction by constructing new
training samples X̃i and labels ỹi. It can also avoid the overfitting
problem of CNN to some extent and make the model more
robust.

The subsequent part after 3-D CutMix is the 3-D attention
part based on the attention mechanism to capture discriminative
spectral-spatial features among classes.

To further improve the perception of features, the 3-D fea-
ture attention part is applied to every new training patch.
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Let Aspe ∈ RB and Aspa ∈ RW×W denote spectral and spatial
attention weights, respectively. Their sizes correspond to the
spectral and spatial dimensions of the patch. Both Aspe and
Aspa are trainable variables that can be optimized by CNN. The
elements in Asperepresent the different contributions of every
band for HSI classification, while the elements in Aspa represent
the different contributions of every spatial region. BothAspe and
Aspa are normalized to [0, 1] and a high value means a high
contribution to the classification task.

Before the training of these attention weights, we need to
initialize them properly. It is noted that the way of initialization is
different between the classification and reclassification process.
However, their purpose is the same, that is to increase the feature
difference among classes. The weight initialization method of
preliminary classification will be introduced below and that of
reclassification will be introduced in the subsection of the HC
process.

Assuming that PCi
∈ RB×W×W means the average training

samples of class i, then the average spectral and spatial infor-
mation can be defined as SpeCi

∈ RB and SpaCi
∈ RW×W ,

respectively.

SpeCi
= Avgspa(Pci) =

[
ECi

1 ,ECi
2 , . . . ,ECi

B

]

SpaCi
= Avgspe(Pci) =

⎡
⎢⎣

aCi
11 . . . aCi

1W
...

. . .
...

aCi

W1 . . . aCi

WW

⎤
⎥⎦ (3)

where operators Avgspa(•) and Avgspe(•) mean to get the value
average in spatial and spectral dimensions. ECi

j means the
average spectral value of the ith class in band j and aCi

pq means
the average spatial value of the ith class at the position (p, q).
To measure the spectral and spatial differences among classes,
we define the difference factors σspe and σspa as the following:
(4) shown at the bottom of this page, where var(•) means to
calculate the variance of the variables and N is the number of
classes. So, if there is much spectral feature difference among
classes in band j, the value var({SpeC1

j , . . . ,SpeCN
j }) must be

high. The same goes for the spatial feature difference.
Aspe and Aspa are initialized as the normalized σspe and σspa,

respectively, which can be expressed as

Aspe = N (σspe) =
σspe−min(σspe)

max(σspe)−min(σspe)

Aspa = N (σspa) =
σspa−min(σspa)

max(σspa)−min(σspa)

(5)

where N (•) is the linear normalization operator.

Then, both of the weights are expanded to the same size of
X̃i ∈ RB×W×W :

Aspe = (Aspe)
B×W×W

Aspa = (Aspa)
B×W×W .

(6)

The final 3-D attention weight Aw and the attention weighted

patch
�

Xi are represented as

Aw = N (Aspe �Aspa)

�

Xi = (1+Aw)� X̃i. (7)

Both Aspe and Aspa are trainable parameters. They will be
optimized with the training of the CNN.

C. HC Process

The HC process is a coarse-fine two steps method to help the
classifier attend to the differentiation between similar classes.
Fig. 3 illustrates the architecture of the HC process.

The purpose of the HC process is to measure the similarity
between classes and then get more precise reclassification results
of these categories. Because it is easier and more efficient for
the CNN model to catch the discriminative features between
similar classes without the interference of the other classes. It can
effectively solve the problem of information inequality between
classes by transforming the classification task from the “one
against others” problem to the “one against one” problem.

The HC process mainly includes the following four parts.
1) Coarse classification on validation samples to get the

merging matrix for similarity measure among classes.
2) The initial attention feature weights are obtained for each

group of similar classes.
3) Coarse classification on testing samples to get the initial

classification map.
4) Fine classification for each group of similar classes to

correct the initial classification map.
First, we need to define the “similar” classes. The “similar”

means the feature difference between the two classes is too
small and is difficult for the classifier to perceive. Because
characteristics of features extracted by different classifiers can
be different, “similar classes” may not be all the same for these
classifiers even for the same image. So a classifier needs to
determine its own “similar classes”. In this article, we use the
validation samples to determine which classes are “similar” for
a specific classifier.

σspe = var ({SpeC1
, . . . ,SpeCN

})
= [var({SpeC1

1 , . . . ,SpeCN
1 }), . . . , var({SpeC1

B , . . . ,SpeCN

B })]
σspa = var ({SpaC1

, . . . ,SpaCN
})

=

⎡
⎢⎣
var({SpaC1

11 , . . . ,Spa
CN
11 }) . . . var({SpaC1

1W , . . . ,SpaCN

1W })
...

. . .
...

var({SpaC1

W1, . . . ,Spa
CN

W1}) . . . var({SpaC1

WW , . . . ,SpaCN

WW })

⎤
⎥⎦ (4)
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Fig. 3. Architecture of the HC process. The HC process measures the similarity between classes based on the merging matrix and merge similar classes into
different categories. Then, every category will be reclassified to correct the initial testing map.

After testing on validation samples in the coarse classification
process, the merging matrixG is defined based on the validation
confusion matrix M ∈ RN×Nof the initial validation classifica-
tion result as

G = M+MT (8)

where N is the number of classes. It is obvious that G is a
symmetric matrix. Its nondiagonal elements gi,j represent the
confusion degree between class Ci and Cj. The element value
represents the degree of similarity between the two classes. If
there is a higher similarity between the two classes Ci and Cj,
the corresponding element gi,j of the merging matrix will have a
greater value. Then the elements will be selected based on their
values from high to low and the corresponding classes will be
merged into categories Ri,j two by two.

