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Abstract—The classification of hyperspectral images (HSIs) is
an essential application of remote sensing and it is addressed
by numerous publications every year. A large body of these pa-
pers present new classification algorithms and benchmark them
against established methods on public hyperspectral datasets. The
metadata contained in these research papers (i.e., the size of the
image, the number of classes, the type of classifier, etc.) present
an unexploited source of information that can be used to estimate
the performance of classifiers before doing the actual experiments.
In this article, we propose a novel approach to investigate to what
degree HSIs can be classified by using only metadata. This can
guide remote sensing researchers to identify optimal classifiers
and develop new algorithms. In the experiments, different linear
and nonlinear prediction methods are trained and tested by us-
ing data on classification accuracy and metadata from 100 HSIs
classification papers. The experimental results demonstrate that
the proposed ensemble learning voting method outperforms other
comparative methods in quantitative assessments.

Index Terms—Hyperspectral image (HSI) classification, pre-
diction, remote sensing.

I. INTRODUCTION

HYPERSPECTRAL remote sensing images have hundreds
of spectral bands that cover a continuous range of wave-

lengths from shortwave infrared to visible range [1]. Imaging
scenes usually have many different materials that have different
reflectance at different wavelengths. Therefore, each material
has a unique spectral signature that can be detected from the
hyperspectral images (HSIs). Hyperspectral imaging has appli-
cation in various fields, such as agriculture [2], mineralogy [3],
and surveillance [4].

HSIs classification is the process of transforming HSIs into
land-cover maps and is a fundamental application of hyperspec-
tral imaging. Numerous HSI classification methods have been
developed in the last decades, ranging from spectral methods [5],
spectral–spatial methods [6], to deep learning methods [7], etc.
HSI classification is a complex process and the accuracy of its
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results depends on the properties of the input data, the type of
classification algorithm, and other metadata containing features
that describe the classification experiment. Considerable effort
has gone into comparing such HSI classification methods. The
most common approach is to benchmark the algorithm against
established classifiers on public datasets, while keeping other
experimental features, such as the sampling procedure of the
training and test set, fixed between experiments [8], [9]. In [10],
statistical meta-analysis is employed to compare pairs of classi-
fication algorithms. In [11], scatterplots are used to investigate
the relationship between classification accuracy and various
metadata features.

Research papers that propose novel HSI classification meth-
ods include several pieces of information (i.e., metadata) that
describe the experiments. This raises the question to what de-
gree the metadata can predict the accuracy of a classification
algorithm. To help answer this question, we develop a novel
method to predict the classification accuracy based on features
that are typically reported in classification experiments. This ap-
proach can support the remote sensing community by guiding its
researchers and reviewers to undertake new ideas. The proposed
prediction method can be advantageous in applied classification
problems as a baseline method.

To develop the predictor, we analyze one hundred papers on
HSI classification with a combination of processing techniques
and classification algorithms. Fig. 1 reports the number of papers
that are sampled in each year and the type of classifiers. Each
article presents at least one new classification method and reports
performance metrics for the proposed methods and comparison
methods. The total number of reported performance metrics
is 2964 from 686 classification methods. Some papers [9],
[12]–[14] are overview papers that cover a wide range of known
methods, while others [15], [16] present novel classifiers to
the problem. The applied techniques and algorithms have a
significant impact on the outcome. They can be divided into
categories as presented in [9]. These categories are used to sam-
ple data from ieeexplore.org.1 To restrict the search for papers to
remote sensing, the papers are searched on hyperspectral clas-
sification and used keywords for each category to find relevant
papers. For example, papers on mathematical morphology-based
classification (MMC) were found with the search query “remote
sensing,” “hyperspectral classification,” and “morphology.” For
each set of results, we sample few of the most cited papers and
some additional papers that are more recent or more relevant.

1[Online]. Available: https://ieeexplore.ieee.org/Xplore/home.jsp
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Fig. 1. (a) Overall sampling of papers by year. (b) Overall sampling of methods
by year, split by method category.

Additionally, papers that have open source code available were
found by searching code repositories such as github.com2 for the
term “hyperspectral-image-classification.” This search yielded
several repositories and relevant papers.

