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Mapping Coastal Wetlands Using Transformer iN
Transtormer Deep Network on China ZY 1-02D
Hyperspectral Satellite Images

Kai Liu"”, Weiwei Sun
Xiangchao Meng

Abstract—Coastal wetlands mapping is a big challenge in remote
sensing fields because of similar spectrum of different ground
objects and their severe fragmentation and spatial heterogeneity.
In this article, we propose a hyperspectral image transformer iN
transformer (HSI-TNT) method for mapping coastal wetlands on
ZiYuan1-02D (ZY1-02D) hyperspectral images, which uses two
transformer deep networks to fuse local and global features. First,
we put forward the idea that each hyperspectral pixel can be
considered as a superpixel in spectral dimension, and subsequent
position encodings are employed aiming to retain spatial infor-
mation. After that, in each HSI-TNT block, the local information
between pixels is extracted by inner T-Block, and added to the patch
space by linear transformation to extract the global information
by outer T-Block. Finally, the stacked HSI-TNT block, also known
as HSI-TNT framework, is used for classification and mapping.
Experimental results show that HSI-TNT achieves the best results
on both Yancheng and Yellow River Delta wetlands data, with
overall classification accuracy of 95.57 % and 93.69 %, respectively.
The HSI-TNT combined with ZY1-02D satellite hyperspectral data
has huge potentials in mapping coastal wetlands.
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1. INTRODUCTION

OASTAL wetlands are transition zones between terrestrial
C and marine ecosystems [1], consisting of plants, animals,
microorganisms, and associated environments. They have great
ecological and economic value in regulating runoff, nitrogen fix-
ation, preventing seawater intrusion, and supplementing ground-
water [2]-[4]. However, coastal wetlands are facing serious
threats such as sea level rise [5], land use conversion [6], and
invasion by alien plants under the condition of accelerated global
warming and population growth [7], which put many coastal
wetlands at risks of degradation or even disappearance [8], [9].
Therefore, it is of great significance for mapping coastal wet-
lands and for further resource utilization and ecological protec-
tion.

Remote sensing with the advantages of high temporal and
spatial resolution, could effectively eliminate the limitation of
time and labor consuming of in situ investigation [10]. Panchro-
matic image has been extensively used in ground objects obser-
vation, but it has only a single spectral channel, which restricts
the accurate detection of ground objects. Multispectral image
only contains several discrete spectral channels in the visible
to near-infrared [11], [12], making it impossible to distinguish
objects with highly similar spectrum (e.g., Suaeda and reed).
In contrast, hyperspectral image (HSI) contains hundreds of
continuous spectral channels, which has both rich spatial infor-
mation and spectral features of ground objects, and is widely
used in fields such as classification and oil spill detection
[13]-[16]. Accordingly, applying hyperspectral remote sensing
has a greater potential to identify complex coastal wetlands
objects.

Currently, supervised classification is the most commonly
used method for mapping coastal wetlands by HSI, which is to
classify unknown pixels by establishing a discriminant function
from the labeled samples [17]. For spectral methods, features are
extracted (e.g., by PCA) [18] or selected (e.g., by Bhattacharyya
distance) [19] and then passed to classifiers (e.g., SVM) [20]
for classification. For spatial methods, extended morphological
profiles [21] and gray level co-occurrence matrix [22] implement

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-2060-7315
https://orcid.org/0000-0003-3399-7858
https://orcid.org/0000-0002-0536-8176
https://orcid.org/0000-0002-7001-2037
https://orcid.org/0000-0002-7405-3143
https://orcid.org/0000-0003-3101-9153
mailto:liukai1726867269@163.com
mailto:nbsww@outlook.com
mailto:liuweiwei@nbu.edu.cn
mailto:yanggang@nbu.edu.cn
mailto:15158346549@163.com
mailto:shaoyijun@nbu.edu.cn
mailto:mengxiangchao@nbu.edu.cn
mailto:mengxiangchao@nbu.edu.cn
mailto:pengjt1982@hubu.edu.cn
mailto:maodehua@iga.ac.cn
mailto:maodehua@iga.ac.cn

3892

spatial filters to extract the spatial dependence of ground objects.
Although a dual spatial information fusion HSI classification
framework is proposed to improve the classification results in
[23], these methods only consider the spectral or spatial infor-
mation separately while ignoring their global spatial-spectral
structure. In contrast, three-dimensional (3-D) wavelet filters
[24] and 3-D Gabor filters [25] utilize the spatial-spectral fea-
tures to improve classification accuracy. Unfortunately, they
are constrained by the underlying or middle layer features of
HSI data and have scant feature characterization capability.
That accordingly bring about “semantic gap” especially for
the complicated coastal wetlands environment. Moreover, they
are only applicable to certain specific scenarios and have poor
generalization capability.

