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High-Precision Pixelwise SAR–Optical Image
Registration via Flow Fusion Estimation Based

on an Attention Mechanism
Qiuze Yu, Yuxuan Jiang , Wensen Zhao, and Tao Sun

Abstract—Due to the severe speckle noise and complex local de-
formation in synthetic aperture radar (SAR) images, the problem of
high-precision pixelwise registration (dense registration) between
SAR and optical images remains far from resolved. In this article,
an attention mechanism based optical flow fusion algorithm is
proposed to achieve high-precision dense SAR–optical image reg-
istration. First, two descriptors, the scale-invariant feature trans-
form (SIFT) and a descriptor based on phase congruency (PC),
are used to describe SAR and optical images to eliminate their
intensity differences. Then, a salient feature map is extracted as
a query matrix to weight the optical flow energy function. When
extracting the salient feature map, the Contour Robuste d’Ordre
Non Entier detector and the ratio of exponentially weighted av-
erages operator are used to eliminate additive and multiplicative
noise in the optical and SAR images, respectively. Finally, the
optical flow fields based on SIFT and the PC-based descriptor
are fused to compensate for registration ambiguity. Experimental
results show that our method is feasible, effective, and robust
to noise, and it enables high-precision registration under local
deformation.

Index Terms—Optical flow, pixelwise registration (dense
registration), SAR and optical, synthetic aperture radar (SAR)
image.

I. INTRODUCTION

W ITH the development of aerospace technology and mul-
tisource observations, the amounts of multiplatform,

multiband, multispectrum, and multiperiod image data available
are increasing. Remote imaging sensors include optical sensors,
synthetic aperture radar (SAR), and infrared radar, each of which
has its own advantages. As an active imaging system, SAR is
not affected by weather or time and provides high-resolution
multiview, multiband, and multipolarization images. Because
of these advantages, SAR is used in many remote sensing
applications. An optical sensor is a passive sensor that can
obtain rich grayscale and texture information, given good ground
conditions. Similarly, each type of sensor also has shortcomings.
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SAR images are complex, and the information they contain is
not as rich as that in optical images. However, optical sensors
can be blocked by clouds and cannot adapt to all-weather
applications.

Because of the complementary advantages of different sen-
sors, multisource information fusion has become an increasingly
important image processing approach that is applied in many
fields, such as change monitoring [1], image fusion [2], and
target recognition [3]. One of the core tasks in multisource fusion
applications is the high-precision registration of multisource
images (such as SAR and optical images), especially pixelwise
registration (dense registration).

Image registration [4] is the process of matching and over-
lapping two or more images acquired at different times, by
different sensors or under different conditions [5] (weather,
illumination, camera location, angle, etc.). This process is
widely used in remote sensing data analysis, computer vision,
image processing, and other fields [6]. In SAR image processing,
image registration is generally included as a preprocessing step,
and its accuracy has a great impact on subsequent applications.
Image registration techniques can be divided into sparse regis-
tration and dense registration depending on whether all pixels
are used for registration. Sparse registration is based on certain
feature points that are extracted either manually or automatically
and represented as a vector or tensor. Then, similarity calcula-
tions are performed to match these feature points between two
images. The advantage of this approach is that it significantly
reduces the computational complexity and the time required for
registration. In contrast to sparse registration, all pixels are used
in dense registration. The advantages of this approach are that
local deformations can be modeled more precisely and it yields
more accurate parameters for each pixel.

In recent years, learning-based methods have achieved suc-
cess in a variety of scenarios [7], [8]. Ma et al. [9] utilized the
visual geometry group network [10] to calculate approximate
spatial relationships. Quan et al. [11] proposed a generative
matching network to generate coupled optical and SAR images,
thereby improving the registration quality. Merkle et al. [12]
also achieved excellent results by utilizing conditional genera-
tive adversarial networks. However, an optical–SAR benchmark
with dense ground-truth correspondences is still lacking, and
this situation makes learning-based methods less feasible for
the dense optical–SAR registration task. Therefore, this article
focuses on traditional methods.
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Generally, image registration is mainly performed between
homogeneous images such as SAR images. For instance, SAR-
SIFT [13] is an algorithm developed based on the scale-invariant
feature transform (SIFT) [14] that improves the gradient defini-
tion in SIFT and has a good effect on SAR images. Moreover,
Fan et al. [15] proposed an SAR image registration method
based on SIFT, nonlinear diffusion [16], and phase congruency
(PC) [17]. This algorithm uses nonlinear diffusion to eliminate
the influence of noise in SAR images and a PC descriptor to
screen the SIFT matching results, and it achieves good results.