The rest of this article is organized as follows. Section II illus-
trates the proposed prediction methods. Section III introduces
the 17 types of different features in the metedata extracting from
the 100 HSI classification papers used for the prediction method.
Section IV describes the different types of HSI classification
methods used in the 100 HSI classification papers that we utilize
to develop our prediction method. The experimental results are
given in Section V. Finally, Section VI concludes the article.

II. PREDICTION METHODS

Two prediction methods are investigated in this article. The
first method is the ordinary least squares method (OrdLS), which
is a linear method. The second method is the ensemble learning
voting method (EnsLV), which is a nonlinear method. The meta-
data, including 17 types of different features extracting from the
100 HSI classification papers, is used for the training and test
sets for the two prediction methods. A detailed description of
the features in the metadata is given in Section III.

2[Online]. Available: https://github.com/

TABLE I
SUMMARY OF FEATURES

A. OrdLS

OrdLS used for regression analysis is an ordinary least squares
regression. The regression model is given by

y = Xβ + ε (1)

where ε is white zero-mean Gaussian noise with variance σ2

y = [y1, . . . , yn]
T

X = [x1, . . .,xn]
T

xi = [1,Ntri,Ntsi,Ncli,Nsbi,Resi,Scni,Spliti,DRi,MTi,

MC2i,MC3i,MC4i,MC5i,MC6i,Avgi,OSCodei]
T

β = [β0, . . . , β17]
T

where y is the target variable, xi contains the metadata along
with an intercept as the first element for sample i, Table I defines
the metadata features, n is the number of training samples, and
β are the regression parameters. For model (1), the maximum
likelihood estimate is given by

β̂ = (XTX)−1XTy. (2)

The target variables y used in the article are overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (Kappa).
OA is the percentage of accurately classified samples over the
entire test set. AA is the average of each class’s percentage of
accurately classified samples. Kappa is a measure of how OA
compares to expected accuracy.

To further analyze the effectiveness of OrdLS, some penalties
can be added to OrdLS; thus, an extension study of OrdLS is
performed. OrdLS is compared with the following prediction
methods.

1) Orthogonal Matching Pursuit (OMP): The �0 penalty is
added to the regression model, i.e., the cost function is

β̂ = argmin
β

‖y −Xβ‖2F , s.t. ‖β‖0 < k. (3)

https://github.com/
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TABLE II
BREAKDOWN OF HYPERSPECTRAL IMAGES

Fig. 2. Schematic of the EnsLV.

TABLE III
BREAKDOWN OF CLASSIFICATION METHOD CATEGORIES

2) Ridge regression (RigR): The �2 penalty is added to the
regression model, i.e., the cost function is

β̂ = argmin
β

‖y −Xβ‖2F + λ1‖β‖2F . (4)

3) Lasso regression (LasR): The �1 penalty is added to the
regression model, i.e., the cost function is

β̂ = argmin
β

‖y −Xβ‖2F + λ2‖β‖1. (5)

4) Elastic net (EltN): The �2 and �1 penalties are added to the
regression model, i.e., the cost function is

β̂ = argmin
β

‖y −Xβ‖2F + λ3‖β‖1 + λ4‖β‖2F . (6)

Besides the aforementioned methods, the mean of the pre-
dicted variables in the training dataset is defined as a baseline
method to be compared. The baseline method is used to evaluate
the performance of the prediction methods. Any other prediction
methods should at least perform equally well and, ideally, better
than the baseline method.

Table V presents the prediction results (detailed experimental
setting is given in Section V). OrdLS performs similarly as the
penalized least squares methods 1)–4), and all of them perform

TABLE IV
RESULTS OF REGRESSION ANALYSIS

better than the baseline prediction method. Thus, the penalty is
not needed for the linear prediction.

B. EnsLV

EnsLV uses and combines several prediction models for
prediction to improve the robustness over a single estimator.
The mutilayer perceptron (MLP), support vector regression
(SVR), random forest (RF), K-nearest neighbors (KNN), ad-
aboost (AdaT), and histogram gradient boosting (HGB) non-
linear prediction methods are selected as the based-estimators
to train EnsLV. Auto-sklearn [17] and Bayesian optimization
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TABLE V
OVERALL ACCURACY PREDICTION RESULTS FOR THE LINEAR REGRESSION MODELS

Values are given as mean absolute error (%) with standard deviation. The best results are in bold typeface

TABLE VI
OVERALL ACCURACY PREDICTION RESULTS FOR THE NONLINEAR REGRESSION MODELS

Values are given as mean absolute error (%) with standard deviation. The best results are in bold typeface

are used to find the best ensemble of the nonlinear regression
methods for EnsLV and the soft voting is used for EnsLV to
perform prediction. The EnsLV method is illustrated in Fig. 2.