Recently, deep learning models have also been applied to HSI
classification, such as deep belief network (DBN) [26], stacked
autoencoder (SAE) [27], and convolutional neural networks
(CNNs) [28], [29]. Nevertheless, DBN and SAE require to flatten
the input image block into a 1-D vector, which would destroy
spatial structure of original images [30]. CNNs have the charac-
teristics of sparse connection, parameter sharing and equivariant
mapping, which reduces the network complexity and the training
parameter sizes, and can extract spatial-spectral features through
sliding convolution [31]. Double-branch dual-attention mecha-
nism network uses a unified convolution to extract the spectral-
spatial information directly from the original HSI, avoiding the
loss of information [32]. In [16], a multilayer global spatial-
spectral attention network based on UAV-hyperspectral dataset is
proposed for coastal wetlands mapping and achieves the optimal
performance. In addition, multisource remote sensing data as the
input of deep learning method can further improve the accuracy
of land cover classification, such as asymmetric feature fusion
network based on hyperspectral and SAR [33], depthwise feature
interaction network based on hyperspectral and multispectral
[34], and interleaving perception convolutional neural network
(IP-CNN) based on hyperspectral and LiDAR [35]. These mod-
els all show remarkable performance in HSI classification.

Despite the great success of CNN-based models in HSI, the
implementation in coastal wetlands mapping still suffers from
the following serious problems. First, CNNs use convolutional
kernels to extract high-level features, but the convolutional
kernels are limited by the local receptive fields, which makes
it difficult to capture sequence information, especially middle-
and long-term dependencies, which would increase the difficulty
of extracting features in complex coastal wetlands. Although
deeper convolutional layers can be superimposed for feature
extraction, e.g., VGG16 [36], that would make the model more
complex and computationally expensive. Moreover, CNNs have
good spatial information extraction capability, but since the
mixed components of coastal wetlands, they are inevitably
susceptible to the influence of adjacent pixels when convolu-
tionally extracting local features, which will largely limit the
performance of HSI image classification.

The transformer network can solve the above-mentioned
problems well [37], and has been initially applied in HSI
classification, such as HSI classification bidirectional en-
coder representation from transformers [38], spatial-spectral
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transformer [39], and spatial-spectral vision transformer [40]
models. These successful application of the transformer models
in HSI classification benefits from the parallelization between
modules and the self-attention mechanism. Parallel operation
increases the efficiency of model training and conforms to the
modern distributed GPU framework; the self-attention mech-
anism connects the distance between any two positions of the
given data and retains long-distance information. Satellite hyper-
spectral data provides large-scale wetlands images with over 100
continuous spectral bands, but a patch usually has 7 x 7 or even
more pixels, so multiple ground objects are commonly present
in a patch. The local and structural information of hyperspectral
data is particularly important for mapping coastal wetlands.
However, the abovementioned models need to project the patch
into a vector, and hence, local spatial structure information is
corrupted, which limits the classification performance in large-
scale complicated wetlands areas.

In this article, we propose the HSI transformer iN transformer
(HSI-TNT) framework that fuses local and global features for
mapping coastal wetlands with hyperspectral data. Our idea is to
split the input patch into mini-patch sequences, each mini-patch
is in turn reshaped to superpixel sequences, and then position
encodings (PE) are added to preserve spatial information. The
method contains two transformer blocks, named inner T-block
and outer T-block, for extracting local features of the superpixel
sequences and global features of the mini-patch sequences, and
the local features are then added to the global features by linear
projection, which can increase the local information of the input
patch. In inner T-Block, all channels of an HSI pixel are regarded
as a superpixel sequence, which effectively avoids the influence
of the adjacent pixel interference and help to extract spectral
sequence features. Our main contributions can be summarized
as following.

1) We propose an innovative HSI-TNT classification frame-
work based on structural nesting. Outer T-block models
the relationship between mini-patch and inner T-block
models the relationship between pixels. After linear trans-
formation, the pixel-level features are projected into the
space where the mini-patch is located and added them
together to avoid the local information lost in regular
transformer-based HSI classification.

