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Abstract—Hyperspectral imaging technology has been popu-
larly applied in remote sensing because it collects echoed sig-
nals from across the electromagnetic (EM) spectrum and thereby
contributes fruitfully spatial-spectral information. However, the
processing or storage of high-data-volume hyperspectral im-
ages (HSIs), also viewed as snapshots varying with the EM spec-
trum, burdens the hardware resources, especially for the high
spectral resolution and spatial resolution cases. To address this
challenge, a novel unsupervised dimensionality reduction method
based on the dynamic mode decomposition (DMD) algorithm is
proposed to analyze hyperspectral data. This method decomposes
the spatial-spectral HSIs in terms of spatial dynamic modes and
corresponding spectral patterns. Then, these spatial-spectral pat-
terns are combined to reconstruct the raw HSIs via a low-rank
model. Furthermore, we extend the proposed DMD method to
hyperspectral data in the tensor form and title it CubeDMD to
actualize the compression of HSIs in horizontal, vertical, and spec-
tral dimensions. Our proposed data-driven scheme is benchmarked
by the real hyperspectral data measured at the Salinas scenes
and Pavia University. It is demonstrated that the HSIs can be
reconstructed accurately and effectively by the proposed low-rank
model. The mean peak signal-to-noise ratio between the recon-
structed and original HSIs can reach 31.47 dB, and the correspond-
ing mean spectral angle mapper is only 0.1037. Our work provides
a useful tool for the analysis of HSIs with a low-rank representation.

Index Terms—Cube dynamic mode decomposition (CubeDMD),
hyperspectral images (HSIs), reconstruction, three-order tensor,
unsupervised dimensionality reduction.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs), a set of photographs
of the same observation scene measured from across
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the electromagnetic (EM) spectrum, have been extensively em-
ployed in classifying objects [1]–[4], detecting targets [5]–[7],
and extracting terrain features [8]–[11]. Herein, different objects
uniquely reflect, absorb, and emit EM radiation according to
their molecular composition, roughness, and texture [2]. Based
on this, hyperspectral imaging technology collects the objects’
radiation within a wide range of EM frequencies. It allows
HSIs to provide not only spatial but also spectral information
of the observed objects. However, advanced developments of
HSIs, such as a high-dimensional spatial domain with higher
resolution and larger spectral channels, bring challenges to their
storage and processing [6]. For example, storage of 16 bits-per-
pixel-per-band HSIs with 500 spectral channels and 600× 400
pixels in spatial dimension consumes 320 megabytes (MB)
computer memory. Moreover, in the time-varying hyperspectral
observation, the amount of collected data increases linearly with
time, which will induce the curse of dimensionality. To tackle
this issue, various dimensionality reduction algorithms have
been developed for the compression of HSIs. To sum up, we have
categorized seminal contributions into three types as follows.

1) Unsupervised scheme: Unsupervised dimensionality re-
duction methods are generally used for the nonlabeled
hyperspectral data that is directly obtained from the mea-
surement. Unsupervised methods achieve the compression
of HISs by setting some criteria to find the representation
in low-dimensional space. A chain of unsupervised di-
mensionality reduction approaches has been developed,
such as principal component analysis (PCA) [9], sin-
gular value decomposition (SVD) [12], minimum noise
fraction (MNF) transform [10], and independent compo-
nent analysis (ICA) [11]. Afterward, several new criteria
are developed for unsupervised dimensionality reduction
in manifold learning-based methods, such as locality-
preserving projections [13], neighborhood embedding
feature selection [14], and local neighborhood structure-
preserving embedding [15]. The superpixel-wise PCA
method optimizes the dimensionality reduction effect of
traditional PCA by taking the diversity in different homo-
geneous regions into account [16]. Recently, WavCycle-
GAN is developed using the wavelet directional method
to realize the reconstruction of HSIs with noise removal
and without sacrificing HSIs’ high-frequency compo-
nents [17]. The nonlinear autoencoder method is proposed
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for dealing with HSIs’ nonlinear mixing terms [18]. Multi-
ple kernel learning and self-organizing maps are integrated
to represent multiscale fuse features of large HSIs [19].

2) Supervised scheme: This scheme relies on the labeled
hyperspectral data to infer class separability. A variety
of supervised dimensionality reduction approaches have
been proposed. Li et al. [20] combined the multinomial
logistic regression (MLR) and Markov random fields to,
respectively, deal with the spectral and spatial information
for the segmentation of HSIs. Cao et al. [21] explored
the local and global sparse representation to improve the
dimensionality reduction performance of HSIs in both
spectral and spatial domains. With the recent popular-
ity of deep learning, supervised dimensionality reduction
methods based on convolutional neural networks (CNNs)
have become a new trend. Hereinto, Zeegers et al. [7]
propose an end-to-end architecture for data reduction with
more image compression and higher accuracies. Bayesian
CNNs are trained for hyperspectral image classification
with high performance via active learning in [1]. Maxi-
mum overlap pooling CNNs [5] is proposed to improve the
details of HSIs and obtain a high classification accuracy
via avoiding the fuzziness of average pooling.