III. FEATURES IN METADATA

The 17 types of different features in the metadata extracting
from the 100 HSI classification papers used for the prediction
methods are summarized in Table I and are described as follows.

A. Dataset Features

Much information of the experimental datasets used in the 100
HSIs classification papers can be extracted and used as features
for the prediction methods. The number of classes in the dataset
(Ncl), the number of spectral bands in the classification dataset
(Nsb), the resolution of the dataset (Res), and the type of scene
(whether it is rural or urban) depicted in the datasets (Scn) are
used as features for the prediction models.

B. Sampling Methods

This article focuses on supervised classification. The classifier
model is trained using the labeled training samples and then is
evaluated using the labeled test samples. The training samples
and the test samples are selected from the entire labeled samples
pool of the experimental dataset. There are two main ways of
selecting the training samples. The first is to randomly select
the training samples from the entire labeled samples pool. The
second is to select the training samples randomly or by hand,
a certain percentage or a fixed number, from each labeled class
from the entire labeled samples pool. The latter way ensures
that the training set includes samples from all the classes of
the experimental dataset. The remaining samples of the entire
labeled samples pool are selected as test samples. Thus, the

type of selecting training samples (Split), the number of training
samples (Ntr), and the test samples (Nts) are used as features for
the prediction models.

C. Dimensionality Reduction

HSIs usually have hundreds of spectral bands and provide
abundant spectral information about a scene. However, the high
dimensionality of HSIs makes the processing computationally
and memory costly. To achieve an acceptable classification accu-
racy for a high-dimensional image many conventional HSI pro-
cessing methods require many training samples. This is known
as the Hughes phenomenon or the curse of dimensionality. Thus,
when the number of training samples is limited, dimensional-
ity reduction (DR) is selected to be a tradeoff way between
classification accuracy and the number of spectral bands to
solve this problem. Dimensionality reduced data should be a
good representation of the original data. In addition, both the
computing time and the number of training samples required will
become less when the data dimensionality is lower. Therefore,
DR is a very important preprocessing step for HSI classification.
Whether the DR has been done for the experimental dataset or
not is used as the feature for the prediction models. Sometimes,
the DR is embedded in the classification algorithms, and it is
difficult to determine what number of the spectral bands are used
for the real classification. In these cases, the number of spectral
bands is set equal to the original dimension of the experimental
dataset.

D. Algorithm Categories

Most HSI classification methods fall into either the spectral or
the spectral–spatial method category. Spectral methods utilize
only spectral information for the pixel being classified, while
spectral–spatial methods also incorporate spatial information
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Fig. 3. Schematic of the RF.

from the surrounding pixels. Therefore, the type (spectral or
spectral–spatial) of the HSI classification methods (MT) is used
as a feature for the prediction models. In addition, we consider
here six more specific categories for HSI classification meth-
ods (MC) as additional features for the prediction models (see
Section IV for further information).

E. Algorithm Reliability

In addition to the aforementioned features, two other fea-
tures are considered for the prediction models. The first is the
number of experiments performed for averaging (Avg) of the
result, whether by cross-validation or not. The second feature is
whether the code of the classification algorithm is open-sourced
or somehow available for evaluation (OSCode). Both features
indicate whether the result is adequately validated and how
reliable it is.

IV. CLASSIFICATION METHODS

In this section, we describe the methods that are used in
the 100 HSI classification papers that we use to develop
our prediction method. The methods are categorized into six
groups: classical spectral-based classifier (CSC), mathematical
morphology-based classifier (MMC), Markov random fields-
based classifier (MRFC), segmentation-based classifier (SegC),
sparse representation-based classifier (SRC), and deep learning
based classifier (DLC). The category of classification methods
(MC) is used as a feature for the prediction models. The six
groups are denoted as MC1 to MC6.