Rk
i,j = {Ci ∪ Cj

∣∣g
i,j

= gj,i = kth_max(G), i �= j} (9)

where Rk
i,j means the category containing class i and j in the kth

mergence. kth_max(G)means kth largest value in G. It is noted
that two categories Rm

i,p andRn
i,q may contain one of the same

class i. However, it is common and reasonable because they will
meet the definition of similar classes from different views. For
example, Ci and Cp may be made of similar materials, but Ci

and Cq can also be spatial adjacency.
If the two similar classes are regarded as one same category,

the original samples of misclassification between these two
classes can be also regarded as correctly classified from the
perspective of category. It is obvious that the overall accuracy
(OA) is improved continuously with the continuous mergence.
When the Ci and Cj are merged, the improved OA of the
validation set ΔOA(Ri,j) will be represented as follows:

ΔOA(Ri,j) =
gi,j
NVal

(10)

where NVal is the number of samples in validation set.
In the extreme case, if all classes that may lead to misclas-

sification have been merged into some categories, the overall
classification accuracy will be 1, but this case is meaningless. To
improve the classification accuracy more simply and efficiently
and save computing resources, we expect to get a satisfactory im-
provement of overall classification accuracy (OA) on the premise
of merging as few categories as possible. So, the merging times
T is limited as

T = argmin
T

{
ΔOA(T ) <

ΔOA(1)

2

}
(11)

where ΔOA(i) means the improvement of OA after i times
merging. Because classes are merged based on the values in G
from high to low, it is obvious that ΔOA(1) is the biggest. The
more times of mergence, the less obvious in the improvement
of OA.

Second, these categories need to be reclassified for more
precise accuracy. In the HC process, the initialization of the
3DAA module is different from that in the “coarse” classifi-
cation mentioned in Section II-B. To make the features more
discriminative, we use the feature difference of similar classes
to initialize the attention weights in the 3DAA module.

The feature differences normalization module is used for
getting the spectral ΔRi,j

spe and spatial differences ΔRi,j
spa in every

category.

Δ
Ri,j
spe = N (

∣∣Avgspa(PCi
)− Avgspa(PCj

)
∣∣)

Δ
Ri,j
spa = N (

∣∣Avgspe(PCi
)− Avgspe(PCj

)
∣∣) (12)

where Avgspe and Avgspa denote the value average of patches in
spectral and spatial dimensions, respectively.

The last step is to recalibrate the initial classification results.
After the coarse classification of the testing samples, we can

get the coarse classification map MapIni, in which there are many
misclassification samples in each category. It is assumed that
MapIni

Ri,j
represent the test samples classified into Ci or Cj in the

coarse classification process. In the HC process, these samples
will be reclassified. For each category, this process is a binary
classification and we just need to judge which of the two similar
classes these samples belong to without the interference of the
other classes. The reclassification results of these samples will
correct the labels in the coarse classification map MapIni

Ri,j
, which

can be expressed as:

MapCor
Ri,j

= HC (Ri,j) = HC
(

MapIni
Ri,j

)
. (13)

Every category will be reclassified one by one. In the reclassi-
fication ofRk

i,j in the HC process, the attention weights Aspe and
Aspa in the 3DAA module will be initialized as the normalized
spectral and spatial feature differences of each category, ΔRi,j

spe

and Δ
Ri,j
spa , respectively.

After the correction on MapIni with the fine classification
results of every category one by one, the final fine classification



4222 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 4. False-color image of PU and its ground-truth map.

Fig. 5. RGB image of DFC data and its ground-truth map.

map can be expressed as

MapCor
R =

{
HC

(
MapIni

Rk
i,j

)
R ∈ Rk

i,j k = 1, 2, . . . , T

MapIni R /∈ Rk
i,j

(14)

where T means the number of categories.
The reasons why the HC process can better distinguish similar

classes can be summarized as follows.
1) From the perspective of data enhancement, the reclas-

sification process of similar classes belongs to binary
classification, and the samples between these classes can
be mixed more fully.

2) From the perspective of feature attention, the trained fea-
ture attention weights are more targeted for distinguishing
similar classes in each category.

3) From the perspective of classifier design, it is easier for
the classifier to find the appropriate decision boundaries
for distinguishing the two classes without the interference
of other classes.

III. EXPERIMENTS AND DISCUSSION

A. Data Description

Three publicly available hyperspectral datasets were used for
experiments, i.e., the Pavia University (PU) dataset, the 2014
IEEE GRSS Data Fusion Contest (DFC) dataset, and the SV
dataset. Figs. 4 –6 illustrate the false-color image, RGB image,
and its corresponding ground-truth map for the PU, the DFC,
and the SV datasets, respectively.

1) PU Hyperspectral Dataset: The PU dataset is acquired by
the ROSIS sensor during a flight campaign over the University
of Pavia, northern Italy. The size of PU is 610× 304 pixels
and the number of spectral bands is 115, of which 12 bands
were removed before being processed because of the noise. The

Fig. 6. False-color image of SV and its ground-truth map.

band ranges from 0.43 to 0.86 μm. The spatial resolution is
1.3 m/pixel. Besides unknown pixels, nine classes are manually
annotated in the reference data.