3) Semisupervised scheme: Semisupervised schemes are ex-
plored to solve the bottleneck of the limited labeled data. In
practice, labeling a large number of samples may require
considerable human resources or expertise. Unlabeled
data, however, are more conveniently available in large
quantities at an economical cost. Consequently, semisu-
pervised schemes are comprehensively investigated via
using both unlabeled and limited labeled data in the clas-
sification [22], [23]. For example, Li et al. [24] integrated
MLR and active learning approach. He et al. [25] pro-
posed an optimal graph approach for the band selection
of HSIs. These methods combine the advantages of the
supervised scheme and unsupervised methods. They can
achieve optimal results given a limited set of specific HSI
data.

The aforementioned methods are mainly applied to the matrix
representation of the HSIs, which needs the reshaping process
of hyperspectral data cube in prior. More recently, it has been
demonstrated that compared with processing HSIs based on
matrix representation, dimensionality reduction of hyperspec-
tral data in the tensor form can achieve a higher compression
ratio [26]. Hence, it is necessary to realize dimensionality reduc-
tion directly based on high-dimensional tensor representation.
To this end, significant work has been performed from different
perspectives. In Category 1), the multilinear PCA method is
investigated for tensor HSIs with object feature extraction [6],
[26], [27]. Afterwards, An et al. [28] determine the optimal
low rank of HSIs via tensor-based multiscale decomposition. In
Category 2), various studies have been carried out by directly
dealing with hyperspectral tensor form via tensor CNNs [29],
[30], tensor neighborhood graph [31], [32], and modified tensor
patch [33]. In Category 3), the labeled and unlabeled data
are combined within the tensor form and then processed for
compression and classification [34], [35]. It is worth noting that

a more detailed literature review can be found in Section III
of [2], and here we mainly review the latest published work as
a supplement.

While the studies mentioned earlier have achieved significant
developments, it is still an open and challenging issue to rep-
resent the HSIs with dimensionality reduction. The desirable
low-rank reconstruction requires a small memory space, the
expression as realistic as possible, and convenient calculation
in the form of a matrix or tensor. Notably, the main challenge of
the unsupervised approach is that it lacks the ability to integrate
spatial and spectral information in the dimensionality reduction
of HSIs [21].

In this article, we investigate the dynamic mode decom-
position (DMD) approach to reduce the dimension of HSIs
with the unsupervised scheme. Through the DMD method, the
spatial-spectral hyperspectral data is decomposed into the spatial
modes and corresponding spectral patterns. Each spatial mode
varies exponentially with the index of EM bands, which is
solely determined by its corresponding spectral pattern. Then,
these decomposed patterns reconstruct the original hyperspec-
tral data via the low-dimensional linear combination. Recently,
the traditional DMD method is used in the analysis of the HSIs
represented by the matrix [36]. We further explore the cube
dynamic mode decomposition (CubeDMD) method to reduce
the dimensionality of HSIs in the form of tensors. Some mea-
sured HSIs are used to validate the proposed method. It is worth
noting that, as an unsupervised scheme, the proposed method
integrates the spatial and spectral correlation information for
further improvement of the performance on the reconstruction
of HSIs. Also, the dimensionality reduction is obtained not
only in the spectral domain but also in the spatial domain. Our
contributions lie in several aspects as follows.

1) We establish the DMD-based approach for dimensionality
reduction of HSIs. Herein, the HSIs are represented by
a low-dimensional spatial-spectral correlated state-space,
where the variation of spatial distribution is only deter-
mined by the eigenvalues in the spectrum. Unlike the
SVD that uses the same number of spectral dimension’s
elements as the original data to represent HSIs, DMD only
uses fewer eigenvalues and a fixed exponential form to
reconstruct the spectral distribution.

2) Our proposed data-driven method is with an unsupervised
scheme. Thus, comparing the supervised scheme and
semisupervised scheme, cumbersome labeling workload
and training process are avoided.

3) According to the nature of the cube shape of hyperspectral
data, we further develop a modified DMD method based
on the tensor form, namely CubeDMD. Compared with
DMD, CubeDMD can further compress the horizontal and
vertical dimension in the spatial domain, which ensures
that HSIs can be reconstructed from a data form with
less than the original spatial dimension, to compress the
horizontal and vertical dimension in the spatial domain.
The quantitative analysis of the reconstruction results
demonstrates its effectiveness and accuracy.

Hence, the proposed state-of-the-art data-driven scheme
could be an effective tool for dimensionality reduction of HSIs.
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Fig. 1. Schematic of a hyperspectral data cube.

The remainder of this article is formed as follows. Section II
introduces the adopted notations and the background. In Sec-
tion III, we propose DMD and CubeDMD to reduce the dimen-
sionality of HSIs in matrix and tensor form, respectively. Results
based on experimental HSIs are benchmarked to verify the
proposed methods in Section IV. Finally, Section V concludes
this article.

II. BACKGROUND

A. Notations

A tensor often refers to the multidimensional array, and its
dimensions’ number is expressed as the order of a tensor. In this
article, we adopt the lowercase Latin letters, e.g., a, b, c, . . . , to
denote the scalars (zero-order tensors), the lowercase bold-face
Latin letters, e.g., a,b, c, . . ., to denote the vectors (first-order
tensors), the uppercase bold-face Latin letters, e.g.,A,B,C, . . .,
to denote the matrices (second-order tensors), and the bold
calligraphy Latin letters, e.g., A,B, C, . . ., to the higher-order
tensor. Without loss of generality, N -order tensor can be ex-
pressed as T ∈ RI1×I2×···×Ik×···×IN . Herein, Ik is often larger
than 1 and denotes the dimension of the kth mode. R denotes
the real analytic space.