A. CSC

CSCs, such as support vector machines (SVMs) [18] and
RF [19], are usually considered as baseline classification meth-
ods in classification paper. For an image pixel (spectral vector)
that belongs to a certain class, the SVM classifier tries to find
a linearly separating hyperplane between different classes such
that the margin between the hyperplane and the closest training
samples is maximized. In real HSI applications, linear sepa-
rability is usually not satisfied. Therefore, a kernel method is
utilized to map the data using a nonlinear transformation to a
higher dimensional space and, in that space, try to find a linearly
separating hyperplane between different classes.

RF is another method commonly used in HSI classification
that uses spectral vector as an unit of analysis. RF is an ensemble
learning method that uses decision tree as a base classifier and
combines their decisions by using a majority vote for final
classification. The bootstrap aggregating (bagging) method is
used for RF to randomly select subset sampled from the entire
training dataset to construct the decision trees, which also acts
to prevent the problem of overfitting by individual decision
trees and reduces the classification error. The classification and
regression tree is used to train each decision tree. The predicted
class of an observation is calculated based on the majority vote
of the decision trees. The schematic of the RF is shown in Fig. 3.

B. MMC

MMC methods use mathematical morphology (MM) [14],
[20] to analyze the spatial information of image for HSI clas-
sification. Two fundamental MM operations are dilation and
erosion [14], [20]. Dilation adds pixels to the boundaries of
objects in an image, while erosion removes pixels on object
boundaries. The number and position of pixels added or removed
from the objects in an image depends on the size and shape of
the structuring element (SE) used to process the image. Thus,
the SE is used for MM to extract or suppress HSI structures
by checking that each position of the SE fits within the image
objects. All other MM operations can be expressed by erosion
and dilation [21]. For example, the morphological opening op-
eration is to dilate an eroded image to filter out bright structures,
while the morphological closing operation is to erode a dilated
image to suppress dark structures. The reconstruction filter is
implemented on these operators to preserve original structures
of image and suppress shape noise. The morphological opening
and closing operations can be effectively used for analyzing and
processing spatial information for image classification.

Morphological profiles (MPs) [22] are a classical example of
MM method, which are constructed based on opening and clos-
ing operators from a grayscale image using SEs with increasing
sizes, produced the multiscale spatial information of the image,
and improved the traditional pixelwise spectral classification.
Attribute profiles (APs) [23] are another classical example of
MM method, which can extract spatial and contextual features
based on multiple attributes from a grayscale image. MPs and
APs are used for grayscale images. Based on MPs and APs,
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extended MP (EMP) [22] and extended AP (EAP) [24] are
developed for dealing with HSI. The spectral dimensionality
of HSI is first reduced by using principal component analysis
(PCA). EMP and EAP construct MPs and APs, respectively, on
the first few principal components (PCs). Both EMP and EAP
used for HSI classification exhibit good performance [25]. It
should be noted that the key issue for the performance of MMC
methods is to determine a set of base images, on which the
EMP and EAP are built. The base images are feature images
extracted from the original HSI based on feature extraction for
HSI classification. Thus, many feature extraction methods can
be used to improve MMC classification performance, such as
Fauvel et al. [26] used kernel PCA to extract the base im-
ages for EMP to improve the HSI classification performance.
The paper [23] proved that independent component analysis is
more suitable than PCA for generating the base images for EAP.
More developed MMC methods are described in [9], [27]–[43].

C. MRFC

MRFC combines spatial neighborhood information into
the posterior probability of the spectral features for image
classification. Based on the Hammersly–Clifford theorem [44],
the global posterior probability distribution of MRFC follows a
Gibbs distribution and can be denoted as a function based on the
spectral energy function and the spatial energy function. The
spectral energy function is the cost of a pixel being assigned
with different classes. The larger the probability of a pixel
belonging to a certain class, the more probable that the pixel
is assigned the corresponding label. The spatial energy function
inspires the labels of neighboring pixels to be the same. Different
MRFC methods can be constructed based on different spectral
energy functions, such as the classic-MRFC method [44] used
Euclidean distance for spectral energy function, the Ma-
halanobis distance was used for the Mahalanobis-MRFC
method [45], and the spectral angle was used for the spectral
angle-MRFC [46]. These MRFC methods can also combine with
other classifiers such as SVM and Gaussian mixture models as
shown in [47], belief propagations or tree reweighted message
passing as shown in [48], convolutional neural networks (CNNs)
as shown in [49], and more developed MRFC methods as de-
scribed in [6], [50]–[60].