2) 2014 IEEE GRSS DFC Dataset: DFC involves two image
sources acquired at different spectral ranges, namely the hyper-
spectral image in the long-wave infrared region (LWIR) (7.8–
11.5 μm) with 84 bands and the RGB image in the visible (VIS)
region. The LWIR image was acquired using the “Hyper-Cam,”
an airborne long-wave infrared hyperspectral imager based on a
Fourier-transform spectrometer. The two data sources cover an
urban area near Thetford Mines in Québec, Canada. The spatial
resolution is 1 m/pixel in LWIR data and 0.2 m/pixel in RGB
data. In this article, we combine the RGB data and the LWIR data
of the DFC dataset as a complete HSI image. All data are resized
to 795× 564 pixels and 1 m/pixel. There are seven classes in
the scene.

3) Salinas Valley Hyperspectral Dataset: This scene was
collected by the 224-band AVIRIS sensor over Salinas Valley
(SV), California, and is characterized by high spatial resolution
(3.7-m pixels). The area covered comprises 512 lines by 217
samples. We discarded the 20 water absorption bands, in this
case bands: [108-112], [154-167], 224. This image was available
only as at-sensor radiance data. It includes vegetables, bare soils,
and vineyard fields. Salinas ground-truth contains 16 classes.

B. Experimental Setup

To evaluate the performance of HC-3DAA, different kinds of
CutMix modules with different feature dimensions and the HC
module are discussed separately on two hyperspectral datasets
mentioned above. All datasets are normalized in the range [0, 1].
It is noted that the RGB image and LWIR image are normalized
separately in the DFC dataset.

In this article, we use the merging matrix G to determine
which classes are “similar” for a specific classifier. The element
value of G represents the degree of similarity between the two
classes. So the number of each class in the validation set must be
equal to ensure that the confidence among classes is balanced.
If we select samples of the validation set in proportion, classes
with a large sample base are more likely to be judged as “similar”
classes. Therefore, we cannot judge the similarity among classes
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TABLE I
AMOUNTS OF TRAINING, VERIFICATION, AND TEST DATA ON THE PU DATASET

TABLE II
AMOUNTS OF TRAINING, VERIFICATION, AND TEST DATA ON THE DFC

DATASET

TABLE III
AMOUNTS OF TRAINING, VERIFICATION, AND TEST DATA ON THE SV DATASET

by the element value of G. So the number of validation samples
of each class should be a fixed value.

However, we have no requirements for the selection way of
the number of samples in the training set. The samples of the
training set can be selected in proportion or a fixed value. In
this article, we want to keep the number of training samples
consistent with that of the validation samples, so both the training
and validation samples are fixed at 200. Of course, this is not
a must. The number of training, validation, and testing samples
for each class are detailed in Tables I–III. It is noted that when
measuring the similarity among classes, only the samples and
labels of the validation set are used. When evaluating the overall
classification accuracy, all samples and labels in the data are
used for testing. In other words, training and validation samples

are included in the testing samples, which can also be reflected
in Tables I–III.

We adopt four quantitative evaluation indices to assess the
classification performance and they are listed as the following.

1) OA: This criterion is calculated as the fraction of test
samples that are differentiated correctly.

2) kappa coefficient (κ): To assess the performance concern-
ing each class in a data set, we also compute per-class
accuracy (PA). This measurement is particularly useful
when class labels are not uniformly distributed.

3) PA: This criterion is computed as the classification accu-
racies of each class.

4) Confusion Matrix: The confusion matrix is used to analyze
the misclassified classes for the assessment of intraclass
classification performance.

In this article, we insert the 3DAA module and HC process into
a 3D-CNN and a 3D-ResNet [47] to evaluate the improvement
of our proposed method. We use the Pycharm framework to
implement and train networks. The Adam optimization function
[48] with an initial learning rate of 1× 10−4 has been adopted
in the “coarse” classification process and 1× 10−3 in the HC
process. The batch size is set to 5 because a small batch size is
more conducive to the full mixing of training samples among
different classes. The epochs are set to 2000 in the “coarse” clas-
sification process and 1000 in the HC process. For comparison,
the window sizes (the spatial size of the input patch) are set to
5× 5 (W-5) and15× 15 (W-15) for experiments. Finally, we
train networks on an NVIDIA GeForce RTX 2080 Ti 11 GB
GPU.

In this article, the structure of 3D-CNN is detailed as follows.
First, the data patch with a specific spatial size is input into
the 3DAA module to get the feature-weighted data. Then the
feature-weighted data is input into several 3-D convolution lay-
ers with no padding and the input patch will be finally convoluted
into a 1-D vector. The convolution layer is followed by two
full connection layers. For example, the 3D-CNN architecture
with a spatial size of 15 is shown in Table IV. There are seven
3-D convolution layers with ReLU active functions. Two fully
connected layers are after the convolutional layers. The stride
value of the convolutional layer is set to 1.

To quantitatively compare different models for hyperspectral
data classification tasks from various aspects, the following three
experiments are designed.

1) Effectiveness of the Proposed 3DAA Module: To evaluate
the performance of the proposed 3DAA module, we compare
the experimental results of two different classifiers (3D-CNN
and ResNet) combined with different types of modules (2-D
CutMix with attention soft augmentation and 3-D CutMix with
attention soft augmentation). Thus, the followings are methods
included in this experiment: 3D-CNN, ResNet, 3D-CNN with
2D/3DAA, and ResNet with 2D/3DAA. Besides, two window
sizes 5× 5(W-5) and 15× 15(W-15) are also considered in the
experiment.