2) The HSI-TNT framework uses position encodings to pre-
serve the position information of the input data, which
solves the problem of the irrelevant order of CNN-based
models, and avoid the spatial feature loss in the network.
Moreover, pixel-by-pixel unfold degrades the negative
influence of surrounding pixels on target pixels because
of spectral divergences.

3) Experimental results on Chinese hyperspectral data
demonstrate that the HSI-TNT is easy to parameterize,
robust, and has good generalization capabilities.

II. METHODOLOGY

A. Overview

In this article, we propose an HSI classification framework
named HSI-TNT, as shown in Fig. 1(a). First, we use unfold
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from a patch, which can retain the spectral information of the
pixels. After that, PE is implemented on them to get mini-patch
embedding and pixel embeddings to preserve spatial position
information. Third, pixel embeddings are input to the inner T-
Block of HSI-TNT to extract local information, which is added
to the mini-patch embedding by linear transformation, in order to
extract global information by outer T-Block, where outer (inner)
T-Block is the transformer shown in Fig. 1(b). Finally, the class
token is classified by softmax.

B. HSI-TNT Framework

In this section, the process of HSI-TNT is first described
in detail, as shown in Fig. 1(a). Then, we introduce the basic
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components of outer (inner) T-Block, including layer normal- framework, each patch needs to be further subdivided into
ization (LN), multihead self-attention (MSA), and multilayer 7 mini-patch X' = [X}, X,,..., X, ] € R™*P*P*d Then,
perceptron (MLP), as shown in Fig. 1(b). Finally, the process of  pixel-by-pixel UL projection of X’ is performed to preserve
unfold and linear (UL) and PE are presented in Fig. 2. spectral sequence information [see Fig. 2(a)], showing as

1) Hyperspectral Image Transformer iN Transformer: For
a given hyperspectral data X € RP*P*? where p and d are

the spatial size and the number of bands, respectively. In this Yy = [Y{, Y, ..., Y] = UL(X') € R (1)
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Fig. 9.

Classification maps obtained by different methods of YC with the corresponding OCA. (a) SVM, OCA = 87.29%. (b) SGD, OCA = 91.14%.

(c) CD-CNN,OCA = 91.79%. (d) 3D-CNN, OCA = 92.91%. (e) SSFCN-CRF, OCA = 93.81%. (f) ViT, OCA = 93.46%. (g) HSI-TNT, OCA = 95.57%.

where Y{ € R™* i = 1,2,...,n, m, and d'are p2and the
dimensions after linear projection, respectively. We regard each
mini-patch Y} as a sequence of pixel embeddings

Vi = [ ] @

In HSI-TNT block, a two-step data processing is proposed
for the inner T-Block and outer T-Block, defined as T}, and 1y,
respectively, where outer (inner) T-Block denotes transformer
block. For T;,,, we use a transformer to study the relationship
between pixels

Y/ =Y}, + MSA (LN (Y}",)) @
Y/ = Y/i + MLP (LN (/")) @

where [ = 1,2,...,L is the [th layer, and L is the total
number of layers. All Y{ after T;,, are y, = [V, Y}2,...,Y"].
This procedure establishes the relationship between pixels by
calculating the interaction between any two pixels.

For T,,, we create the mini-patch embedding memories
to store the mini-patch level representation sequence: Zp =
(Zetass; 28, Z8, ., 28] € ROFUXT where Zas (ie., class
token) is a learnable sequence embedding and they are all

initialized as 0. In each layer, Y{ is linearly transformed
and added to the embedding domain of the mini-patch
level

Zi =2} +Vec (Y )) Wit + b (5)

where Vec(-) flattens the data into a vector, b, and W;_; are
the bias and weights, respectively. We use a standard mini-patch
embedding transformer to establish the relationship between
mini-patch embeddings

Z/'=Z{_ + MSA (LN (Z]_,)) (6)

Zj = Z;' + MLP (LN (Z]")) . )
To summarize, the input and output of HSI-TNT are as

Vi, Zy = HSLINT (Vi-1, Z1-1) - (8

In HSI-TNT, inner T-Block is used to establish the relationship
between pixels to extract local features, and outer T-Block is
used to establish the relationship between mini-patch to extract
global features. By stacking the HSI-TNT block L times, deep
features are extracted and HSI-TNT network is built. Finally,
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Classification maps obtained by different methods of YRD with the corresponding OCA. (a) SVM, OCA = 80.97%. (b) SGD, OCA = 84.93%.