In recent decades, numerous researchers have begun to focus
on the registration of multisource images, such as SAR–optical
registration [18]–[22], and convincing results have been re-
ported. Li et al. [23] used the contours from an optical image
as the initial conditions and applied an active contour model to
obtain accurate contour locations in corresponding SAR images.
Suri et al. [24] proposed a solely histogram-based method to
achieve automatic registration. Huang et al. [25] used shape
context to achieve registration. Ye et al. [26] applied the his-
togram of oriented phase congruency (HOPC) descriptor to
improve the internal structure of SIFT. This approach uses the
invariant structural features in multisource images in place of
the descriptions in SIFT. Based on the concept of feedback, the
improved iterative SIFT descriptor [27] is another extension of
the SIFT framework.

In contrast, dense SAR–optical registration mainly relies on
the optical flow field [28] to describe local deformation. The
optical flow algorithm was first proposed in the field of video
processing to estimate the motion field. Because of its ability to
accurately estimate the local deformation field, it is also utilized
for image registration. In the field of dense multisource image
registration, Brigot et al. [30] proposed a local optical flow
method based on the Lucas–Kanade (LK) algorithm [29] called
GeFolki, which has a multiscale implementation and specific fil-
ters, including rank filtering, rolling guidance filtering, and local
contrast inversion. In the SIFT flow algorithm proposed by Liu
et al. [31], an entire image is described using the SIFT descriptor
to eliminate the intensity differences between heterogeneous
images. The description is optimized by means of a Markov
random field with multiscale characteristics. Xiang et al. [32]
proposed an improved SIFT flow algorithm called OS-flow. It
includes both the Horn–Schunck implementation [33] and the
LK implementation, whereas the SIFT flow utilizes only the
latter. Additionally, it abandons the SIFT descriptor and uses
the gradient location and orientation histogram (GLOH) descrip-
tor [34] instead. The above methods utilize feature descriptors
to eliminate the intensity differences between heterogeneous
images and a multidimensional feature vector in place of the
original gray value. For denoising, OS-flow uses a ratio operator
to remove the multiplicative noise in SAR images, while GeFolki
uses its own specific filters.

This article focuses on dense SAR–optical image registration
with the ability to estimate the local deformation field, for which
three challenges must be addressed. 1) Some salient edges may
be distorted during optical flow estimation. 2) The multiplicative
noise in SAR images needs to be considered. 3) There are
obvious intensity differences between SAR and optical images.

To overcome these challenges, a novel algorithm for dense
SAR–optical image registration based on an attention mecha-
nism [35] and the optical flow field is proposed. The purpose of
an attention mechanism is to highlight specific image regions.
In this article, we propose a novel method of calculating and ap-
plying attention such that some salient edges can be maintained
while reducing distortion. This method requires a corresponding
query matrix that is assigned based on a proposed saliency map,
which is extracted from structural information and is robust to
noise. Moreover, SIFT and a proposed descriptor based on PC
are applied to eliminate the intensity differences between SAR
and optical images because these descriptors are both able to
map the intensity to a modality-independent and discriminative
vector form. SIFT, which considers the gradient histograms in
local regions, is widely applied in image registration. PC can be
used to model edges by means of a phase-based energy func-
tion, and this approach focuses more on single pixels and also
achieves excellent results. To mitigate the potential detrimental
impacts of the domain description property of SIFT, a fusion
method is adopted.

The contributions of this article are summarized as follows.
1) A novel saliency map extraction method is proposed to

obtain salient structural information.
2) For optical flow estimation, an attention calculation and

application method is proposed with the aim of preserving
salient edges.

3) A new descriptor based on PC is proposed, which is
applied to mitigate the detrimental impacts of the domain
description property of SIFT by fusing optical flow fields.

II. METHODOLOGY

In this section, feature maps that aim to eliminate the intensity
differences between SAR and optical images are constructed via
SIFT and a proposed PC-based descriptor. Then, a salient feature
map is extracted by refining the edge structural information. For
this calculation, a filter based on fuzzy theory is proposed and
applied. Next, the optical field is estimated using an attention
mechanism, and our proposed method of attention calculation
and application is described. Finally, we fuse the optical flow
fields to obtain a robust result. A flowchart of the proposed
algorithm, which consists of all of the steps above, is shown
in Fig. 1.