2) Effectiveness of the HC Process: To evaluate the perfor-
mance of the HC process, the classification results of two classi-
fiers before and after the HC process are compared. We choose
the window size setting that can better reflects the advantages of
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TABLE IV
CONFIGURATION OF A 3DAA-BASED 3-D CONVOLUTIONAL NETWORK FOR THE PU DATASET WITH W-15

TABLE V
ACCURACY COMPARISONS OF 3DAA MODULE FOR THE PU DATASET WITH W-5

Note: Bold numbers indicate the best performance.

TABLE VI
ACCURACY COMPARISONS OF 3DAA MODULE FOR THE DFC DATASET WITH W-15

Note: Bold numbers indicate the best performance.

our proposed method. The confusion matrices with the window
size of 5 (W-5) on the PU dataset and with the window size of
15 (W-15) on the DFC dataset and SV dataset are also used to
analyze the improvement in the classification of similar classes.
The results before and after the HC process are compared in
confusion matrices.

3) Performance Comparison of HC-3DAA With Other State-
of-the-Art Methods: In this experiment, we compare the per-
formance of our proposed HC-3DAA method using 3D-CNN
classifier with some state-of-the-art attention-based methods:
deep feature fusion network (DFFN) [30], spectral-spatial
residual network (SSRN) [27], spectral attention network
(SpecAttenNet) [37], and SSAN [38].

For a fair comparison, the proposed method and compared
methods adopt the same experimental settings. The spatial

window size of HSI cubes for all methods is set to 15× 15.
The batch size is set to 5. The number of training epochs is set to
2000 and weight parameters of all methods are optimized with
the Adam. The learning rate is set to 1× 10−4.

C. Results and Discussion

1) Effectiveness of the Proposed 3DAA Module: Tables V–
VII give information about PA, OAs, and kappa coefficients with
W-5 on the PU dataset and with W-15 on the DFC dataset
and SV dataset. In the experiments, the accuracy of classifiers
with no attention module, 2DAA module, and 3DAA module
are compared. Tables V–VII list the results with W-5 on the PU
dataset and with W-15 on the DFC, and SV datasets, respectively.
Table VIII shows the OA and kappa coefficients in all cases.
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TABLE VII
ACCURACY COMPARISONS OF 3DAA MODULE FOR THE SV DATASET WITH W-15

Note: Bold numbers indicate the best performance.

TABLE VIII
CLASSIFICATION RESULTS OF DIFFERENT TYPES OF MODULE ON THREE DATASETS

Note: Bold numbers indicate the best performance.

On the whole, on the PU dataset, using 3D-CNN and ResNet
classifiers, the 3DAA module is capable of achieving OA incre-
ments of 4.18% and 3.82% with W-5 for 3D-CNN and ResNet, of
1.24% and 0.8% with W-15 for 3D-CNN and ResNet. Regarding
the DFC scene, OA increments are 4.17% and 3.57% with W-5
and 1.01% and 1.54% with W-15. As for the SV dataset, OA
increments are 3.36% and 3.96% with W-5 and 2.33% and 2.06%
with W-15. Similarly, the improvements in kappa coefficients in
all cases are also very obvious.

Concerning the obtained classification results, attention-
based modules, including the 2DAA module and 3DAA mod-
ule, can improve the classification performance of classifiers
regarding OA and the kappa coefficient. It is because the
attention-based module can help the classifier attend to the
discriminative features of HSI. So the classifier can be more
robust in finding appropriate decision boundaries to separable
different classes. The significant accuracy improvements of
both 3D-CNN and ResNet show that the proposed attention
module has good portability. Besides, the 3DAA module is more

effective than the 2DAA module because of the use of informa-
tion in spectral dimensions of HSI.

Furthermore, to more intuitively show the effectiveness of the
3DAA module in feature extraction, we use t-SNE [49], [50] to
visualize features of training and validation samples before and
after this module on the PU dataset, the DFC dataset, and the SV
dataset in Figs. 7 –9, respectively. As is shown in Fig. 7, in the
original samples, some classes are mixed together (e.g., class 2
and class 6), while they are separated in recalibrated samples.
This means that recalibrated samples can be easier to classify. At
the same time, it is known that class 2 (“Meadows”) and class
6 (“Bare Soil”) are similar in characteristics because they are
spatial adjacency. So they are similar classes. Similarly, we can
get the same conclusion in Fig. 8. The mixed classes (e.g., class 2
and class 6) are separated after the processing of the 3DAA mod-
ule. In the DFC scene, class 2 (Trees) and class 6 (Vegetation)
can belong to the same big category (Vegetation). So, they are
similar classes too. Fig. 9 shows that class 8 (Grapes_untrained)
and class 15 (Vinyard_untrained) are features mixed in original
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Fig. 7. Visualization of (a) original training and validation samples and
(b) recalibrated ones by the 3DAA attention module with W-5 of the PU dataset
by t-SNE. Different colors represent nine different classes. It is shown that, in
the original samples, some classes are mixed together (e.g., class 2 and class 6),
whereas they are separated in recalibrated samples. This means that recalibrated
samples can be easier to classify.

Fig. 8. Visualization of (a) original training and validation samples and
(b) recalibrated ones by the 3DAA attention module with W-15 of the DFC
dataset by t-SNE. Different colors represent seven different classes. It is shown
that, in the original samples, some classes are mixed together (e.g., class 2 and
class 6), whereas they are separated in recalibrated samples. This means that
recalibrated samples can be easier to classify.

SV data. Just judging by common sense, these two classes are
very similar. After the feature attention of the 3DAA module,
the two classes are obviously separated.