B. Hyperspectral Data Cube

As shown in Fig. 1, the spatial-spectral HSIs is often regarded
as a three-dimensional data cube. To be specific, we can use a
three-order tensor T (i1, i2, i3) (or the subscript form: Ti1,i2,i3
to represent HSIs). Hereinto, i1 and i2 refer to the horizontal
(x) and lateral dimension (y) in the spatial domain, respectively.
i3 solely denotes the spectral dimension, which represents the
observation with a specific EM frequency (λ). To be specific, we

assume that d(xi, yj , λl), i = 1, . . . , O, j = 1, . . . ., P , and l =
1, 2, . . . ,L denote a pixel measured at a specific EM spectrum. If
the vector r = (x, y) is defined to represent the spatial domain,
one can obtain a set of snapshots varying with the EM spectrum,
which is expressed as follows.

D =

⎡
⎢⎣

d (r1, λ1) · · · d (r1, λl) · · · d (r1, λL)
... · · ·

... · · ·
...

d (rM , λ1) · · · d (rM , λl) · · · d (rM , λL)

⎤
⎥⎦

∈ RM×L (1)

Here M = O × P denotes the number of pixels in each
image, and lth column of D means the observation sequence dl,
also named as the lth snapshot. Then, the raw hyperspectral data
can be expressed by a matrix as D = [d1,d2, . . . ,dl, . . . ,dL].

C. Singular Value Decomposition

SVD is a factorization method of any real-valued and
complex-valued matrix, which has been widely studied and
applied for the dimensionality reduction of HSIs [12], [37]–[39].
Specifically, D in (1) is used as an example. Through SVD, we
have

D = USVH (2)

where the superscript H denotes the Hermitian transpose. S
is the diagonal matrix of size r × r. Its diagonal elements are
denoted as σi, which refer to singular values of SVD. σi is a
non-negative real number and usually sorted in decreasing order
as follows:

σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. (3)

U and V denote an M × r and L× r semiunitary matrix, re-
spectively. Namely, one can obtainUHU = VHV = Ir×r. The
columns of U and V refer to the left and right singular vectors,
respectively, which also correspond to the singular values σi.
It is worth noting that there are two implementations of SVD,
namely compact SVD and truncated SVD. In the compact SVD
scheme, r is directly set to min{M,L}. When the rank of D is
less than min{M,L}, the truncated SVD is adopted via setting
a threshold εSVD to select the first r∗-order singular values. The
formula for selection is as follows:√

σ2
r∗+1 + · · ·+ σ2

r

σ2
1 + · · ·+ σ2

r

≤ εSVD. (4)

By such truncation, an approximation of D can be achieved by a
low-rank representation. Besides, a proper truncation selection
in SVD is a beneficial way of removing the noise of HSIs.

D. Higher Order Singular Value Decomposition

When dealing with multidimensional data, SVD needs
to be extended to handle tensors of order greater than two.
Several such extensions have been investigated to solve this
nontrivial task, such as canonical decomposition [40], tensor
singular value decomposition (t-SVD) [6], and higher order
singular value decomposition (HOSVD) [41]–[43]. Hereinto,
the higher order singular value decomposition (HOSVD)
first proposed by Tucker [41] has been proven to have high
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Fig. 2. Illustration of the HOSVD of a hyperspectral data cube (three-order
tensor).

robustness [42], [43] and is widely used in multidimensional
signal processing [44]–[46]. In specific, we take Ti1,i2,i3 shown
in Fig. 1 as an example. Through the HOSVD, one can obtain

Ti1,i2,i3 =

r′1∑
n1=1

r′2∑
n2=1

r′3∑
n3=1

Sn1n2n3
U1

i1n1
U2

i2n2
U3

i3n3
(5)

where r′1, r
′
2, and r′3 refer to the ranks of the fibers of the HSIs’

tensor along the horizontal, lateral, spectral dimensions. The
vector r = (r′1, r

′
2, r

′
3) is defined as the multilinear rank of the

tensor T . Sn1n2n3
represents the components of the three-order

tensor S that means the core tensor of size r′1 × r′2 × r′3.
The matrices U1,U2,U3, of sizes I1 × r′1, I2 × r′2, I3 × r′3,
respectively, whose elements are U1

i1n1
, U2

i2n2
, and U3

i3n3
,

respectively, refer to the mode matrices along the horizontal,
lateral, and spectral dimensions of the HSIs. Visualization of the
HOSVD for the T is presented in Fig. 2 for better understanding.

III. METHODS

In this section, we will present the proposed data-driven
scheme for the compression of HSIs. The DMD method is first
detailed for the matrix form HSIs. Then, the CubeDMD is given
for the tensor form HSIs based on the fact that their data set is a
cube.