A. Feature Map Construction Based on SIFT and a PC-Based
Descriptor

SIFT is the most widely used feature extraction technique in
image registration because it is invariant with respect to scale,
rotation, and illumination changes. The process of SIFT can be
divided into three steps: detection of feature points, description
of feature vectors, and identification of matching points by com-
paring feature vectors. In this article, only the feature description
step is addressed. For each pixel in an image, its neighborhood
(e.g., 16× 16) is divided into an array of 4× 4 units, the possible
directions are quantized into 8 units, and finally, a 4 × 4 × 8 =
128-D vector is obtained as the SIFT representation of the pixel.
As a result of this calculation process, the structural information
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Fig. 1. Flowchart of the proposed algorithm.

Fig. 2. Domain description property of SIFT, which introduces twist into the
optical flow optimization algorithm.

contained in the resulting SIFT representation corresponds not
only to a single pixel but also to the region around it. This is the
domain description property of SIFT, which introduces twist
into the optical flow optimization algorithm. Fig. 2 illustrates
this.

PC [17] is a feature detection model based on the postulate
that the feature points of an image occur in locations where the
Fourier phase information is highly consistent. The expression
for PC is as follows:

PC2D(x) =

∑
j Eθj (x)∑

j

∑
n An,θj(x)+ε

(1)

Fig. 3. Our proposed PC-based descriptor.

An,θj (x) =
√

en,θj (x)
2 + on,θj (x)

2 (2)

En,θj (x) =
√

Fn,θj (x)
2 +Hn,θj (x)

2 (3)

Fn,θj (x) =
∑

n
en,θj (x), Hn,θj (x) =

∑
n
on,θj (x). (4)

Here, en(x) is the even-symmetric log Gabor wavelet filter
response (real part), and on(x) is the odd-symmetric filter re-
sponse (imaginary part).

PC can be calculated in multiple directions. Based on this
fact, we propose a descriptor that can better characterize a single
pixel than the SIFT descriptor can. We take π/6 as the unit and
compute PC in six directions, and the gray values of the image
in each direction are taken as the elements of the feature vector.
Finally, we obtain a 6-D vector. Fig. 3 illustrates this process.

Due to the underlying principle of PC, the proposed descriptor
yields a stronger description of a single pixel and a weaker
description of the surrounding region. Consequently, it plays
a limited role in capturing relatively large-scale deformations
but can preserve edges well. Kovesi [17] constructed a model
of additive noise and removed the additive noise by subtracting
the noise term from the energy function. However, in actual
operations, we have found that although this step can eliminate
noise, it also eliminates a large amount of useful information
that is very important for optical flow estimation. Therefore, we
retain the original result and instead perform denoising using a
salient feature map.

B. Computation of the Salient Feature Map Based on Adaptive
Edge Extraction

In the process of image registration using the SIFT flow
algorithm, edge distortion often occurs, as shown in Fig. 4.
This phenomenon is common in dense registration using optical
flow optimization and descriptors with the domain description
property, such as SIFT. Such an optimization algorithm treats
blurred regions and salient regions equally. Moreover, the feature
descriptions of adjacent pixels will be similar when a descriptor
with the domain description property is used.
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Fig. 4. Excessively twisted result caused by dense registration. (a) Original
SAR image. (b) Result of SIFT flow. (c) Image patches. The upper patch is cut
from (a), and the lower patch is cut from (b).

To preserve obvious edge information, a salient feature map
that captures the edge structural features in both the SAR and
optical images can be utilized. In this article, the Contour Ro-
buste d’Ordre Non Entier (CRONE) detector [36] is used to
extract edges from optical images, and the ratio of exponentially
weighted averages (ROEWA) operator is used to extract edges
from SAR images. The extracted edges are then superimposed
and denoised to obtain the final salient feature map.

1) Edge Structural Features of an Optical Image Based on the
CRONE Detector: The CRONE detector is a fractional calculus
mask operator. Compared with the integer differential approach,
the fractional differential approach can be used to extract edge
information from an image while also retaining the weak edge
information of smooth regions. In CRONE, a derivative order
between 1 and 2 is favorable for detection selectivity. The
horizontal and vertical components of the mask are calculated
as follows:

Xmask = [−am, . . . ,−a2,−a1, 0,+a1,+a2, · · · + am] (5)

Ymask = [−am, . . . ,−a2,−a1, 0,+a1,+a2, · · · + am]T . (6)

Here, ak is a real binomial coefficient, where n is the order
of the derivative

ak = (−1)k
(
n

k

)
= (−1)k

n!

k!(n− k)!
. (7)

After the edges have been calculated using the CRONE oper-
ator, many messy lines can be observed. These lines are mean-
ingless and need to be filtered out. However, merely performing
another edge extraction step has little effect on the extracted
information. Therefore, further filtering, such as filtering for
connected components, needs to be performed based on the
spatial information of the pixels themselves. Since the usefulness
of a connected component is a fuzzy concept, we imitate the
If–Then statements used in fuzzy theory. The rules are given as
follows:

Ifsize ≤ μ1, Then component = noise (8)

If(size > μ1) ∧ (size ≤ μ2),

Thencomponent = weak edge (9)

Ifsize > μ2, Then component = edge.
(10)

Fig. 5. Optical image (first row), SAR image (second row), and the saliency
maps (third row) corresponding to different connected component sizes.