2) Effectiveness of the HC Process: Tables IX–XI show the
confusion matrices of validation samples with W-5 on the PU
dataset, with W-15 on the DFC dataset and with W-15 on the SV
dataset using a 3DAA classifier after the coarse classification.
The nondiagonal elements in the confusion matrix represent

Fig. 9. Visualization of (a) original training and validation samples and
(b) recalibrated ones by the 3DAA attention module with W-15 of the SV dataset
by t-SNE. Different colors represent 16 different classes. It is shown that, in the
original samples, some classes are mixed together (e.g., class 8 and class 15),
whereas they are separated in recalibrated samples. This means that recalibrated
samples can be easier to classify.

TABLE IX
CONFUSION MATRIX OF VALIDATION SAMPLES WITH W-5 ON THE PU

DATASET AFTER COARSE CLASSIFICATION

TABLE X
CONFUSION MATRIX OF VALIDATION SAMPLES WITH W-15 ON THE DFC

DATASET AFTER COARSE CLASSIFICATION

TABLE XI
CONFUSION MATRIX OF VALIDATION SAMPLES WITH W-15 ON THE SV

DATASET AFTER COARSE CLASSIFICATION
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Fig. 10. Visual classification results of different approaches with W-5 on the PU dataset before and after the HC process. (a) False-color image of PU and
its ground-truth map. (b) 3DAA with 3D-CNN classifier. (c) HC-3DAA with 3D-CNN classifier. (d) 3DAA with ResNet classifier. (e) HC-3DAA with ResNet
classifier. The regions in white boxes show the main accuracy improvement of the HC process between similar classes.

Fig. 11. Visual classification results of different approaches with W-15 on the DFC dataset before and after the HC process. (a) False-color image of DFC and
its ground-truth map. (b) 3DAA with 3D-CNN classifier. (c) HC-3DAA with 3D-CNN classifier. (d) 3DAA with ResNet classifier. (e) HC-3DAA with ResNet
classifier. The regions in white boxes show the main accuracy improvement of the HC process between similar classes.

TABLE XII
MERGING MATRIX OF VALIDATION SAMPLES WITH W-5 ON THE PU DATASET

AFTER COARSE CLASSIFICATION

Note: Bold numbers indicate the merged classes with top confusion errors.

the number of misclassified samples. Besides, the merging
matrices based on the confusion matrices are shown in Tables
XII–XIV, respectively. As mentioned in Section II, the merging
matrix is used to determine the similarity between classes. It is
the symmetric matrix and classes with top values are defined
as similar classes. Similar classes will be merged into a big
category Ri,j.

According to Tables XII–XIV, selected categories are R2,6

and R3,8 in the PU dataset, R1,6 and R2,6 in the DFC dataset,
and R8,15 and R8,10 in the SV dataset. These categories are
consistent with the conclusion obtained in Figs. 7–9. They all
meet the definition of similar classes in Section I. As we can see
in Tables IX–XI, the classification performance of a classifier is
mainly limited by the accuracy among these similar classes. The
goal of the HC process is to better distinguish these categories
through HC.

For every category, the improvements in PA are shown in
Tables XV–XVII. It is obvious that the HC process can guide
the classifiers to distinguish similar classes more efficiently.
The PAs of C2 and C8 have increased by 3% and 1.8% in the
reclassification of R2,6 on the PU dataset. The PAs of C6 and
C2 have increased by 3.00% and 1.10% in the reclassification
of R1,6 and R2,6 on the DFC dataset. The PAs of C8 and C15

have increased by 6.43% and 1.37% in the reclassification of
R8,15 and R8,10 on the SV dataset. It is noted that although the
reclassification of R3,8 on the PU dataset doesn’t achieve ideal
results, the OA has also been improved and the results in other
cases are all in line with expectations.

Figs. 10–12 demonstrate the visual classification maps of
different approaches with W-5 on the PU dataset, with W-15
on the DFC dataset, and with W-15 on the SV dataset before
and after the HC process, respectively. The regions in white
boxes show the main accuracy improvement of the HC process
between similar classes.

Table XVIII lists the OA and kappa coefficients before and
after the HC process in all cases. Table XVIII also shows the
categories Ri,j in these cases. It is shown in Table XVIII that,
even on the same image, the merged classes in different cases
are sometimes inconsistent because of the randomness of the
training process. But they are all reasonable, such as meadows
and trees R4,2 in PU belonging to the vegetation category,
meadows and bare soil R6,2 in PU being spatial adjacency, self-
blocking bricks and gravel R8,1 being made of similar materials,
and so on. The effectiveness of the HC process on all datasets is
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TABLE XIII
MERGING MATRIX OF VALIDATION SAMPLES WITH W-15 ON THE DFC DATASET AFTER COARSE CLASSIFICATION

Note: Bold numbers indicate the merged classes with top confusion errors

TABLE XIV
MERGING MATRIX OF VALIDATION SAMPLES WITH W-15 ON THE SV DATASET AFTER COARSE CLASSIFICATION

Note: Bold numbers indicate the merged classes with top confusion errors

TABLE XV
CONFUSION MATRIX OF HC PROCESS WITH W-5 ON PU DATASET

Note: Bold numbers indicate the improvements of HC process

very encouraging. On the PU dataset, the OAs increase by 0.75%
and 0.66% for 3D-CNN and ResNet with W-5 and increase by
0.27% and 0.04% for 3D-CNN and ResNet with W-15. The OA
improvement is more significant on DFC data that increased by
0.61% and 0.90% for 3D-CNN and ResNet with W-5, increased