D. SegC

SegCs use segmentation algorithms to partition an image into
nonoverlapping homogenous regions. Some algorithms, such
as K-means clustering, watershed edge detection, and binary
partition trees, can be used for SegC methods to segment an HSI
to segmentation map. Each segmented region in the segmenta-
tion map can be viewed as a connected spatial neighborhood
for all the pixels in the region. SegCs can use any pixelwise
classifier and majority vote for each segmented region in the
segmentation map, and all pixels in the same segmented region
are labeled to the most frequent class with this region based on
the pixelwise classification results [9]. Several SegC methods
have been proposed for HSI classification. Ghamisi et al. [61]
used the fractional-order Darwinian particle swarm optimization
method for HSI segmentation and then used spectral classifier
for HSI classification. Zhao et al. [62] used the optimal K-means
clustering method for HSI segmentation and then used SVM

Fig. 4. Schematic of the AE.

classifier for image classification. Tarabalka et al. [63] used the
ISODATA algorithm and Gaussian mixture resolving techniques
for image clustering and then achieved classification map by per-
forming a majority voting on the pixelwise SVM classification
using adaptive neighborhoods defined by the segmentation map.
More developed SegC methods are described in [64]–[69].

E. SRC

Sparse representation is the method of representing a signal
where only a few parameters are nonzero. SRC is a coding
scheme that represents a signal by a sparse linear combination
of samples (atoms) from a dictionary. Many SRC methods have
been proposed for HSI classification. Chen et al. [70] proposed
a SRC method based on the observation that the pixel can be
represented by a sparse linear combination of atoms from a struc-
tured dictionary. Gao et al. [71] used a low-rank based sparse
representation to generate high-quality HSIs yielding significant
classification performance improvement. Fang et al. [72] used a
multiscale adaptive sparse representation methods to improve
the performance of HSI classification. More developed SRC
methods are described in [16], [73]–[80].

F. DLC

DLC methods use deep neural networks to automatically learn
deep features from data for HSI classification. Four representa-
tive methods, i.e., autoencoders (AEs), CNNs, recurrent neural
networks (RNNs), and generative adversarial networks (GANs),
for HSI classification can be categorized from DLC methods
and are respectively described, and the relevant references are
reviewed [15], [34], [49], [81]–[102].

1) AEs: AEs are designed to learn efficient representation of
the input data. Fig. 4 shows the schematic of the AE. An AE
consists of two parts. The first is an encoder, which encodes the
input x to the hidden layer h. The second is decoder, which
maps h to output layer (reconstruction) y. The AE network is
trained by minimizing the reconstruction loss between input x
and reconstruction y. Thus, the learned features in hidden layer
can be used for classification or used as the input of a higher
layer to generate deeper features.

Numerous AE-based methods have been developed for HSI
classification. Stacked AEs (SAEs) [7] is constructed by stacking
the input and hidden layers of AEs together layer by layer and
can be used for HSI classification. Chen et al. [7] developed
SAE-LR method which combines PCA, SAEs, and logistic
regression together to merge spectral and spatial features for
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Fig. 5. Schematic of the CNN, which consists of two convolutional-pooling layers and two fully connected layers.

HSI classification. Xing et al. [103] utilized stacked denoise
AE to pretrain the network and used the logistic regression
method in the top layer of the network to perform supervised
fine-tuning and classification. Some classification methods used
AE to extract spectral features and utilized CNN to extract spatial
features for HSI and has given good classification results [104],
[105].

2) CNNs: A CNN is composed of stacked alternatively con-
volutional layers and pooling layers and ends with a fully con-
nected neural networks and extracts the contextual 2-D spatial
features of images by enforcing a local connectivity pattern
between neurons of adjacent layers. Fig. 5 shows the framework
of CNN. Convolutional layer is used for generating multiple
feature maps based on convolution between the input dataset
and the multiple learned filters. The rectified linear unit function
is usually used for the activation function for CNN based on
the advantages of low computation load, and robustness for
gradient vanishing. Pooling operation is used for extracting more
abstract features by reducing the spatial size of the feature maps.
Max and average pooling are two common types of pooling
operation. Max pooling takes the maximum value of each local
cluster of neurons in the feature map, while average pooling
extracts the average value. The fully connected layers are used
to extract more deep and abstract features. The output from the
final pooling layer is flattened and then acts as input to the
fully connected layer. In order to achieve good classification
performance for HSI, dropout is used for dealing with overfitting
by setting the output of some hidden neurons to zero. Batch
normalization is used to prevent gradient vanishing and speed
up the training procedure.