A. Dynamic Mode Decomposition

The DMD method was first proposed in the field of hydrody-
namics [47] and then widely applied in many fields, such as EM
vortex beams [48]–[50], power system [51], sea clutter [52], ship
wake detection [53], and chaos system [54]. Traditionally, DMD
decomposes the spatial-temporal signal by the low-dimensional
exponential modes with the corresponding oscillation frequency
and decay/growth rate [47]. Interestingly, there is an analogy
between the time-varying snapshots and HSIs, which can be
viewed as “EM frequency-varying” snapshots. So, when low-
rank representation can be obtained by providing the time series
of data through DMD, we should be able to obtain dimen-
sionality reduction of HSIs. Here, we take matrix D in (1)
as an example to illustrate the process of the DMD method.
Specifically, it is assumed that the mapping relationship between
the two adjacent observation sequences inD is linear, which can
be expressed as

dl+1 � Qdl for l = 1, . . . , L− 1. (6)

Here, Q denotes the mapping matrix with size of M ×M ,
whose eigenvalues and eigenvectors grasp the main dynamic
characteristics of HSIs. Based on this linear assumption, the
solution on the state-space of the HSIs could be expressed as [55]

dl �
N∑

n=1

anqne
(δn+iωn)(l−1)Δλ (7)

where d refers to a spectrum-dependent vector of size M . qn

refers to the nth spatial mode, an denotes the corresponding
mode amplitude, and δn and ωn refer to the associated damping
rate and frequency, respectively. Δλ means the interval of the
HSIs spectral dimension. Since the index of the EM band is as-
sumed to represent the spectral dimension here,Δλ is equal to 1.
Notably, through this spatial-spectral correlated representation,
HSIs can be jointly expressed by the spectral space in terms of an
exponential pattern and the associated spatial modes. The goal
of the DMD method is to obtain this expression merely from the
hyperspectral data. In the following, we will introduce how to
compute the coefficients in (7) via the DMD approach.

For convenience of notation, we define Dl2
l1

, in which l1 <
l2, to represent the snapshot matrix, and its columns are the
observation sequences with indices between l1 and l2, such that
Dl2

l1
= [dl1 ,dl1+1, . . . ,dl2 ]. We split the data matrixD into two

snapshot matrices, namely DL−1
1 and DL

2 . Then, the relation in
the (6) can be rewritten in terms of these two snapshot matrices
as follows:

DL
2 � QDL−1

1 . (8)

Based on this assumption, the DMD method can express the
system state with a low-rank model in three steps.

1) Dimension Reduction: First, this step decomposes the first
sequence matrix DL

1 with the SVD approach in (2), which is
given as

DL
1 � USVH (9)

where UHU = VHV = IÑ×Ñ ; the matrix U with size of
M × Ñ and V with size of L× Ñ refers to the spatial and
spectral SVD modes, respectively; and IÑ×Ñ refers to a unit
matrix of order Ñ . Hereinto, Ñ denotes the number of truncated
SVD modes, which is determined according to (4). Notably,
through the SVD approach, the original states in the HSIs are
represented in a low-dimensional system. From now on, the
letters with tildes, ·̃, are adopted to denote the state in this
dimensionality reduction system. The reduced snapshot matrix
in this low-dimensional system is defined as D̃L

1 = SVH . Also,
the columns of D̃L

1 are named as the the reduced snapshots,
which can be expressed as follows:

D̃L
1 =

[
d̃1, d̃2, . . . , d̃L

]
. (10)

Then, the matrix U can be used to connect the original dimen-
sional system and the low-dimensional system, and one can
obtain DL

1 = UD̃L
1 or D̃L

1 = UHDL
1 . The reduced snapshots

exhibit a much smaller dimension than the original snapshots
if Ñ � L, which is the usual case for HSIs with multiple
spectral channels. That is to say, this redundancy in HSIs can
admit a significant dimension reduction. Then, we calculate the
parameters of (7), including the damping rates, frequencies,
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and mode amplitude, all in this reduced-dimension space. In
particular, DN

1 = UD̃N
1 implies that the snapshots and reduced

snapshots are related as

dl � Ud̃l (11)

or

d̃l � UHdl. (12)

Premultiplying (7) by UH , one can obtain

d̃l �
Ñ∑

n=1

anq̃ne
(δn+iωn)(l−1)Δλ (13)

where the reduced spatial mode, q̃n = UHqn, refers to the
DMD mode. It is worth noting that once the expansion of (13)
is computed, which is explained in the next step in detail, the
original expansion of (7) can be obtained via premultiplying (13)
by U, in which qn = Uq̃n.

2) Computation of Damping Rates δn and Frequencies
ωn: This step calculates the aforementioned parameters via
the newly constructed reduced mapping matrix, Q̃, which is
defined as

Q̃ = UHQU. (14)

Then, the relationship in (6) and (8) can be reexpressed in the
low-dimensional space as

d̃l+1 � Q̃d̃l (15)

and

D̃L
2 � Q̃D̃L−1

1 . (16)

To construct Q̃, SVD is first implemented for the D̃L−1
1 , such that

D̃L−1
1 = ŨS̃Ṽ

H
. (17)

Substituting (17) into (16), one can obtain

D̃L
2 = Q̃ŨS̃Ṽ

H
. (18)

Then, postmultiplying (18) by ṼS̃
−1
ŨH , we have

Q̃ = D̃L
2 ŨS̃Ṽ

H
. (19)

It is clear that the reduced mapping matrix Q̃ has been obtained
based on the reduced snapshots. Then, the general solution of
(15) expressed as (13) can be obtained via the eigen decom-
position of Q̃, in which pn and ξn are used to denoted the
eigenvectors and associated eigenvalues of Q̃, respectively. We
have

d̃l =

Ñ∑
n=1

anpnξ
l−1
n (20)

where the eigenvectors of pn refer to the q̃n, namely pn = q̃n,
and the associated eigenvalues ξ̃n imply the damping rates and
the frequency, such that δn + iωn = 1/(Δλ) log ξn. The distri-
bution of the damping rates and the frequency is also denoted as
the DMD spectrum. Notably, all the derivations of parameters in
the targeted expression are implemented in a low-dimensional
space. It can significantly reduce memory consumption during
processing high-data-volume HSIs.

