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Self-Adaptive Low-Rank and Sparse Decomposition
for Hyperspectral Anomaly Detection

Qunming Wang , Jiang Zeng , Hao Wu , Jiawen Wang, and Kaipeng Sun

Abstract—Hyperspectral anomaly detection is a widely used
technique for exploring target of interest in hyperspectral images
(HSIs). In recent years, the low-rank and sparse-decomposition-
based anomaly detection model has attracted extensive attention.
However, these models suffer from two main problems. First, it is
difficult for them to completely separate the low-rank background
and the sparse anomaly. Moreover, the extracted sparse component
is inevitably contaminated by noise. Second, the incorporation of
various constraints increases the cost of selecting the optimal pa-
rameters. To solve the two key problems, we propose a self-adaptive
low-rank and sparse decomposition (SLaSD) method for hyper-
spectral anomaly detection in this article. The proposed method
decomposes the sparse (anomaly) part of the HSI through a novel
self-adaptive alternating direction method (S-ADM). The noise of
the sparse part is suppressed through a dual strategy of integrating
guided filter and the difference between the S-ADM-derived sparse
features of pixels. The performance of the proposed method is
evaluated by comparing with ten state-of-the-art methods using
six real HSIs. It is shown that the proposed SLaSD method can
produce more accurate detection results than the ten benchmark
methods.

Index Terms—Anomaly detection, hyperspectral images (HSIs),
low-rank and sparse decomposition, noise suppression, self-
adaptive.

I. INTRODUCTION

HYPERSPECTRAL remote sensing is an important tech-
nology for acquiring land surface information [1]. Com-

pared with the images obtained by other platforms, hyperspectral
image (HSI) has the characteristics of high spectral resolution,
which can obtain nearly continuous spectral curves of ground
objects [2]. Therefore, HSI has unique advantages in many
application fields, such as in abnormal target detection [3], [4],
spectral unmixing [5], [6], land cover mapping [7], [8], and
change detection [9], [10].

Anomalous target detection is an important application field
for HSI. In practical applications, it can be divided into two
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types: target detection and anomaly detection according to
whether there is prior information available. The former is a
target matching recognition technique, whereas the latter is
an abnormal target identification technique [11]. In contrast
to target detection, anomaly detection does not require any
prior knowledge on the target or the background, which focuses
on detecting targets with abnormal features (usually in terms
of spectral signatures) that are different from the surrounding
background. Generally, anomalies are assumed to have more
distinguishable characteristics, such as small spatial size, low
occurrence probability, and discrete distribution. For situations
where it is difficult to obtain prior information (e.g., spectra of
targets, especially for those at subpixel-level), anomaly detec-
tion has an irreplaceable role. Therefore, HSI-based anomaly
detection has important values in a number of scenarios, such
as in mineral exploration [12], national security supervision
(military aircraft detection) [13], and small-sized crop detection
[14]. In recent decades, with the continuous development of
hyperspectral remote sensing technology, an increasing number
of anomaly detection methods have been proposed [15], which
can mainly be grouped into two types: statistics-based and
representation-based.