TABLE XVI
CONFUSION MATRIX OF HC PROCESS WITH W-15 ON DFC DATASET

Note: Bold numbers indicate the improvements of HC process

by 1.03% and 1.51% for 3D-CNN and ResNet with W-15. As for
the SV dataset, the OAs have also been significantly improved.
OAs increase by 2.14% and 1.44% for 3D-CNN and ResNet with
W-5 and increase by 1.52% and 0.48% for 3D-CNN and ResNet
with W-15. The main reason why the HC process can be effective
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TABLE XVII
CONFUSION MATRIX OF HC PROCESS WITH W-15 ON SV DATASET

Note: Bold numbers indicate the improvements of HC process

Fig. 12. Visual classification results of different approaches with W-15 on the SV dataset before and after the HC process. (a) False-color image of SV and
its ground-truth map. (b) 3DAA with 3D-CNN classifier. (c) HC-3DAA with 3D-CNN classifier. (d) 3DAA with ResNet classifier. (e) HC-3DAA with ResNet
classifier. The regions in white boxes show the main accuracy improvement of the HC process between similar classes.

is that discriminative features between similar classes are easier
to be caught by the attention model without the interference of
the other classes.

Throughout all the experiments, the proposed HC-3DAA
module improves the OA of the 3D-CNN classifier from 92.11%
to 97.04% with W-5 and from 98.27% to 99.78% with W-15 on
the PU dataset, whereas from 92.75% to 97.23% with W-5 and
from 98.82% to 99.66% with W-15 for the ResNet classifier.
The improvements on the DFC and SV dataset are also very
considerable and the classification accuracy has been improved
by more than 3% in all cases.

3) Performance Comparison of HC-3DAA With Other State-
of-the-Art Methods: In this experiment, some state-of-the-art
attention-based methods, namely DFFN, SSRN, SpecAttenNet,
and SSAN, are used as compared methods to verify the effec-
tiveness of HC-3DAA.

Table XIX and Fig. 13 report the classification results con-
ducted on the PU dataset. The proposed HC-3DAA method

with the 3D-CNN classifier outperforms several state-of-the-
art methods. For most classes, our proposed method has the
superior PA. Especially for some classes with similar char-
acteristics, such as “Meadows,” “Gravel,” “Bare Soil,” and
“Bitumen,” the superiority of this algorithm is particularly en-
couraging. HC-3DAA achieves an OA of 99.78% and a kappa
coefficient of 99.70%, which are the highest among compared
methods.

As for the DFC dataset, Table XX and Fig. 14 show the
quantitative evaluation results and visual results, respectively.
The HC-3DAA method also achieves superior performance. In
the experiment, all methods achieve very high accuracy in the
“Road” and “Bare Soil” because these classes have specific
radiation characteristics in LWIR and are easy to be distin-
guished from the other classes. The HC-3DAA outperforms
other methods in the classification of similar classes. It achieves
the highest OA of 98.61% and the highest kappa coefficient of
98.27%.
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TABLE XVIII
CLASSIFICATION RESULTS BEFORE AND AFTER THE HC PROCESS

Note: Ri,j is the merged category containing similar classes i and j

TABLE XIX
ACCURACY COMPARISONS FOR THE PU DATASET WITH W-15

Note: Bold numbers indicate the best performance

Fig. 13. Visual classification results of different approaches with W-15 on the PU dataset. (a) Ground-truth map of PU. (b) DFFN. (c) SSRN. (d) SpecAttenNet.
(e) SSAN. (f) HC-3DAA with 3D-CNN classifier.

Table XXI and Fig. 15 show the accuracy comparison for
the SV dataset with W-15. It is shown that all compared
methods have good performance in classification for most
classes. Their difference is mainly reflected in the distinction
of similar classes, such as class 8 and class 15. The clas-
sification accuracy of these similar classes seriously restricts

the OA. Our proposed HC-3DAA method has the best per-
formance in the distinction between class 8 and class 15. It
achieves the highest PAs of 96.78% and 93.89% for class 8
and class 15, respectively. Besides, the OA and kappa co-
efficient of HC-3DAA are also the best among compared
methods.
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TABLE XX
ACCURACY COMPARISONS FOR THE DFC DATASET WITH W-15

Note: Bold numbers indicate the best performance

Fig. 14. Visual classification results of different approaches with W-15 on the DFC dataset. (a) Ground-truth map of DFC. (b) DFFN. (c) SSRN. (d) SpecAttenNet.
(e) SSAN. (f) HC-3DAA with 3D-CNN classifier.

TABLE XXI
ACCURACY COMPARISONS FOR THE SV DATASET WITH W-15

Note: Bold numbers indicate the best performance

All the experiments on the PU, the DFC, and the SV datasets
illustrate the advantages of our proposed method in similar
classes’ differentiation.

To analyze the computational complexity of the proposed
network and other methods, we calculate the average training
and testing time (on GPU) on the PU dataset with W-15.
The calculation results are shown in Table XXII. Because
the parameters of each model are different and the average
time is positively correlated with the number of parameters,
the time consumption of the proposed network is more than
that of other methods, which means that the improvements

in classification performance increase the computation
complexity.

IV. CONCLUSION

In this article, a new classification module named HC-3DAA
is proposed to improve classification accuracy, especially for
similar classes. Our HC-3DAA method is mainly divided into
two parts, namely the 3DAA part and the HC process part. The
3DAA part aims to guide the classifiers to attend to discrimina-
tive features between classes and the HC process part can help
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Fig. 15. Visual classification results of different approaches with W-15 on the SV dataset. (a) Ground-truth map of SV. (b) DFFN. (c) SSRN. (d) SpecAttenNet.
(e) SSAN. (f) HC-3DAA with 3D-CNN classifier.