3) Computation of the Mode Amplitudes: This last step is to
calculate the mode amplitude an. Hereinto, the left-hand side
of (20), d̃l, is the known reduced snapshots with the size of Ñ ,
and Ñ eigenvectors pn and eigenvalues ξ̃n are also obtained
via the eigendecomposition of Q̃ in step 2. It is clear that any
value of l in (20) will uniquely derive the mode amplitudes an.
However, using only one of these values to determine the mode
amplitude will cause minor errors and decrease the accuracy
of the calculation of an. Instead, the pseudoinverse approach
is explored to solve these overdetermined equations, where the
least-squares error is used. Specifically, (20) in matrix form can
be expressed as

Ax = b (21)

whereAdenotes the coefficient matrix with the size of ÑL× Ñ ,
b refers to the forcing term that is composed of the reduced
snapshots, and x is the unknown mode amplitudes vector, which
are defined as follows:

A =

⎡
⎢⎢⎣

Ũ

ŨΞ
· · ·

ŨΞL−1

⎤
⎥⎥⎦ , x =

⎡
⎢⎢⎣
a1
a2
· · ·
aÑ

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣
d̃1

d̃2

. . .

d̃L

⎤
⎥⎥⎦ (22)

where Ξ is a Ñ × Ñ diagonal matrix that is formed by the
eigenvalues, ξ, in (20). It is clear that the mode amplitudes can
be obtained by solving the over-determined equation shown in
(21). In particular, the pseudoinverse of A is computed by the
SVD method, which can be expressed as

A = U1S1V1
H . (23)

Substituting (23) into (21) and premultiplying the resulting
equation by V1S1

−1U1
H , one can obtain

x = V1S1
−1U1

Hb. (24)

Thus, the mode amplitudes an are calculated. Similar to the
truncation in SVD, we define the threshold εDMD to determine
N , which is given as

|aN |
max(|an|)

< εDMD. (25)

Clearly, εDMD controls the number of linearly independent
modes to be retained, namely N . Clearly, all the parameters
in (13) are obtained merely from the calculation of the data
matrix now, which means the expansion in the low-dimensional
system is determined. To reconstruct the original HSI data,
we premultiply (13) by the spatial SVD mode U according
to (11). Finally, the expansion in (7) is obtained, and thereby
the reconstruction of HSIs is achieved. Also, the pseudocode of
DMD is depicted in Algorithm 1.

B. Cube Dynamic Mode Decomposition

In the conventional DMD method, the horizontal and lateral
dimension are reshaped into the one-dimensional spatial domain
in advance. HSIs, however, are naturally represented by a three-
order tensor. In this case, the conventional DMD method used to
process matrix data sets needs to be modified to process higher-
order tensors. Based on the fact that hyperspectral data has a
natural feature of cube shape, we newly proposed CubeDMD to
address this issue.
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Algorithm 1: DMD.
Input: Hyperspectral data matrix: D; the spectral
interval: Δλ; DMD threshold: εDMD

Output: Spatial dynamic modes: q; spectral patterns
including damping rates: δ and frequencies: ω;
Reconstruction HSIs: DRect

1: Split D into two adjacent matrices: DL−1
1 and DL

2 ;
2: Linear mapping assumption: DL

2 � QDL−1
1 (see (8));

3: Low-dimensional representation using SVD:

d̃l �
∑Ñ

n=1 anq̃ne
(δn+iωn)(l−1)Δλ;

4: Computation of damping rates δn and frequencies ωn:
eigendecomposition of Q̃;

5: Computation of the mode amplitudes: solving the
overdetermined equation Ax = b;

6: Return DRect: the low-rank representation of HSIs.

Similar to (7), the third-order hyperspectral image tensor
shown in Fig. 1 could be expressed as follows:

Ti1,i2,l =
N∑

n=1

anVi1,i2,ne
(δn+iωn)(l−1)Δλ (26)

where Vi1,i2,n refers to nth spatial mode tensor of order three.
Obviously, unlike the conventional DMD method that encom-
passes (i1, i2) in a single index, CubeDMD directly processes
spatial snapshots on these two indexes. In this case, HOSVD is
applied to replace the SVD approach implemented in the step 1
for dimension reduction. The expansion of HOSVD is recalled
here for convenience.