(c) CD-CNN, OCA = 80.54%. (d) 3D-CNN, OCA = 90.27%. (e) SSFCN-CRF, OCA = 91.35%. (f) ViT, OCA = 90.79%. (g) HSI-TNT, OCA = 93.69%.

class token is classified as the representation of the patch by the
softmax.

2) Basic Components:

1) LN: In the transformer network, the samples are normal-
ized by LN, which not only reduces the computation time,
but also alleviates the problem of vanishing or exploding
gradients. It is applied to all samples 2 € R?, showing as

LN (z) = 2 #

oy +p 9

where J, 1 € R are the standard deviation and mean of the
features, respectively, o is the elementwise dot, v, 3 € R? are
learnable affine transformation parameters.

2) MSA: The MSA algorithm is the central component of the
transformer, which aims to capture the relevant importance
of the input sequence, as shown in Fig. 3(a). Queries
Q € R values V € R™*% and keys K € R™* are
linearly transformed from X’ € R™ 4, where n is the
length of the input sequence, d, d,,, dj, are the dimensions
of the inputs, values, and queries (keys), respectively.

Scaled dot-product attention [see Fig. 3(b)] is applied to

combine @, K,V as
T

K
Attention (@, K, V') = softmax (Q
Vi

The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a compatibility
function of the query with the corresponding key [41]. Different
and learned projections are used to project queries, keys, and
values repeatedly (h times), and then these results are connected
as given in

MultiHead (Q, K, V) = concat (head, . .., head;,) W©

(11)
where head; = Attention(QWS, KWX VWY), WE, Wk
e R¥&de WYV € R¥*dv and WO € R'*dv*d are parameter
matrix.

3) MLP: MLP is used for feature transformation and nonlin-

earity between self-attention layers, shown as

MLP (XI) = O’(X,W1 +b1) Wa + by

) V. (10)

12)
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where T, € R¥n and W, € R%*4 are weights of the two
fully-connected layers, respectively. b; € R% and by € R? are
the bias terms, and o (+) is the Gaussian error linear units activa-
tion function.

3) UL and PE:

1) UL: The UL operation is performed on a patch with a size
of 9 x 9 pixels, so that T},, and T4 can extract local and
global features, respectively, as shown in Fig. 2(a). Unfold
will perform pixel-by-pixel operation on the mini-patch in
the form of left-to-right, top-to-bottom, and project it to a
vector with d’ dimension through linear. That process can
preserve the spectral sequence information. In addition,
each pixel in mini-patch is directly projected to a vector
with r dimension to store the mini-patch level sequence
information. In this article, d’ and r are set to 64 and 128,
respectively.

2) PE: The spatial information of the input data can be pre-
served by adding PE, which details are shown in Fig. 2(b).
UL is used to get the mini-patch sequence based on patch
and pixel sequence, then corresponding standard learnable
1-D PE are added to retain the spatial information, and
finally get the mini-patch embedding and pixel embed-
dings. It is worth noting that for the pixel sequence,
the mini-patch sequence is unfolded by pixel, which is
more conducive to the inner T-Block extracting spectral
features. A PE is assigned to each mini-patch

ZO — ZO + Eminifpatch

13)

where Fyini—patch € ROHDXT gpe mini-patch PE. For pixels in
a mini-patch, pixel encodings are added to pixel embeddings

Y0i<_ybi+Epixelai = 1,27...,71 (]4)

where Epixel € R™*d are pixel PE. In this way, the mini-patch
encodings can obtain global spatial information, while the pixel
encodings are used to obtain local relative information.

III. EXPERIMENTAL DATA AND STUDY AREA

A. ZYI1-02D Hyperspectral Data

The ZiYuan1-02D (ZY 1-02D) satellite, launched on Septem-
ber 12, 2019, is the first self-built commercial hyperspectral
satellite in China [42]. It can be utilized to large-scale ob-
servation and quantitative remote sensing missions with high
spectral resolution and medium spatial resolution. The advanced
hyperspectral imager (AHSI), a payload of the satellite, has an
imaging band of 0.4 to 2.5 pm and 166 spectral bands, including
76 spectral bands in visible near-infrared (VNIR) and 90 spectral
bands in short-wave infrared (SWIR) [17]. The spatial resolution
of AHSI is 30 m and the spectral resolution of VNIR bands is
10 nm while that of SWIR is 20 nm, respectively.