Fig. 6. Connected component filtering. (a–c) Before filtering, (a) CRONE,
(b) ROEWA, and saliency map. (d–f) After filtering, (d) CRONE, (e) ROEWA,
and (f) saliency map.

Here, size refers to the number of pixels that the component
contains, and μ1 and μ2 are artificially specified thresholds.
Based on our experience, μ1 is set to 3, and μ2 is set to 20.
The performance of this connected component filtering method
is illustrated in Figs. 5 and 6.

2) Edge Structural Features of an SAR Image Based on the
ROEWA Operator: Due to the speckle nature of the noise in SAR
images, a ratio operator such as ROEWA, which is an improved
variant of the ratio of averages operator based on a multiedge
model, is generally used for SAR image denoising

ux1(x, y) = f1(x) ∗ (f(y) · Z(x, y)) (11)

ux2(x, y) = f2(x) ∗ (f(y) · Z(x, y)) (12)
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f(y) =
1

(1 + b)
f1(y) +

b

(1 + b)
f2(y + 1) (13)

f2−D(x, y) = f(x)f(y). (14)

Here, f1 and f2 are causal and anticausal filters, respectively.
More details can be found in [37].

3) Salient Feature Map: After edge extraction, template
matching [38], [39] is performed to obtain the global displace-
ment, and overlapping parts are retained. In brief, the results need
to be filtered using an algorithm described based on fuzzy theory.
In this way, the salient edges in the optical and SAR images are
identified, and the result is called the salient feature map, which
can be regarded as a supporting tool for image registration.

C. Flow Fusion Estimation Using an Attention Mechanism

1) Energy Function and Attention Mechanism: Optical flow
refers to the instantaneous velocity of a spatially moving object
as represented by pixel motion in an image. In the optical
flow method, the optical flow vector is calculated by using
changes in the pixel scale and the corresponding relationships
between the previous and current frames. There are two basic
assumptions [40]–[44].

1) Constant brightness. When the same target moves between
different frames, its brightness does not change. This
assumption can be written as follows:

I(x, y, t) = I(x+ u, y + v, t+ 1). (15)

Here, I(x, y, t) is the intensity of pixel (x, y), t is the time,
and u and v represent the flows in the x-direction and
the y-direction, respectively. Through first-order Taylor
expansion, formula (16) can be simplified to formula (17)

I(x, y, t) = I(x, y, t) + u
∂I

∂x
+ v

∂I

∂y
+ 1

∂I

∂t
(16)

u
∂I

∂x
+ v

∂I

∂y
+ 1

∂I

∂t
= 0. (17)

2) Small displacement. The displacement between adjacent
frames is assumed to be relatively small.

The energy function of the optical flow method is generally
divided into a data term Eterm and a space term Espace, which
satisfy assumptions (1) and (2), respectively

E(u, v) = Eterm + Espace (18)

Eterm =
∑
p

min(||s1(p)− s2(p+ w(p))||1, t) (19)

Espace =
∑
p

η(|u(p)|+ |v(p)|) +
∑

(p,q)∈ε
[min(α|u(p)

− u(q)|, d) + min(α|v(p)− v(q)|, d)]. (20)

Here, p and q refer to the grid coordinates of the previous and
current frames. The optical flow method was first used in video
processing. For image registration, the real image is treated as
the previous frame, while the reference image is treated as the
current frame. Instead of the gray value, s1 and s2 are used,

Fig. 7. Optical flow estimation using an attention mechanism. The saliency
map is used as the query matrix.

referring to the feature spaces of the real and reference images,
respectively, to address the problem of intensity differences.

All pixels are considered in the computation. However, it is
clearly unreasonable to treat salient regions and uninteresting
regions equally; the former contains more useful information
than the latter and should, therefore, receive more attention.
Accordingly, we use the salient feature map and the attention
mechanism to accomplish this

Attention(Q,K, V ) = W (Q,K) · V (21)

W (Q,K) = λ · step(Q ∧K). (22)

An attention function can be described as mapping a query Q
and a set of key–value pairs K-V to an output. In this article, Q
is the salient feature map, K is the matrix of grid coordinates,
V is the Eterm part of the energy function, and λ is a ratio. Thus,
the energy function is modified as follows:

E(u, v)=
∑
p

min(W (p) · ||s1(p)−s2(p+w(p))||1, t)+Espace.