The statistics-based detection methods obey specific statisti-
cal distribution assumptions. This type of methods determines
whether a pixel is abnormal by calculating the likelihood ratio
test value of the pixel. Reed–Xiaoli (RX) proposed in [16]
has been regarded as a typical method of this type. The RX
method is undertaken based on the premise that the background
obeys the multivariate normal distribution. Specifically, it cal-
culates the Mahalanobis distance between the tested pixel and
the background pixel to obtain the likelihood ratio test value,
and then generates the probability abundance map of detection.
There are two main versions of RX: the RX detector (RXD)
and the local RXD (LRXD). The difference between them lies
in the way the background pixels are selected. The former uses
the global image to calculate the average value and covariance
matrix, whereas the latter uses a sliding dual window to calculate
the average value and covariance matrix. In [17] and [18], the
local kernel RX and local cluster kernel RXDs were proposed
to project the original HSI into a nonlinear high-dimensional
subspace. In addition, some other variants based on the RX
method were proposed in [19]–[22]. Meanwhile, some other
methods based on different statistical models have also been
developed, such as the blocked adaptive computationally effi-
cient outlier nominators [23], the discriminative metric learning
based anomaly detector [24], and the probabilistic anomaly
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detector [25]. Generally, the aforementioned statistics-based
methods suffer from two main problems. The first is that they
involve the inverse computation of the covariance matrix, and
the covariance matrix was susceptible to anomalies and noises,
which may result in ill-conditioned matrix problems. The second
problem is that heterogeneous and complex backgrounds of HSI
are ubiquitous, and thus, it is difficult for the background or
anomaly to obey the premise of a certain statistical distribution.
Therefore, the statistics-based detection methods are sensitive to
image quality, whose performances can be compromised when
the background is complex.

The second type of methods is representation-model-based,
which can further be divided into two main classes. The first
class assumes that each background pixel can be represented by
a background dictionary, whereas the anomaly pixel cannot. Two
common examples are the collaborative representation-based
detector (CRD) and kernel CRD (KCRD) proposed in [26].
They are performed based on a sliding dual-window strategy,
which selects pixels between the inner and outer windows to
constitute the background dictionary. Furthermore, in contrast
to the linear representation strategy in CRD, KCRD projects
the representation process to a higher dimensional subspace.
Different from CRD, a local sparsity divergence-based detector
(LSD) was proposed in [27], which considers additionally local
sparse and spatial constraints. In [28], the background joint
sparse representation detector reconstructs a robust background
dictionary by extracting background endmembers from the
abundant background information.

The other class of representation-model-based method is
the low-rank and sparse-decomposition-based method, which
assumes that the background could be projected to a low-
dimensional subspace, whereas the anomaly is usually sparsely
distributed in the entire image. That is, the background has
low-rank characteristics and the anomaly has sparse charac-
teristics. The low-rank and sparse decomposition theory was
first used in the field of computer vision, such as in video
monitoring, image denoising, and deshading [29]. In recent
years, a series of low-rank and sparse-decomposition-based
anomaly detection methods has been proposed. For example,
in [30], a robust principal component analysis (RPCA) method
that uses singular value decomposition (SVD) to construct the
low-rank and sparse-decomposition-based model was developed
for hyperspectral anomaly detection. In [31], [32], a spectral
unmixing and dictionary-based low-rank method was proposed,
which considers the use of abundance vectors for low-rank
representation. In [33], [34], the low-rank and sparse matrix
decomposition-based (LRaSMD) method and the LRaSMD-
based Mahalanobis distance (LSMAD) method apply the Go-
decomposition (GoDec) algorithm to implement low-rank and
sparse decomposition. Different from LRaSMD, LSMAD em-
ploys the bilateral random projection and Mahalanobis distance
strategies, which increases the iterative convergence speed and
enhances the ability in background suppression. In addition to
the enthusiasm for building low-rank and sparse models, dictio-
nary construction has also been a prevalent choice. For example,
in [35], to reconstruct a background dictionary, the k-means
method was used to cluster the original images into K classes and

to select reliable background atoms according to the difference
between the spectra of pixels. In [36], a dual mean-shift-cluster
method was proposed instead, which filters out the possible
abnormal pixels by two asynchronous long shift clusters and
then uses the pixel nearest to the cluster center to construct the
background dictionary. Generally, different HSIs have differ-
ent spatial distribution characteristics. Thus, it has also been
a widespread research concern to add geospatial constraints
to enhance the reliability of the low-rank and sparse model.
For example, in [37], a graph and total variation regularized
low-rank representation method was proposed. Compared with
the traditional low-rank and sparse method, it includes a spatial
constraint for expressing the surface geometric relationship.
In [38], local spatial constraints and total variation were also
applied to anomaly detection.