Ti1,i2,l =
N1∑

n1=1

N2∑
n2=1

N3∑
n3=1

Sn1n2n3
U1

n1i1
U2

n2i2
U3

n3l
(27)

in terms of the core tensor S and the reduced snapshots along
the horizontal, lateral, and spectral dimensions denoted as
U1

n1i1
U2

n2i2
, and U3

n3l
, respectively. For convenience, expan-

sion (27) is rewritten as

Ti1,i2,l =
N1∑

n1=1

N2∑
n2=1

N3∑
n3=1

S̃n1n2n3
Ũ3

n3l
(28)

where S̃ and Ũ refer to the rescaled core tensor and the reduced
snapshots, respectively, which are defined as

S̃n1n2n3
=

1

ξ3n3

N1∑
n1=1

N2∑
n2=1

N3∑
n3=1

Sn1n2n3
U1

n1i1
U2

n2i2
(29)

and

Ũ3
n3l

= ξ3n3
U3

n3l
(30)

respectively. Here, ξ3n3
refers to the HOSVD singu-

lar values along the third dimension of the tensor T .
The column of reduced snapshots is given as Ũ3

n3l
=

[ũn31, ũn32, . . . , ũn3l, . . . , ũn3N ], where

ũn3l =

⎡
⎢⎢⎣
ũ1˜l

ũ2˜l

· · ·
ũN3l

⎤
⎥⎥⎦ . (31)

Algorithm 2: CubeDMD.
Input: Hyperspectral data tensor: Ti1,i2,l; the spectral
interval: Δλ; DMD threshold: εDMD

Output: Spatial dynamic modes in tensor form: Vi1,i2,n;
spectral patterns including damping rates: δ and
frequencies: ω; Reconstruction HSIs: Ti1,i2,lRect

1: Implement HOSVD on Ti1,i2,l: Ti1,i2,l =∑N1

n1=1

∑N2

n2=1

∑N3

n3=1 Sn1n2n3
U1

n1i1
U2

n2i2
U3

n3l
;

2: Split Ti1,i2,l into rescaled core tensor S̃ and the
reduced snapshots Ũ [see (29) and (30)];

3: Implement DMD on the reduced snapshots Ũ;
4: Computation of damping rates δn and frequencies ωn;
5: Computation of the mode amplitudes;
6: Return Ti1,i2,lRect : the low-rank representation of HSIs

in tensor form.

Next, proceeding with these reduced snapshots Ũ3
n3l

as we
did in steps 1, 2, and 3 described in Section III-A, we derive for
the reduced snapshots the expansion, which can be expressed as

ũn3l =

N∑
n=1

anṽn3ne
(δn+iωn)(l−1)Δλ. (32)

Substituting (32) into (28), one can obtain

Ti1,i2,l =
N∑

n=1

anVi1,i2,ne
(δn+iωn)(l−1)Δλ (33)

where

Vi1,i2,n =

N3∑
n3=1

S̃n1n2n3
ṽn3n. (34)

Note that the parameters in (33), including the damping factors,
frequencies, and the mode amplitude, are derived by the conven-
tional DMD method in (32). The spatial mode in terms of tensor
V is computed by the HOSVD and the conventional DMD by
recombining the results of the HOSVD and the conventional
DMD method, as shown in (34). Similarly, the pseudocode
of CubeDMD is shown in Algorithm 2. Obviously, through
CubeDMD, a tensor-based reduced-order expression of the HSIs
is obtained in the two-dimensional spatial domain and the spec-
tral domain.

IV. RESULTS

A. Example 1: AVIRIS Hyperspectral Data

1) Salinas Scene: To verify the proposed approach, we first
use the measured hyperspectral image data at the Salinas scene,
which is collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor [56]–[58]. This hyperspectral
image dataset is observed across 224 EM bands, and the number
of horizontal and lateral pixels are 512 and 217, respectively,
where the spatial resolution is about 3.7 m in each pixel. Thus,
the tensor size of the AVIRIS data is 512× 217× 224. Fig. 3
plots the AVIRIS HSIs with different EM bands. Obviously,
pixels with different geomorphic features correspond to different
responses of the EM waves, which is the significantly basic of
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Fig. 3. Gray-scale images of AVIRIS hyperspectral data with the index of
(a) 2, (b) 50, (c) 100, and (d) 200 EM bands.

Fig. 4. Visualization of the DMD spectrum.

landform classification. In this case, the spectral distribution
of each pixel is the additional advantage of HSIs, so it is of
great consequence to represent the spectral distribution of pixels
accurately in the low-rank reconstruction. In addition, it can be
clearly seen that Fig. 3(a) is very blurry, which is caused by
the existence of noise that is unavoidable in the hyperspectral
collection. In specific, the quality of hyperspectral data may be
substantially downgraded by several undesirable noise sources,
such as atmospheric effects and the degradation mechanisms
associated with the measurement process. Interestingly, the pro-
posed DMD-based framework takes advantage of the SVD and
HOSVD approaches, which can reduce the interference of noise
and thereby recover the poor quality HSIs. This denoising effect
will be demonstrated in the following reconstruction part.

2) Decomposition: To further illustrate the process of the
proposed DMD-based approach, the intermediate decomposi-
tion results, namely the DMD spectrum and the extracted DMD
modes, are presented. Hereinto, εDMD is set to 1× 10−2, and
seven eigenvalues are retained in the decomposition. Fig. 4 plots
the DMD spectrum that shows the distribution of the eigenval-
ues. Notably, HSIs here are represented in the real-valued ana-
lytic space. Hence, a pair of eigenvalues with the same real part
corresponds to one spatial DMD mode, except for the case where
the imaginary part of the eigenvalues is 0. This ensures that the
reconstructed hyperspectral data is still in the real analytic space.
In this case of Fig. 4, four spatial DMD modes can be extracted

Fig. 5. Visualization of the DMD modes.

and plotted in Fig. 5. Visually, these DMD modes are very
similar to the spatial distribution of the original hyperspectral
data shown in Fig. 3. According to (7), the eigenvalues in the
DMD spectrum also determine the change of each corresponding
mode as the EM band index increases. In addition to the intuitive
feature extraction shown in Fig. 5, quantitative analysis is per-
formed to further demonstrate the accuracy of the reconstruction
based on these decomposed results in the following performance
part.