(23)
In this way, edge integrity can be maintained during optimiza-

tion. Fig. 7 illustrates the main steps of optical flow estimation
using the attention mechanism. The saliency map is used as the
query matrix, and the optimization method is dual-layer loop
belief propagation based on a Markov field.

2) Flow Fusion Estimation: The optical flow as described by
SIFT can appropriately capture relatively large displacements
because of its domain description property, while the PC-based
descriptor focuses more on single pixels. The domain description
property of the former will tend to cause distortion, and the
latter has a weak ability to capture relatively large displacements.
Therefore, we fuse these complementary approaches to obtain
better results [45].

The image is first divided into several regions. Then, a region
in the optical flow field of the PC-based descriptor (fieldp) is
copied into the corresponding region in the optical flow field of
SIFT (fields), and E(u, v) is calculated again. The change is
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Algorithm 1: Fusion of the Optical Flow Fields of SIFT and
the PC-Based Descriptor.

Input: the optical flow fields of SIFT and the PC-based
descriptor

Output:the fused field
1: Generate a region set X related to fieldp
2: Initialize xcur as a random region from X
3: while traversing X do
4: fieldfusion = xcur → fields
5: if Efusion < Eorigin then
6: fields = fieldfusion

7: end if
8: xcur = another region
9: end while

10: fieldfusion = fields
11:
12: return fieldfusion

TABLE I
DATASET DESCRIPTION

maintained if E(u, v) decreases relative to the original value.
This process is iterated until all regions have been traversed.
Additional details are illustrated in the pseudocode given in
Algorithm 1.

III. EXPERIMENTAL RESULTS

In this section, we present an experimental analysis of our
work. The discussion is separated into four topics: the dataset
used, the parameter settings applied, the evaluation metrics
calculated, and the results obtained. The algorithms considered
for comparison are the most advanced or most well-established
methods in dense SAR–optical image registration from recent
years: GeFolki, SIFT flow, and OS-flow.

A. Dataset Description

Ten groups of image data, including suburban, field, airport,
port and city categories, were prepared to verify the algorithm
performance, as shown in Table I. These data come from Shang-
hai. Each data group consists of a SAR–optical image pair. The
SAR image data were obtained from GF-3, while the optical
image data were taken from the Google Earth dataset. Fig. 8
shows the first and sixth image pairs.

Fig. 8. Dataset description. (a) Optical image in the first pair. (b) SAR image
in the first pair. (c) Optical image in the sixth pair. (d) SAR image in the sixth
pair.

B. Parameter Settings

Many parameters are involved in our algorithm. For CRONE,
the derivative order n was set to 1.5, and the template length
2 m+ 1 was 7. For our filter based on fuzzy theory, u1 was set
to 3, and u2 was set to 20. For the attention mechanism, λ was
set to 0.1. For optical flow field fusion, the optical flow fields
were each divided into 256 blocks, and the scale-space level in
the bpflow optimization algorithm was set to 2.

Because of the difficulty of dense SAR–optical image reg-
istration, the number of algorithms available for comparison is
limited. SIFT flow is a classical algorithm, while OS-flow is an
improved version of SIFT flow. We set the relevant parameters
of these algorithms based on the default code. GeFolki can also
achieve good results in dense SAR–optical image registration.
We set the relevant parameters of this algorithm in accordance
with the literature. During the experiment, the same images were
used; so the variables could be strictly controlled.

In addition, the reference and real images need to be specified.
Due to their different imaging mechanisms, optical images have
smaller and more controllable local deformations, whereas the
local deformations in SAR images are seriously affected by the
terrain and other factors. Therefore, the optical image in each
pair was used as the reference image, and the SAR image was
used as the real image.

C. Evaluation Metrics

Due to the differences between SAR and optical images, the
traditional evaluation metrics used for the optical flow method
are not suitable. Moreover, because the real values of a remote
sensing image cannot be obtained, it is impossible to obtain
the real residual image. The global parameters can be de-
scribed by means of scattering and mapping transformations, but
expressing the local deformations using the same functional
form is difficult. Therefore, based on previous SAR–optical
image registration studies, multiple pairs of truth points were
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Fig. 9. Suburban image. (a) GeFolki. (b) OS-flow. (c) SAR image. (d) SIFT flow. (e) Our method. (f) White-framed region. (f1) Optical image. (f2) SAR image.
(f3) GeFolki. (f4) OS-flow. (f5) SIFT flow. (f6) Our method.

simulated to evaluate the error, and the root mean square
error (RMSE) and the error statistics of the matched inliers
(ESMI) [46] were taken as the evaluation metrics.