TABLE XXII
AVERAGE TRAINING AND TESTING TIME (ON GPU) ON THE PU DATASET WITH W-15

the classifiers distinguish similar classes more efficiently. The
obtained results on the PU, DFC, and SV datasets demonstrate
that the proposed method can significantly improve the perfor-
mance of 3D-CNN and ResNet classifiers in HSI classification.
It is also shown that our HC-3DAA method outperforms some
state-of-the-art attention-based methods in similar classes’ dif-
ferentiation.

REFERENCES

[1] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. M.
Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis
and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2,
pp. 6–36, Jun. 2013.

[2] N. He et al., “Feature extraction with multiscale covariance maps for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 57, no. 2, pp. 755–769, Feb. 2019.

[3] L. He, J. Li, C. Liu, and S. Li, “Recent advances on spectral-spatial hy-
perspectral image classification: An overview and new guidelines,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 3, pp. 1579–1597, Mar. 2018.

[4] F. Luo, B. Du, L. Zhang, L. Zhang, and D. Tao, “Feature learn-
ing using spatial-spectral hypergraph discriminant analysis for hyper-
spectral image,” IEEE Trans. Cybern., vol. 49, no. 7, pp. 2406–2419,
Jul. 2019.

[5] N. Bali and A. Mohammad-Djafari, “Bayesian approach with hidden
Markov modeling and mean field approximation for hyperspectral data
analysis,” IEEE Trans. Image Process., vol. 17, no. 2, pp. 217–225,
Feb. 2008.

[6] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[7] P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, “Random forests
for land cover classification,” Pattern Recognit. Lett., vol. 27, no. 4,
pp. 294–300, Mar. 2006.

[8] S. R. Joelsson, J. A. Benediktsson, and J. R. Sveinsson, “Random forest
classifiers for hyperspectral data,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., 2005, pp. 4.

[9] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,
no. 3, pp. 273–297, 1995.

[10] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sens-
ing images with support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[11] B. Waske, S. van der Linden, J. Benediktsson, A. Rabe, and P. Hostert,
“Sensitivity of support vector machines to random feature selection in
classification of hyperspectral data,” IEEE Trans. Geosci. Remote Sens.,
vol. 48, no. 7, pp. 2880–2889, Jul. 2010.

[12] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sens-
ing images with support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[13] G. F. Elsayed, D. Krishnan, H. Mobahi, K. Regan, and S. Bengio, “Large
margin deep networks for classification,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 850–860.

[14] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[15] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proc. Conf. Empirical Methods Natural Lang. Process., 2014,
pp. 1746–1751.

[16] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Int.
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[17] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Int. Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 2261–2269.

[18] Q. Li, L. Mou, Q. Liu, Y. Wang, and X. X. Zhu, “HSF-Net: Multiscale
deep feature embedding for ship detection in optical remote sensing im-
agery,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 12, pp. 7147–7161,
Dec. 2018.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1–9.

[20] Y. Chen, X. Zhao, and X. Jia, “Spectral–spatial classification of hy-
perspectral data based on deep belief network,” IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381–2392,
Jun. 2015.

[21] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based
classification of hyperspectral data,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 6, pp. 2094–2107, Jun. 2014.

[22] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 7, pp. 3639–3655, Jul. 2017.

[23] H. Lyu, H. Lu, and L. Mou, “Learning a transferable change rule from a
recurrent neural network for land cover change detection,” Remote Sens.,
vol. 8, no. 6, 2016, Art. no. 506.

[24] H. Lyu et al., “Long-term annual mapping of four cities on different
continents by applying a deep information learning method to Landsat
data,” Remote Sens, vol. 10, no. 3, 2018, Art. no. 471.



MIAO et al.: HIERARCHICAL CNN CLASSIFICATION OF HYPERSPECTRAL IMAGES BASED ON 3-D ATTENTION SOFT AUGMENTATION 4233

[25] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “HybridSN:
Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image clas-
sification,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 2, pp. 277–281,
Feb. 2020, doi: 10.1109/LGRS.2019.2918719.

[26] M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. J. Plaza, and F.
Pla, “Deep pyramidal residual networks for spectral–spatial hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2,
pp. 740–754, Feb. 2019, doi: 10.1109/TGRS.2018.2860125.

[27] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral–spatial residual
network for hyperspectral image classification: A 3-D deep learning frame-
work,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 847–858,
Feb. 2018.

[28] Q. Wang, S. Liu, J. Chanussot, and X. Li, “Scene classification with
recurrent attention of VHR remote sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 2, pp. 1155–1167, Feb. 2019.

[29] J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza, and J. Li, “Visual attention-
driven hyperspectral image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 10, pp. 8065–8080, Oct. 2019.

[30] W. Song, S. Li, L. Fang, and T. Lu, “Hyperspectral image classification
with deep feature fusion network,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 6, pp. 3173–3184, Jun. 2018.

[31] F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised feature
learning for scene classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 4, pp. 2175–2184, Apr. 2015.

[32] W. Diao, X. Sun, X. Zheng, F. Dou, H. Wang, and K. Fu, “Efficient
saliency-based object detection in remote sensing images using deep belief
networks,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 2, pp. 137–141,
Feb. 2016.

[33] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8,
pp. 2011–2023, Aug. 2020, doi: 10.1109/TPAMI.2019.2913372.

[34] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block
attention module,” in Computer Vision – ECCV 2018. ECCV 2018 (Lecture
Notes in Computer Science including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). New York, NY, USA:
Springer, 2018, pp. 3–19.