B. Yancheng and Yellow River Delta Coastal Wetlands

The Yancheng (YC) and Yellow River Delta (YRD) in Fig. 4
are well-known coastal wetlands in China. YC is located in
Yancheng City, Jiangsu Province, and adjacent to the South
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TABLE I
TRAINING AND TESTING SAMPLE INFORMATION OF THE YC

Number of samples

Class number Ground objects

Training Testing
1 bare land(bal) 24 211
2 suaeda 27 242
3 dry land(drl) 15 130
4 beach 33 298
5 river 21 193
6 fish pond(fip) 92 828
7 idle land(idl) 65 585
8 reed 24 220
9 sea 208 1868
10 paddy field(paf) 303 2723
11 salt pan(sap) 90 811
12 pond 7 61
13 shallow sea(shs) 156 1402
14 ditch 33 295
15 spartina alterniflora(spa) 31 275
16 building(bui) 45 406
Total 1174 10548

China Sea. Itis a typical muddy coastal wetland on the west coast
of the Pacific Ocean with the largest area and the most complete
ecosystem in the world [43]. Due to its unique geographical
environment, the wetland has become the main growing area
for wetland vegetation such as reed and Suaeda. The ZY1-02D
hyperspectral dataset for YC was collected on September 6,
2020, and the sampling survey was a combination of visual in-
terpretation of high-resolution images and field surveys. Table I
shows the detailed information for 16 types of ground objects.

YRD is situated on the coast of the Bohai Sea in the north-
eastern part of Shandong Province, China [44]. It is the most
complete, broadest and comprehensive warm temperate zone of
young wetland ecosystem in China [45]. Natural wetlands such
as river, reed, and saline wetlands account for about 68.4%,
while the other is artificial wetlands such as pond and reservoir
[46]. The acquisition date of the ZY 1-02D hyperspectral data in
YRD was June 28, 2020. There are 23 ground objects and the
details of the dataset are shown in Table II. Similar to YC sample
collection, samples are selected through field investigation and
visual interpretation of Google Earth.

C. Hyperspectral Data Preprocessing

The ZY1-02D hyperspectral data (L1-A product) is prepro-
cessed by ENVL. First, the Global Digital Elevation Model Ver-
sion 2 and rational polynomial coefficient are used to correct the
7Y 1-02D hyperspectral data. Second, radiometric calibration is
conducted to convert the digital number into a radiance value by
alinear function. Third, the atmospheric correction is performed
by MODTRANS radiative transfer model. Fourth, bad bands and
bands contaminated by clouds or water are removed. Finally, the
images are masked by the vector data of our study areas. The
data size of YC and YRD is 1398 x 942 pixels and 1147 x 1600
pixels, respectively.
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TABLE II
TRAINING AND TESTING SAMPLE INFORMATION OF THE YRD

Number of samples

Class number Ground objects

Training Testing

1 salt pan filter pool(sfp) 25 222
2 spartina alterniflora(spa) 19 168
3 dry pond(drp) 14 126
4 salt pan evaporation pool(sep) 30 270
5 suaeda 22 196
6 tamarix 13 114
7 sea 469 4225
8 salt pan(sap) 31 275
9 river 58 526
10 tidal ditch(tid) 7 60
11 mud flat(muf) 2 14
12 idle land(idl) 46 413
13 locust 11 100
14 ecological restoration pool(erp) 31 279
15 building(bui) 40 358
16 fish pond(fip) 12 112
17 pond 13 115
18 paddy field(paf) 51 457
19 bare land(bal) 9 78
20 soybean(soy) 7 64
21 cotton 33 299
22 maize 10 93
23 reed 31 279
Total 984 8843

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

The proposed HSI-TNT is evaluated in two independent
experiments. The first experiments explores the effects of dif-
ferent parameters on the model, including model depth, spatial
patch size, and percentage of training samples. Second, the
classification (mapping) performance and training time of the
proposed HSI-TNT are compared with several common and typ-
ical classification approaches, including SVM with radial basis
function and stochastic gradient descent (SGD), contextual deep
CNN (CD-CNN) [47], 3D-CNN [48], and spectral-spatial fully
convolutional networks conditional random field (SSFCN-CRF)
[49]. Moreover, vision transformer (ViT) [50] is also included,
which is compared with HSI-TNT as ablation experiments, due
to ViT is composed of multilayer transformer models, while
HSI-TNT is composed of multilayer nested dual transformers.