The RMSE is usually expressed by the following formula:

RMSE =

√√√√ 1

m

m∑
i=1

[(xi − x̂i)2 + (yi − ŷi)2]. (24)

The ESMI is the variance of the matching error of the matched
inliers, which is defined as follows:

E[Δxi] =
1

m

m∑
i=1

(xi − x̂i) (25)

E[Δyi] =
1

m

m∑
i=1

(yi − ŷi) (26)

D[Δxi] =
1

m

m∑
i=1

[(xi − x̂i)− E[xi − x̂i]]
2 (27)

D[Δyi] =
1

m

m∑
i=1

[(yi − ŷi)− E[yi − ŷi]]
2. (28)

D. Results

In this section, we present the experimental performance of
our algorithm, which solves the problem introduced at the begin-
ning of this article and reduces the influence of excessive twist to
improve the registration quality. Six image pairs (IDs 1, 2, 3, 4,
6, and 7), which represent different types of topography, are se-
lected for specific analysis. Finally, the experimental results are
given. We evaluate the registration performance by comparing
our proposed algorithm with three existing algorithms, namely,
GeFolki, SIFT flow, and OS-flow, which are all state-of-the-art
methods in the field of dense SAR–optical image registration.
All experiments were conducted on a computer with an Intel
Core i3-6100 CPU.

Fig. 9 shows the suburban image pair (image ID 1). Cities
and villages are mixed in the depicted region. In addition to the
main roads, there are many winding field trails, which can easily
interfere with the registration process. Some houses on farmland
cannot be observed in the SAR image, and the amount of detailed
information in the optical image is obviously greater than that in
the SAR image. The color differences between the SAR image
and the optical image are also significant. Farmland and houses
are dark in the SAR image, but they can be easily observed in the
optical image. In panel (f) of Fig. 9, the road is well registered
by GeFolki, OS-flow, and our algorithm, but there is a large
twist in the SIFT flow result due to ambiguous pixel correspon-
dences. In contrast, OS-flow uses GLOH descriptions instead
of SIFT. Depending on the intensity ordering within a local
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Fig. 10. Airport image. (a) GeFolki. (b) OS-flow. (c) SAR image. (d) SIFT flow. (e) Our method. (f) White-framed region. (f1) Optical image. (f2) SAR image.
(f3) GeFolki. (f4) OS-flow. (f5) SIFT flow. (f6) Our method.

neighborhood, the rank filter in GeFolki can highly compress
the signal dynamics, leading to performance enhancements.
Meanwhile, our algorithm can easily extract the trunk road.

Fig. 10 shows the airport image pair (image ID 2). The sea
surface lies in the upper right corner, which is blank in both the
SAR and optical images. This part of the imaged region has no
structural features. There is slight distortion inside the airport in
the SAR image, which is caused by the SAR imaging mecha-
nism. Our goal is to correct this local distortion, which is a key
advantage of dense registration compared to sparse registration.
In fact, all four algorithms generally achieve this goal well, but a
problem appears in Fig. 10(f). The roads along the coastline are
not successfully registered by GeFolki, OS-flow, or SIFT flow,
although our algorithm performs well in this situation. This is a
common weakness of optical flow algorithms in dense registra-
tion: the optical flow optimization function pays more attention
to local information than global information. Consequently, the
large blank area in the upper right corner disturbs the registration
process and makes it difficult for edges near the blank area to
be properly aligned. Our algorithm overcomes this difficulty
through the introduction of the attention mechanism.

Fig. 11 shows the port image pair (image ID 3). Similar
to the airport image pair, the sea occupies a large area in the
upper right corner, which is blank in both the optical and SAR
images. However, in this case, there are ships on the sea surface.
Due to the different image acquisition times, the positions and
styles of the ships that appear in the SAR and optical images

are different. Hence, these are obvious noise points for the
registration process. In addition, there is considerable noise in
the port container area, which appears as obvious blurriness.
Such noisy areas usually lead to very poor results because the
optical flow energy function treats all points equally. If the
antinoise ability is not good, such areas will twist the result. As
seen in Fig. 11(f), our attention-based optical flow fusion method
performs well, and the joint filter combination in GeFolki also
produces acceptable results. In contrast, the results of OS-flow
and SIFT flow are excessively twisted.