Recently, numerous CNN-based methods have been devel-
oped for HSI classification. Some papers use DR for preprocess-
ing in order to reduce the redundancy of spectral information of
HSI and potentially mitigate the overfitting problem to improve
CNN classification performance [106], [107]. Further, the HSI
classification performance can be improved by combining with
other techniques, such as in [108], Gabor filtering is used to
extract spatial information, and in [109], sparse representation
is used to refine the features learned from CNNs.

3) RNNs: RNN [110], [111] is an extension of the conven-
tional feedforward neural network and can deal with sequences
of data and dynamic temporal features by using a recurrent
hidden state whose activation at each step depends on that of the
previous steps. To deal with the vanishing gradient or exploding
gradient for the long-term sequential data used for RNNs, long
short-term memory [112], [113] and gated recurrent unit [93] can
be used to deal with this problem. Considering each pixel vector

in HSI as a set of orderly and continuing spectral sequences
in the spectral space, RNNs can be effectively used for HSI
classification. Paoletti et al. [114] used the simple recurrent
unit to decouple the computational relationship between the
current and previous states in the RNNs for HSI classification.
In [115], pixel-matching and block-matching are used for calcu-
lating the similarity in RNNs for improving HSI classification
performance.

4) GANs: GAN models contain a generative modelG, which
attempts to learn the distribution parameters from data and then
generates new samples using the learned model for the purpose
of generating fake inputs as real as possible, and a discriminative
model D, which tries to the dependence of labels y on training
datax and predictsy fromx to distinguish between real and fake
inputs. The training process of the discriminator will proceed
both continuously and effectively by the adversarial manner and
competition of the G and D models.

Recently, GAN-based methods have been effectively used
for HSI classification. In [116], the GAN-based HSI classifi-
cation framework, two CNNs are used to train generative model
and discriminative model, respectively. A CNN was used for
the generative model to generate the fake inputs, the other
CNN was used to discriminate the inputs for the discriminative
model. Dam et al. [117] developed multifake evolutionary based
GAN method, where different generative objective losses are
considered in the generator model to improve the classification
performance of the discriminator model. In [116], 1-D GAN with
spectral classifier and 3-D GAN with spectral–spatial classifier
are developed for HSI classification.

V. EXPERIMENTAL RESULTS

The experimental results of the proposed prediction methods
based on the nine different real HSIs with considered 17 fea-
tures are given in this section. Experimental results for OrdLS
linear prediction method are compared with the following linear
prediction methods: baseline, RigR, LasR, OMP, and EltN.
Experimental results for EnsLV nonlinear prediction method
are compared with the following nonlinear prediction methods:
SVR, MLP, RF, AdaT, HGB, and KNN.

A. Datasets

We focus on datasets that have been used extensively in the lit-
erature. Therefore, nine real HSI datasets, Indian Pines, Salinas,
Salinas A, Pavia University, Pavia Center, Bostwana, Houston,
Kennedy Space Center, and Washington DC Mall datasets, used
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Fig. 6. Indian Pines dataset. (a) Three-band false-color image. (b) Ground-
truth map.

Fig. 7. Salinas dataset. (a) Three-band false-color image. (b) Ground-truth
map reference.

Fig. 8. Salinas A dataset. (a) Three-band false-color image. (b) Ground-truth
map.

in the 100 HSIs classification papers are selected for the exper-
imental datasets for the prediction methods. Table II provides
detailed information for the nine HSI datasets, i.e., the sensor
type, the number of classes in the dataset (Ncl), the number of
spectral bands in the classification dataset (Nsb), and the spatial
resolution of the dataset (Res). The number of experiments and
the performance metrics, i.e., OA, AA, and Kappa, are collected
and evaluated from the 100 HSI classification papers for the
nine HSI datasets and are shown in Table II. Figs. 6– 14 show the
false-color composite and the corresponding ground reference
map for the nine HSI datasets, respectively. From Table II, it
can be seen that the Houston dataset has the lowest OA, AA,
and Kappa values, while, in contrast, the Pavia Centre has the
highest values.