The experiments are implemented on the PyTorch platform
installed on the Windows 10 computer. The learning rate is
initialized at le-4 and decays by 0.5 times after the epoch
size (50 epochs in total) reached 25, and loss function is the
cross-entropy loss function. Each experiment is repeated 5 times
independently. The overall classification accuracy (OCA), av-
erage classification accuracy (ACA), Kappa coefficient (KC),
and training time are employed to quantify the classification
accuracy.

B. Effects of Different Parameters

1) Effects of Model Depth L: Model depth is a key parameter
that controls HSI-TNT complexity. High complexity with bigger
L may lead to overfitting and waste of resources, while lower
L may result into underfitting. Therefore, it is necessary to find
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a compromise L that can guarantee classification accuracy and
avoid underfitting at the same time. With other parameters fixed,
the parameters L are set from 2 to 10 for both datasets with an
interval of 2. In Fig. 5, the training time increase sharply as L
increase, while the optimal OCA up to 95.57% and 93.69% for
YC and YRD when L is set to 6, respectively. The experimental
results further prove that a moderate L is sufficient for optimal
classification accuracy with limited resources.

2) Effects of Spatial Patch Size of the Sample: For both data,
patchsizes are setfrom 5 x 5 x dto 15 x 15 x d (dis the number
of bands) with an interval of 2. Due to the model’s restrictions
on the input data, the input size must be a composite number.
However, if the input size is a prime number, it could become a
composite number by adding 0. For example, if the input patch
size is 5 x 5 x d, 0 is added to both right and bottom sides,
and then it becomes 6 x 6 x d. The OCA and training time
with different spatial patch sizes are shown in Fig. 6. The results
show that when the patch size is 9, the highest OCA of YC and
YRD are 95.57% and 93.69%, respectively. As for the training
time, slowly increased first and then rapid growth are observed,
especially when patch size greater than 9. And when the OCA
is optimal, the training time for YC and YRD is 119.32 s and
102.53 s, respectively.

3) Effects of Percentage of Training Samples: Training sam-
ples are critical to the classification results. However, in HSI, in
situ sampling is time consuming and labor intensive, and if an
appropriate training samples percentage could be determined,
researchers could save time and manpower without losing clas-
sification accuracy. Therefore, we explore the relationship of
training sample percentage and OCA and training time and the
results are shown in Fig. 7. We could see that, as the percentage
of training samples increases, the classification performance
gradually improves first, and at the same time the training
time increases almost linearly. But OCA remains stable when
more training samples are involved (e.g., 10%, 12%, and 14%),
which largely indicates the proposed HSI-TNT could have good
performance even with little training samples (10%).

C. Classification Accuracy and Mapping Results

In the experiments, L and patch size on both data are set to 6
and 9 for HSI-TNT, respectively. Of these, 10% of the samples
are randomly selected for model training, and the remaining
samples are used for testing. For the two datasets, the proposed
HSI-TNT outperforms the other six methods with highest ACA
(88.75%, 81.25%), KC (94.86%, 91.62%), and OCA (95.57%,
93.69%). Table III shows the classification results of YC, and
OCA is improved by 8.28% and 4.43% compared to SVM
and SGD, respectively. As for KC, HSI-TNT is 2.44% higher
than ViT, which proves the importance of local features for
classification. Moreover, HSI-TNT can well identify paddy field,
sea, and shallow sea, which are also better than other methods.

HSI-TNT achieves the optimal accuracy for 12 of 23 classes,
especially for salt pan evaporation pool and river, which are
fully identified, as shown in Table IV. In addition, HSI-TNT
increased by 3.13% for salt pan filter pond compared to 3D-CNN
and increased by 6.36% compared to SSFCN-CREF for building,
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TABLE III
CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS FOR YC