Fig. 12 shows the field image pair (image ID 4). The edges
of the farmland and the farmhouses are seriously obscured
in the SAR image, and the outlines cannot be fundamentally
distinguished. Only the roads between patches of farmland are
clear. However, in the optical image, the details of these areas are
easy to distinguish. Similar to Fig. 10, the edges near the blank
areas are difficult to align. However, our algorithm performs
well because of the introduction of the attention mechanism,
while the effects of SIFT flow, OS-flow, and GeFolki are not
satisfactory.

Fig. 13 shows the image pair depicting a city region with a
river (image ID 6), and Fig. 14 shows the city image pair without
a river (image ID 7). City areas contain both considerable
structural information and many noise points. Consequently, it
is easy to achieve good results at the global scale, but the results
at the local scale can easily be twisted. Moreover, the color
intensity trends are usually opposite between SAR and optical
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Fig. 11. Port image. (a) GeFolki. (b) OS-flow. (c) SAR image. (d) SIFT flow. (e) Our method. (f) White-framed region. (f1) Optical image. (f2) SAR image.
(f3) GeFolki. (f4) OS-flow. (f5) SIFT flow. (f6) Our method.

Fig. 12. Field image. (a) GeFolki. (b) OS-flow. (c) SAR image. (d) SIFT flow. (e) Our method. (f) White-framed region. (f1) Optical image. (f2) SAR image.
(f3) GeFolki. (f4) OS-flow. (f5) SIFT flow. (f6) Our method.
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Fig. 13. City image with river. (a) GeFolki. (b) OS-flow. (c) SAR image. (d) SIFT flow. (e) Our method. (f) White-framed region. (f1) Optical image. (f2) SAR
image. (f3) GeFolki. (f4) OS-flow. (f5) SIFT flow. (f6) Our method.

Fig. 14. City image. (a) GeFolki. (b) OS-flow. (c) SAR image. (d) SIFT flow. (e) Our method. (f) White-framed region. (f1) Optical image. (f2) SAR image.
(f3) GeFolki. (f4) OS-flow. (f5) SIFT flow. (f6) Our method.
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TABLE II
QUANTITATIVE COMPARISONS OF DIFFERENT METHODS ON TEN IMAGE PAIRS

Fig. 15. Schematic diagram of the deformation field. (a) Image before defor-
mation. (b) Image after deformation. (c) Local amplification. (d) Deformation
field. (e) Primary amplification of the deformation field. (f) Secondary amplifi-
cation of the deformation field.

images of such regions. For example, in Figs. 13(f) and 14(f), the
roads show relatively low intensities in the SAR images but high
reflectivity in the optical images. Although GeFolki and OS-flow
each have mechanisms to address such intensity differences, they
do not achieve a very good effect in these examples. In contrast,
our algorithm extracts these roads by means of its attention
mechanism and achieves good results.

Table II summarizes the experimental results for all image
data. Our proposed algorithm performs better than SIFT flow,
OS-flow, and GeFolki, with significant improvements in both
the RMSE and ESMI results, thus showing that our algorithm
is feasible and effective. Due to the introduction of the atten-
tion mechanism, several problems related to roads and edges
are solved. By combining the optical flow fields of different

descriptors, the domain description property of SIFT is compen-
sated. These changes allow our algorithm to achieve advantages
in accuracy. However, these changes also increase the computa-
tional cost. Fig. 16 presents a visual representation of Table II.
Fig. 15 shows a schematic diagram of the obtained deformation
field.

To demonstrate the robustness of the proposed method against
speckle noise, we used a multiplicative noise model to generate
simulated SAR images. We added speckle noise with different
variances to the same SAR image, and the results obtained under
different noise levels are shown in Fig. 16(j) and (k). Because
the values of the SIFT flow and GeFolki algorithms are too
large, we show only the comparison between OS-flow and our
algorithm. All experiments indicate that the proposed method
performs much better than the other methods.

IV. DISCUSSION

A. Salient Feature Map

The salient feature map plays an important role in our algo-
rithm as the Q matrix for introducing preprocessing information
into the optical flow optimization function. In this article, this
information is represented in the form of edge structural features.
Other types of image features include color features and textural
features. Because of the differences between SAR and optical
images, color features are not considered. Between textural
and edge structural features, the latter are more convenient to
use in subsequent experiments. Nevertheless, we believe that
investigating how to make use of textural features will be an
interesting topic for future work. In addition, some recent meth-
ods related to speckle noise, such as nonlocal filters [47], sparse
representation [48], and nonlinear partial differential equa-
tions [49], will be considered.
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Fig. 16. (a–i) Quantitative comparisons of different methods on ten image pairs. (a–c) Comparison of coordinate errors (Δx,Δy) in the Cartesian coordinate
system between our method (red) and OS-flow (green) (a), our method (red) and GeFolki (green) (b), and our method (red) and SIFT flow (green) (c). (d) Standard
deviation of the matching error. (e) Standard deviation of the matching error in the x-direction. (f) Standard deviation of the matching error in the y-direction.
(g) RMSE. (h) Mean of the matching error in the x-direction. (i) Mean of the matching error in the y-direction. (j–k) Quantitative comparisons at different noise
levels. (j) RMSE. (k) Standard deviation.