Fig. 9. Pavia University dataset. (a) Three-band false-color image. (b) Ground-
truth map reference.

Fig. 10. Pavia Center dataset. (a) Three-band false-color image. (b) Ground-
truth map reference.

Fig. 11. Botswana dataset. (a) Three-band false-color image. (b) Ground truth-
map reference.

Table III shows a breakdown of classification method cate-
gories. The CSCs, such as SVM and RF classifiers, are usually
considered as baseline classification methods. It can be seen that
the CSCs are the most heavily sampled and have the lowest OA,
AA, and Kappa. Deep learning techniques have developed very
fast recent years. The number of DLC methods is less than the
CSCs and is much more than the other methods. DLCs have the
highest OA. MRFCs have the highest AA and Kappa.
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Fig. 12. Houston dataset. (a) Three-band false-color image. (b) Ground truth-
map reference.

Fig. 13. Kennedy Space Center dataset. (a) Three-band false-color image.
(b) Ground-truth map.

Fig. 14. Washington DC Mall dataset. (a) Three-band false-color image.
(b) Ground-truth map reference.

Fig. 15(a) shows the boxplots for the distribution of the OA
with respect to the nine different HSIs. It can be seen that how
large the distribution is for the Indian Pines and Pavia University
datasets. This is partly explained by the fact that they are the most
heavily sampled in our datasets. It can also be seen how the mean
accuracy is lowest for the Houston image. The Houston dataset is
the second least sampled in our datasets and is also a very sparse
urban scene which may be more difficult to classify. Fig. 15(b)
shows the boxplots for the distribution of the OA with respect
to the six different types of classifiers. It can be seen that deep
learning classifiers have the highest mean accuracy.

Fig. 15. Distribution of overall accuracy with respect to (a) nine different HSIs
and (b) six different types of classifiers.

B. Experimental Setup

The metadata with 17 different features are sample datasets
extracted from the 100 HSI classification papers. The total num-
ber of samples in metadata is 2964. In the experiments, a certain
amount of training samples are randomly selected from metadata
for training the prediction models. The remaining samples in
metadata are selected as test samples. All the parameters used
for the comparison methods follow either the authors’ source
code settings or are experimentally evaluated according to the
reference recommendations. It should be noted that EnsLV is an
ensemble learning method that uses several based-estimators
prediction models for predicting. The bootstrap aggregating
method is used for EnsLV to randomly select a replaceable subset
from the entire training dataset for training each based-estimator
of EnsLV.

C. Evaluation Metrics

The quantitative metrics used to evaluate the results for the
experimental datasets are the mean absolute error (MAE) be-
tween predicted and actual outcomes, the goodness of fit (R2),
the t-statistic, and the p-value. The definition of MAE is

MAE =

∑n
i=1 |yi − ŷi|

n
(7)

where yi is the observed value, ŷi is the predicted value, and
n is the number of samples. R2 measures the coefficient of
determination for linear prediction methods and is given by

R2 =

∑
(ŷi − y)2∑
(yi − y)2

(8)

where y is the mean of all observations. For perfect prediction,
R2 is equal to one. R2 is a fraction of the variance of the
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Fig. 16. Residual results for the OA based on (a) OrdLS linear regression and
(b) EnsLV nonlinear regression.

predictions and the observations’ total variance. The assumption
is that the difference between these variances equals the variance
of the residual error. Therefore, the R2 score is always between
0 and 1. This does not hold for the nonlinear methods; hence,
R2 is not reported for the nonlinear methods. The t-statistic is
the ratio between the coefficient and the standard error

ti =
β̂i
√
n

σ(β̂i)
(9)

where σ(β̂i) is the standard error of β̂i. The t-statistic has an
associated p-value that can be defined as the probability that it
is more extreme than the t-statistic under the null hypothesis H0

(no effect), i.e., pi = Pr(|t| ≥ T |H0).

D. Linear Regression Results

Table IV shows the results of the linear regression analysis.
It can be seen that the MAE is 0.074 and R2 is 0.183 for the
OA. The low R2 along with low p-values for several predictors
indicates that the regression model can somewhat capture the
overall trend in the data but has high variance in prediction
errors. For more precise predictions, a higherR2 is desired and to
achieve that, few techniques are possible, such as finding another
predictor, transforming the data, or trying a nonlinear model.