3) Reconstruction: Based on the aforementioned decom-
posed results, the reconstruction can be obtained according to
(7). Hereinto, the SVD-based methods, namely the traditional
SVD for the matrix form of HSIs and the HOSVD for the
tensor form of HSIs, respectively, are also considered for the
comparison. Both εSVD and εDMD are set to 1 × 10−4. Fig. 6
presents the visual comparison of partial reconstruction results,
including four EM bands shown in Fig. 3. For each subgraph,
the first row, respectively, shows the approximate reconstruction
results obtained by four methods, namely SVD, HOSVD, DMD,
and CubeDMD. The second row presents the spatial distribution
of residual between the original hyperspectral data and recon-
structed results. From Fig. 6(a), we can see that the noise at band
#2 is greatly removed in the reconstruction results obtained in all
four methods. This is because these four methods take advantage
of the truncation step. It is worth noting that, compared with
the SVD-based methods, the DMD-based approaches have a
larger residual near the end of the band. This is because, unlike
SVD that uses the spectral mode V same as the original spectral
dimension to represent the HSIs, DMD further compresses the
hyperspectral data by using the eigenvalues, of which number is
lower than the spectral dimension. Then, errors will occur at the
end of the EM band number. However, as shown in Fig. 6(b) and
(c), it can be easily observed that the proposed DMD approach
has the best reconstruction effect with the least residual. Hence,
we can conclude that the proposed DMD method can represent
the HSIs with noise removal and acceptable spatial distribution
accuracy.

In addition, the reconstructed spectral distributions are visual-
ized to demonstrate the effectiveness of the proposed approach.
We randomly select nine pixels and plot their corresponding
normalized amplitude distribution versus the index of EM bands
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Fig. 6. Gray images of AVIRIS hyperspectral data with the index of (a) 2, (b) 50, (c) 100, and (d) 200 EM bands. The first column of each subgraph, from left to
right, is the original visual image, the reconstructed results obtained by SVD, HOSVD, DMD, and the CubeDMD. The corresponding color images below refer to
the residual spatial distribution between the reconstructed images and their ground truths.

in Fig. 7. Clearly, although there are some errors near the end
of EM bands, the overall amplitude distribution can be well
reconstructed, especially at the middle indices of EM bands with
high intensity. Hence, the DMD method can well represent the
spectral distribution of hyperspectral pixels.

4) Performance: To further verify the proposed method, we
quantitatively analyze the reconstruction results obtained by
the DMD-based framework. Herein, the mean peak signal-to-
noise ratio (PSNR) [6], [59] and mean spectral angle mapper
(SAM) [59] are adopted as the reconstruction evaluation mea-
sures. In specific, PSNR in dB is defined as

PSNR = 10 · log10
(

MAXI2

M S E

)

= 20 · log10
(

M A XI√
MSE

)
. (35)

Here, MAXI refers to the maximum possible pixel intensity of
the image, and MSE denotes the mean squared error, which is

TABLE I
PSNR VALUES OF THE HYPERSPECTRAL IMAGES SHOWN IN FIG. 3

The bold entities represents the best result among the four methods.

given as

MSE =
1

OP

O∑
i1=1

P∑
i2=1

[Orig(i1, i2)−Rect(i1, i2)]
2 (36)

where O and P , respectively, denote the total number of pixels
in the horizontal and lateral dimension, Orig means the original
images, andRectmeans the reconstructed images. Table I shows
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Fig. 7. Normalized amplitude distribution versus the index of EM bands at (a) #100, (b) #1000, (c) #1500, (d) #3000, (e) #6500, (f) #7500, (g) #30 000,
(h) #75 000, and (i) #90 400 pixel.

the calculated PSNR values of the hyperspectral images shown
in Fig. 3. Clearly, while the reconstruction obtained by DMD at
the 200th band is not the best, the DMD reconstruction result has
the largest PSNR value in the remaining bands. By averaging the
PSNRs of all bands, shown in the last row of the Table I, it is also
proved that DMD is the most effective representation method.
Besides, Fig. 8 plots PSNR versus the index of EM bands. It
also can be seen that the DMD-based methods are better than
SVD-based methods in most EM bands.

In addition, the SAM is also calculated for further verification.
SAM is usually used to measure spectral similarity by calculat-
ing the angle between two spectral vectors of the original and
reconstructed images. Mathematically, the SAM index at the ith
pixel can be expressed as follows:

SAM (xi, x̂i) = arccos

(
xT
i x̂i

‖xi‖2 ‖x̂i‖2

)
. (37)

Fig. 8. PSNR versus the index of EM bands with AVIRIS hyperspectral data.
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TABLE II
SAM VALUES OF THE SPECTRAL VECTORS SHOWN IN FIG. 7

The bold entities represents the best result among the four methods.

Fig. 9. SAM versus the index of pixels with AVIRIS hyperspectral data.