[35] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 510–519,
doi: 10.1109/CVPR.2019.00060.

[36] Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu, “GCNet: Non-local networks
meet squeeze-excitation networks and beyond,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. Workshop, 2019, pp. 1971–1980, doi: 10.1109/IC-
CVW.2019.00246.

[37] L. Mou and X. X. Zhu, “Learning to pay attention on spectral domain: A
spectral attention module-based convolutional network for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1,
pp. 110–122, Jan. 2020.

[38] H. Sun, X. Zheng, X. Lu, and S. Wu, “Spectral-Spatial atten-
tion network for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 5, pp. 3232–3245, May 2020,
doi: 10.1109/TGRS.2019.2951160.

[39] J. Choe and H. Shim, “Attention-based dropout layer for weakly super-
vised object localization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 2214–2223, doi: 10.1109/CVPR.2019.00232.

[40] J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza, and L. Plaza, “Hyperspectral
image classification using random occlusion data augmentation,” IEEE
Geosci. Remote Sens. Lett., vol. 16, no. 11, pp. 1751–1755, Nov. 2019,
doi: 10.1109/LGRS.2019.2909495.

[41] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data
augmentation,” in Proc. AAAI Conf. Artif. Intell., 2020, vol. 34, no. 7,
pp. 13001–13008, doi: 10.1609/aaai.v34i07.7000.

[42] K. K. Singh and Y. J. Lee, “Hide-and-seek: Forcing a network
to be meticulous for weakly-supervised object and action localiza-
tion,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 3544–3553,
doi: 10.1109/ICCV.2017.381.

[43] G. Ghiasi, T. Y. Lin, and Q. V. Le, “Dropblock: A regularization method
for convolutional networks,” in Proc. 32nd Int. Conf. Neural Inf. Process.
Syst., 2018, pp. 10750–10760.

[44] J. Choe and H. Shim, “Attention-based dropout layer for weakly super-
vised object localization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 2214–2223, doi: 10.1109/CVPR.2019.00232.

[45] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in Proc. Int. Conf. Learn. Representations
Conf. Acceptance Decis., 2018.

[46] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and J. Choe, “CutMix:
Regularization strategy to train strong classifiers with localizable features,”
in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 6022–6031.

[47] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3D CNNs
retrace the history of 2D CNNs and ImageNet?,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 6546–6555,
doi: 10.1109/CVPR.2018.00685.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, May 2015.

[49] L. Van Der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, 2008.

[50] L. van der Maaten, “Accelerating t-SNE using tree-based algorithms,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 3221–3245, Oct. 2014.

Xinyuan Miao (Student Member, IEEE) received the
B.S. and M.S. degrees in information and communi-
cation engineering, in 2015 and 2017, respectively,
from the Harbin Institute of Technology, Harbin,
China, where he is currently working toward the
Ph.D. degree in information and communication
engineering.

His current research interests include hyperspec-
tral image classification, thermal infrared remote
sensing image processing, and artificial intelligence
application.

Ye Zhang (Member, IEEE) received the B.S. de-
gree in communication engineering and the M.S. and
Ph.D. degrees in communication and electronic sys-
tem from the Harbin Institute of Technology (HIT),
Harbin, China, in 1982, 1985, and 1996, respectively.

In 1985, he joined HIT as a teacher. Between
1998 and 1999, he was a Visiting Scholar with the
University of Texas at San Antonio. He is currently
a Professor and Doctoral Supervisor in information
and communication engineering. He is the Director
of the Institute of Image and Information Technology

with the School of Electronic and Information Engineering, HIT. His research
interests include remote sensing hyperspectral image analysis and processing
and image video compression and transmission as well as multisource informa-
tion collaboration processing and applications.

Junping Zhang (Senior Member, IEEE) received the
B.S. degree in biomedical engineering and instrument
from the Harbin Engineering University and Harbin
Medical University, Harbin, China, in 1993, and the
M.S. and Ph.D. degrees in signal and information
processing from the Harbin Institute of Technology
(HIT), Harbin, China, in 1998 and 2002, respectively.

She is currently a Professor with the Department of
Information Engineering, School of Electronics and
Information Engineering, HIT. Her research interests
include hyperspectral data analysis and image pro-

cessing, multisource information fusion, pattern recognition, and classification.

Xuejian Liang (Graduate Student Member, IEEE)
received the B.S. and M.S. degrees in software en-
gineering from Liaoning Technical University, Hu-
ludao, China, in 2015 and 2018, respectively. He
is currently working toward the Ph.D. degree in in-
formation and communication engineering with the
Harbin Institute of Technology.

His current research interests include hyperspec-
tral image classification, biophysical/biochemical re-
trieval, and artificial intelligence application.

https://dx.doi.org/10.1109/LGRS.2019.2918719
https://dx.doi.org/10.1109/TGRS.2018.2860125
https://dx.doi.org/10.1109/TPAMI.2019.2913372
https://dx.doi.org/10.1109/CVPR.2019.00060
https://dx.doi.org/10.1109/ICCVW.2019.00246
https://dx.doi.org/10.1109/ICCVW.2019.00246
https://dx.doi.org/10.1109/TGRS.2019.2951160
https://dx.doi.org/10.1109/CVPR.2019.00232
https://dx.doi.org/10.1109/LGRS.2019.2909495
https://dx.doi.org/10.1609/aaai.v34i07.7000
https://dx.doi.org/10.1109/ICCV.2017.381
https://dx.doi.org/10.1109/CVPR.2019.00232
https://dx.doi.org/10.1109/CVPR.2018.00685


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