Fig. 16(a) shows the residual between the prediction values
of the linear regression model used in the regression analy-
sis for OA and the observation values. There is considerable
heteroskedasticity in the residual. The OrdLS finds a linear
combination of input features and is optimized based on the
squared distance between the prediction values of model and
all the samples. One of the assumptions of a good linear model
is that the error, or residual, between the model and samples
has near constant variance across all prediction values. This

Fig. 17. Histogram of overall accuracy with (a) no transformation, (b) logit
transformation, (c) Gaussian transformation, (d) uniform transformation,
(e) standard transformation, and (f) power transformation.

is known as homoskedasticity. Conversely, heteroskedasticity
is changing variance in residuals across prediction values. As
shown in Fig. 16(a), OrdLS has similar residual variance on the
lower end of the predictions. As the prediction values are moved
up, the residual variance increases on the low side and decreases
on the high side. Another assumption of linear regression is that
the prediction values are unbounded in each direction. However,
the linear regression is used based on the OAs that have lower
and upper bounds at 0% and 100%. This restriction violates the
second assumption. Fig. 16(a) shows the phenomenon, where
residuals on the high side trend toward zero. We can also
see that some prediction values are outside the bounds. What
this shows is that a linear regression model is insufficient to
deal with the data we have collected and to get a more accurate
prediction model we must try other models.

It is desired to increase the precision in our prediction and
stay within the bounds of the dependent variables. In order
to do these five transformations, i.e., logit, Gaussian, uniform,
standard, and power transformations, on the dependent variable
are done and run through a number of linear and nonlinear
models. Fig. 17 shows the distribution of OA with and without
transformations by the logit, Gaussian, uniform, standard, and
power transformations.

The models are tuned using a cross-validated grid search and
all experiments are performed through a 5-fold cross-validation.
The experimental results are reported in Table V. It can be
seen that applying transformations do not significantly improve
results and there is no remarkable difference between different
models.

E. Nonlinear Regression Results

Table VI shows the experimental results for the nonlinear
prediction methods for the dependent variable OA with or
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Fig. 18. Learning curve of the EnsLV.

without transformations by logit, Gaussian, uniform standard,
and power. Fig. 17 shows the distribution of OA with or without
transformations by the logit, Gaussian, uniform, standard, and
power transformations. All experiments are conducted through
a 5-fold cross-validation. It can be seen that comparing with
the linear prediction methods in Table V, the nonlinear pre-
diction methods yield much lower MAEs. This illustrates that
nonlinear prediction methods are more suitable for predicting
classification performance based on the metadata than linear
prediction methods. From Table VI, it can also be observed that
the proposed EnsLV method is better than all the other compared
nonlinear prediction methods for the dependent variable OA
with or without transformations by logit, Gaussian, uniform
standard, and power. The EnsLV method with logit transfor-
mation applied achieves the best results. Fig. 18 shows that the
learning curve of the EnsLV starts to converge at 2000 training
samples. The bias displayed between the training and validation
curve demonstrates the noise in the data.

Fig. 16(b) shows the residual between the prediction values
of the EnsLV nonlinear method used in the regression analysis
for OA and the observation values. From Fig. 16(b), it can be
seen that there is significant improvement in heteroskedasticity
compared to the OrdLS and all predicted values fall within the
bounds of the dependent variable. This further demonstrates that
the proposed EnsLV method can yield good prediction results.

VI. CONCLUSION

In this article, we proposed a novel method to analyze to
what extent HSIs can be classified by using only metadata. The
metadata containing 17 types of different features, such as the
classifier categories, the type of selecting training samples, and
the number of classes in the dataset, was collected from the
100 HSI classification papers and was used for estimating the
performance of classifiers before conducting any experiments.
This can provide some guidelines for researchers to identify opti-
mal classifiers and propose classification methods. For example,
before doing the real experiments, researchers can estimate the
HSI classification results of their classification approaches using
our proposed prediction method based on specific parameters in
Table I. Then, the results can be used for checking the effec-
tiveness of their classification approaches. In the experiments,
some linear and nonlinear prediction methods were trained and

tested and analyzed based on the metadata. The experimental
results indicate that the proposed EnsLV yields best results. Our
future work will focus on sampling more data which will add
more results about different datasets and methods and improve
our prediction. At the same time, we will improve the precision
of our prediction method by considering more elaborate features
for the metadata.
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