Class SVM SGD CD-CNN 3D-CNN SSFCN-CRF ViT HSI-TNT
bui 97.53+0.39 97.47£0.76 88.10+6.46 97.76+1.37 93.89+2.80 83.90+4.39 95.31+0.85
suaeda 88.434+2.31 89.58+2.33 72.75£19.57 78.54+17.04 76.20£9.18 76.11x6.86 90.27+0.60
river 9.75+10.44 56.63£14.37 60.13£12.08 92.96+4.80 81.97+5.67 98.23+1.82 94.59+5.74
beach 00 0.27+0.53 87.89+8.74 42.29420.33 76.71£18.38 85.05+8.56 86.60+5.65
bal 98.25+0.77 96.66+3.32 59.81+33.97 95.83+1.32 97.82+1.91 90.71+2.79 89.29+4.60
paf 98.19+0.39 98.34+0.11 98.52+0.47 98.17+1.66 99.49+0.35 99.36+0.34 100+0
idl 98.25+1.14 96.80+1.19 96.31+2.75 98.10:£0.80 98.12+2.09 97.27+1.41 96.22+0.13
fip 57.07+3.39 78.07+1.21 83.2942.64 78.15+14.43 92.37+0.54 81.19+4.82 87.49+0.97
sea 97.17+0.63 99.23+0.23 99.90+0.10 99.20+0.22 99.99+0.02 99.82+0.24 100+0
drl 68.31+18.81 69.90+6.23 58.24+22.54 86.33+18.63 85.1945.91 67.23+3.02 78.62+5.85
sap 77.40+2.43 94.68+0.90 95.51<1.88 96.1420.72 77.93+9.52 92.99+4.50 95.95+1.58
reed 86.95+0.34 97.55+1.48 72.56+25.38 82.32+13.31 84.00+17.59 84.93+7.62 86.12+1.37
shs 89.28+0.23 90.51+0.23 97.87+1.38 92.71£1.66 97.27+1.29 96.41+2.69 100+0
pond 0+0 0+0 00 37.50+16.50 4.26+6.19 28.85+6.36 40.29+5.62
spa 95.75+0.91 94.76+0.84 83.42+7.95 90.74+9.32 93.24+10.81 85.31+4.01 90.55+1.51
ditch 45.14£1.76 57.31+2.61 48.1049.91 76.32+13.58 73.83+4.27 86.71+2.64 88.44+2.63
ACA 69.22+2.75 76.11£2.27 75.15+9.74 83.94+8.48 83.27+6.03 84.63+3.88 88.73+2.32
KC 85.15+0.70 89.67+0.58 90.46+0.64 91.80+2.81 92.81£1.39 92.42+0.58 94.86+0.26
OCA 87.29+0.59 91.14+0.50 91.79£0.55 92.95+2.40 93.81+1.19 93.46+0.50 95.57+0.22
TABLE IV
CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS FOR YRD
Class SVM SGD CD-CNN 3D-CNN SSFCN-CRF ViT HSI-TNT
reed 23.49+4.70 36.79+6.80 40.25+8.48 54.36+11.84 72.47+14.76 56.49+5.61 67.89+£5.91
spa 90.12+2.77 79.91+4.98 70.20+12.11 94.09+4.25 91.31+11.42 82.5045.13 90.36+5.34
sfp 0+0 66.86+6.62 51.69+8.12 91.54+6.33 33.15£25.24 88.83+2.00 94.67+2.14
sep 62.59+7.32 79.90+6.72 39.53+22.50 93.81+2.20 95.26+6.91 97.63+1.81 1000
drp 57.87+4.93 23.36+28.63 6.60+9.30 87.49+9.26 93.33+1.47 67.62+8.82 78.57+7.63
tamarix 47.20424.76 62.88+2.58 22.04+27.01 58.59+29.66 84.21+12.87 55.44+11.06 72.81+2.78
sap 99.56+0.09 99.71+0.15 97.13+2.87 99.52+0.65 96.15+2.77 96.58+0.85 98.84:0.84
suaeda 83.46+2.29 78.32+1.86 76.02+9.27 94.24+3.05 96.23+3.50 94.59+2.00 97.98+1.29
river 98.21+0.33 98.71+0.15 98.14+0.79 98.69+0.37 99.81+0.24 99.54+0.31 1000
sea 90.67+0.24 95.67+0.68 96.28+0.74 97.51x1.06 99.03+1.38 99.53+0.27 99.94::0.06
muf 0+0 0+0 0+0 30.36+37.38 27.69+28.62 13.34+4.08 41.67+18.26
tid 0+0 1.74+2.51 1.31£1.61 52.24+16.14 58.00+14.88 66.33+8.05 77.67+4.42
idl 88.06+1.58 87.63+2.47 80.17+2.24 93.38+2.31 96.27+2.79 86.78+3.59 91.82+3.54
erp 18.53+7.27 67.56+4.78 61.68+2.93 86.04+11.00 90.68+4.05 80.65+5.42 88.60+3.96
locust 0+0 0+0 0+0 55.23+28.24 0+0 40.20+12.30 57.78+12.67
fip 0+0 8.23+16.45 0+0 77.81+7.80 96.07+7.86 76.04+3.25 82.88+7.30
pond 0+0 0+0 0+0 36.16+33.20 12.00+24.00 54.78+5.36 65.30+9.20
bui 82.41+3.72 79.30+3.64 73.53+8.07 91.08+6.29 90.06+6.11 91.23£2.22 96.42+1.44
bal 0+0 0+0 0+0 68.35+34.85 73.33425.04 62.82+10.03 77.95+7.23
paf 86.29+0.32 87.13+0.42 85.12+0.74 87.90+0.97 99.30:1.40 93.61+3.19 94.62+0.90
cotton 61.57+0.86 65.44+4.15 49.16+4.01 32.37+28.93 91.04+8.42 78.79+10.26 73.02+3.69
soy 0+0 0+0 0+0 32.504+20.20 32.06+29.58 24.76+10.07 35.94+8.12
maize 88.33x1.72 94.82+1.84 11.21£22.42 97.95+2.76 75.24+37.80 77.61£5.08 84.139.11
ACA 46.89+2.73 52.78+4.15 41.74£6.23 74.40£12.99 74.03£11.79 73.29£5.25 81.25+4.86
KC 73.13+0.62 79.43+0.79 73.58+2.19 86.98+2.83 88.49+0.52 87.75+0.54 91.62+1.00
OCA 80.97+0.43 84.93+0.54 80.54+1.57 90.27+2.05 91.35+0.41 90.79+0.41 93.69+0.75
TABLE V