B. Attention Mechanism

The core question addressed in this article is how to make
use of an attention mechanism in dense registration tasks. We
apply our attention mechanism to identify and highlight salient
feature regions, which contain rich information and significantly
contribute to the registration task. On the other hand, noisy areas
often make a negative contribution. Accordingly, how to apply
an attention mechanism to noisy areas to reduce their influence
is expected to be a question worth studying.

C. Fusion Method

The purpose of fusion is to combine the advantages of two
methods while neutralizing their disadvantages to enhance the
robustness of the results. In this article, each image is divided into
square blocks, and the final optical flow field is improved through
direct block-by-block replacement of the SIFT flow field with
the PC-based flow field. Although fusion of the two flow fields
can be achieved in this way, this approach also has obvious dis-
advantages. First, the use of square blocks will result in stepwise
changes at the block edges, which may lead to discontinuities
and increase the error. Second, the direct replacement method is
rather crude.

To address the above shortcomings, two possible improve-
ments could be to adopt a Gaussian kernel instead of division

into square regions and to perform weighted fusion instead of
direct replacement. However, the feasibility and effectiveness of
these modifications require further investigation.

D. Sparse Registration and Dense Registration

The approaches to image registration can be divided into
sparse registration [26], [50]–[52] and dense registration de-
pending on whether all pixels are used. Sparse registration
produces only a set of global parameters as output, which cannot
correct local distortions but offers real-time performance. On the
other hand, dense registration aims to solve the problem of local
distortions and thus produces output in the form of the optical
flow field, but its real-time performance is poor.

In this section, our algorithm is compared with the HOPC
descriptor [26] and the rotation-invariant feature transform
(RIFT) [53], which are state-of-the-art algorithms in the field of
multisource sparse registration. The specific results are shown
in Table III. Although our algorithm yields improved RMSE
results, it takes significantly longer than the others as a conse-
quence of the algorithm design itself.

Our algorithm is fundamentally different from HOPC and
RIFT. They perform sparse registration, whereas our algorithm
performs dense registration. Both approaches have their own
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TABLE III
QUANTITATIVE COMPARISONS WITH SPARSE REGISTRATION METHODS

advantages and disadvantages, and which approach should be
chosen depends on the specific task.

E. Critical Discussion

Compared with the previous dense registration algorithms,
our algorithm has an advantage in accuracy, but its computa-
tional cost is relatively high. The attention mechanism enhances
the importance of salient features and causes them to have a
greater impact on the energy function, thereby ensuring that
salient edges can be maintained in the calculation of the optical
flow optimization function to avoid excessively twisted results.
This is also the main reason why our method is superior to
previous methods. In addition, a new descriptor based on PC is
proposed. By combining the results of this descriptor with those
of SIFT, the error caused by the domain description property
of SIFT is compensated, also contributing to the enhanced
accuracy. However, these additional steps not only improve the
accuracy but also increase the computational cost, making our
algorithm markedly slower than previous algorithms. In our
future work, we will focus on reducing the computational cost.

Moreover, our method relies too much on the saliency map.
If the edge structural information is not extracted well, then the
performance will be affected; in particular, the gradient reversal
phenomenon may occur. This is a limitation of our algorithm.
In the future, we will investigate the adoption of advanced
descriptors to address this problem.

V. CONCLUSION

In this article, we have proposed a novel method for dense
SAR–optical image registration via optical flow fusion esti-
mation based on an attention mechanism. The main idea of
the proposed method is to introduce the use of an attention
mechanism into dense registration, which distinguishes it from
previous methods. The architecture of the method is composed
of two branches: one aims to extract a salient feature map to be
used as theQmatrix to introduce preprocessing information into
the optical flow optimization function, and the other is optical
flow fusion estimation. The input consists of a SAR–optical
image pair, and the output is an optical flow field. The proposed
method outperforms previous methods by overcoming edge dis-
tortions. The method has been tested on image data representing
ten different scenarios. The results illustrate that the proposed

method exhibits good performance in dense SAR–optical image
registration.
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