The SAM values of the spectral vectors plotted in Fig. 7 are com-
puted and shown in Table II. It is clear that the spectrum vector
obtained by DMD has the smallest SAM value on most pixels.
The average value of SAM of all spatial pixels is presented in
the last row of Table II. We can see that the DMD reconstruction
method has the smallest SAM value. Also, SAM versus the index
of pixel is plotted in Fig. 9. It can be easily seen that the SAM
value obtained from DMD is smaller than that obtained from
the SVD approach. Hence, due to the larger PSNR or small
SAM of the DMD approach, we can conclude that the proposed
DMD-based framework outperforms the SVD-based one on the
reconstruction accuracy of HSIs.

B. Example 2: ROSIS Hyperspectral Data

In this case, we analyze the HSIs data obtained by the ROSIS
sensor for further validation. Herein, we use the scene of the
Pavia University [60]. A total of 103 EM bands are used in
this observation. The spatial dimension is 610× 340, and the
geometric resolution is 1.3 m, where the corresponding tensor
has the size of 610× 340× 130.

Fig. 10 shows the reconstruction result obtained from the
DMD method. The εDMD is set to 1 × 10−4. Obviously, the
reconstructed images at band #50 and #100 have a good agree-
ment with the original ones. Besides, the corresponding resid-
ual spatial distribution is plotted in the last column. We can
see that the error between the reconstruction and the original

Fig. 10. Gray images of ROSIS hyperspectral data with the index of (a) 50
and (b) 100 EM bands. The first column of each subgraph, from left to right,
is the original visual image, the reconstructed results obtained DMD, and the
residual spatial distribution.

images is tiny. Moreover, the obtained spectral distributions are
shown to illustrate the effectiveness of the proposed approach.
Specifically, six pixels are randomly chosen. Their normalized
amplitude distribution versus the index of EM bands is plotted
in Fig. 11. It can be seen that the spectral distribution of hy-
perspectral pixels obtained from the DMD method shows high
consistency with the original ones. Hence, the DMD method can
satisfactorily describe the spectral distribution of HSIs.

To further validate the proposed method, the PSNR and SAM
are also investigated in this case. Fig. 12 shows the PSNR versus
the index of EM bands. It is clear that compared with other
methods, the DMD method achieves the largest PNSR value in
most bands, so it has the best reconstruction results. Moreover,
the SAM of each pixel is calculated and plotted in Fig. 13.
Obviously, the SAM computed based on the DMD method is
generally smaller than that extracted from SVD at each pixel.
Consequently, the proposed method has better performance than
the SVD-based method, which is consistent with the conclusion
drawn from the first example. Additionally, it is worth noting
that the proposed method provides a low-rank representation
for HSIs, which could be utilized in the classification of hyper-
spectral data in the future.

For further verification, four tensor-based dimensionality re-
duction methods are analyzed using ROSIS hyperspectral data,
namely hierarchical Tucker (HT) decomposition [61], tensor-
train (TT) decomposition [62], HOSVD, and the proposed
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Fig. 11. Normalized amplitude distribution versus the index of EM bands at (a) #1, (b) #1000, (c) #5000, (d) #80 000, (e) #70 000, and (f) #160 000 pixel.

Fig. 12. PSNR versus the index of EM bands with ROSIS hyperspectral data.

Fig. 13. SAM versus the index of pixels with ROSIS hyperspectral data.

Fig. 14. Comparison results. Relative error versus the compression ratio of
HT, TT, HOSVD, and CubeDMD.

CubeDMD. The comparison result is plotted in Fig. 14. Because
the same bytes are used here to represent the original data and
the reconstructed data, the compression ratio is computed by the
ratio of reconstructed data and original data. And the relative
error is defined as

Relative error =
‖Orig −Rect‖

‖Orig‖ . (38)

As shown in Fig. 14, we can see that the HOSVD and CubeDMD
offer very similar performance for low compression ratio (its
value is below 10−2). And the TT method achieves the best
performance at extremely low compression ratios, where its
value is below 10−1. For high compression ratios where its
value is larger than 10−2, the proposed CubeDMD method
outperforms other methods. Additionally, the computational
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TABLE III
COMPUTATIONAL COMPLEXITY OF EACH METHOD USED IN FIG. 14

complexity of each method is analyzed [63] and listed in Ta-
ble III. Herein, we define I = max{I1, I2, I3}, and R means
the upper bound on the ranks of these tensor decompositions
approach, namely R = max{R1, R2, R3}. Notably, compared
with HOSVD, CubeDMD needs to further solve the Ax = b
problem based on the spectral mode matrix, so the computational
complexity increases by one more cubic complexity.

V. CONCLUSION

To sum up, we demonstrated the DMD-based approach to
compress and reconstruct the HSIs. The proposed start-of-the-art
data-driven approach deals with the HSIs as a spatial-spectral
correlated real signal. It decomposes hyperspectral data into the
DMD spatial modes and corresponding spectral patterns, which
can be adopted to reconstruct the HSIs. Furthermore, according
to the natural property that hyperspectral data is a third-order
tensor, we proposed the CubeDMD method for dimensionality
reduction of the horizontal and vertical coordinates in the spatial
domain. The proposed DMD-based framework was validated via
the measured hyperspectral data at the Salinas scene and Pavia
University. Compared with the traditional SVD-based method,
although the proposed method requires more computation steps,
it can reconstruct more realistic HSIs not only in the spatial
domain but also in the spectral domain. Therefore, our article
offers a practical low-rank representation technique for HSIs.
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