TRAINING TIME (S) OF DEEP LEARNING METHODS FOR YC AND YRD

CD-CNN  3D-CNN  SSFCN-CRF  ViT = HSI-TNT
YC 102.15 115.45 1311.82 56.94 119.32
YRD 85.00 95.42 960.02 47.49 102.53

which indicates the importance of global sequence features.
The training time (see Table V) of HSI-TNT for two datasets
is an acceptable result compared to other methods. Since the
training samples of the YC are larger than that of YRD, the
time of the YRD is shorter. Fig. 8 gives the OCA and training
loss convergence curves of the two datasets, which depicts that
good convergence can be achieved after 50 iterations with no
overfitting.

In addition, to assess the statistically significant between
HSI-TNT and the other six methods, we evaluate the different

methods by McNemar’s test [51]. The classification results of
all samples of YC data are used for the test, and the |Z|-statistics
results are obtained, as shown in Table VI. The null hypothesis
is that HSI-TNT is not significantly differences with the other
methods. The level of significance is 5% and the null hypothesis
can be rejected if |Z|>1.96. Therefore, we can conclude that
HSI-TNT is statistically significant with other methods from
Table VL.

Figs. 9 and 10 further show the mapping results of different
methods, which are in line with the results given in Tables III
and IV. For example, other six methods easily misclassify reed
as Suaede due to the similarity of them (elliptical in Fig. 9).
Analogous results can be found in the rectangle in Fig. 10, where
HSI-TNT can well recognize reed and Suaede, while other meth-
ods misclassify Suaede into fish pond and salt pan evaporation
pool. In addition, combined with Tables III, IV and Figs. 9, 10, in
the comparison of ablation experiments, HSI-TNT is superior
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TABLE VI
STATISTICAL SIGNIFICANCE (|Z]) OF THE MCNEMAR’S TEST ON YC
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SVM SGD

CD-CNN

3D-CNN SSFCN-CRF ViT

HSI-TNT 29129 7.8102 12.6557

24182 21.9721 8.0570

to ViT in both accuracy and mapping results, which indicates
the critical contribution of inner T-Block and outer T-Block to
HSI classification. In general, HSI-TNT has better applicability
in large-scale HSI wetlands land cover classification and can
better map the distribution of ground objects in coastal areas.

V. CONCLUSION

This article proposes a classification framework, named HSI-
TNT, for mapping coastal wetlands using ZY1-02D HSI. The
HSI-TNT utilizes position encodings and pixel-by-pixel unfold
strategies to minimize the loss of spatial and spectral features;
and then uses outer T-Block and inner T-Block to extract global
and local features, also avoiding the loss of local information.
Experimental results show that the method is robust and has good
generalization ability, which can be applied to large-scale com-
plex wetland scenes, and has the highest classification accuracy
and moderate training time. We successfully applied this method
to two independent coastal wetland areas, and in the future, we
will investigate the generalization ability between different HSI
scene data.
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