Recently, deep-learning-based methods have also been devel-
oped for hyperspectral anomaly detection. These methods are
a vital complement to the statistics-based and representation-
based methods. For example, in [39], a generative adversarial
network (GAN) was used to reconstruct the background, and a
statistical method called RXD was used for detection based on
the background reconstructed by GAN. The method in [40] uses
an adversarial autoencoder for background endmember learning
and uses a multiconstrained representation method to complete
detection. In [41], the proposed method uses a convolutional
neural network to reconstruct anomaly features. Generally, the
deep-learning-based strategies can effectively explore feature
information in HSI, and thus, have potential to enhance the
ability to separate anomalies and backgrounds. However, deep-
learning-based methods have to prepare train datasets (usually
for background) before detection and the training process al-
ways involves laborious parameter tunning, which are signifi-
cantly different from statistics-based and representation-based
methods.

The low-rank and sparse-decomposition-based methods have
shown their advantages in anomaly detection (e.g., lower false
alarms) over the statistics-based methods in some cases, espe-
cially when the background in the image is relatively complex.
However, the low-rank and sparse-decomposition-based model
also has two limitations. First, when some of the background
classes appear with a very small probability in the image,
they may show sparseness. In addition, the sparse component
decomposed by the model inevitably contains noise, this is,
inherent uncertainty in background suppression. Actually, in real
applications of anomaly detection, the background suppression
ability is an important consideration for detection performance
[42]. Second, since different types of geospatial constraints are
considered in the model, the computing cost of the model is
increased and the added parameters also increase the uncertainty
of the model, both of which restrict its ability in practical
applications.

To deal with the aforementioned problems, this article
proposes a self-adaptive low-rank and sparse decomposition
(SLaSD) detector for hyperspectral anomaly detection. This
method is also based on the assumption that the background and
anomaly obeys low-rank and sparse characteristics, respectively.
Specifically, the original image is decomposed into two parts:
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Fig. 1. Schematic of the proposed SLaSD-based anomaly detection method.

low-rank background and sparse anomaly. In contrast to tradi-
tional models based on low-rank and sparse decomposition, the
proposed SLaSD detector reduces the dimensionality of HSI to
a relatively lower dimension for eliminating data redundancy.
Moreover, a novel self-adaptive alternating direction method
(S-ADM) is developed to obtain the sparse component. Mean-
while, a dual strategy of integrating guided filter [43] and the
difference between the spectra (composed of S-ADM-derived
sparse feature in each band) of pixels is proposed to solve the
problem that the sparse component is inevitably contaminated
by the background and noise. The main contributions of this
article are summarized as follows.

1) Spectral dimensionality reduction is considered in the
proposed SLaSD detector. SLaSD not only reduces the
amount of data involved in calculation, but also maintains
the geospatial structure of the original HSI data in the
calculation process. This is different from traditional low-
rank and sparse-decomposition-based model that converts
the original three-dimensional data into two-dimensional
data for processing, which ignores the spatial structure
of HSI and also increases the computation cost in matrix
calculation.

2) A self-adaptive alternating iterative optimization strategy
is proposed to fully explore the sparse features obtained by
decomposition of the low-dimensional data. This can help
to make fuller use of the available information presented in
low-dimensional data, which suffer inevitable information
loss relative to original HSI.

3) For the issue of contamination (noise and background)
in the sparse component obtained by decomposition, the
dual strategy of integrating guided filter and the difference
between the sparse features of pixels is proposed to en-
hance the suppression in the background and, moreover,

the generalizability for dealing with data with complex
texture.

The rest of this article is organized as follows. Section II
provides a detailed description of the proposed SLaSD detector.
In Section III, the experimental results based on six HSI datasets
are described and analyzed, including the comparison with ten
widely used benchmark methods. Section IV discusses several
key issues. Finally, Section V concludes this article.

II. METHODS

The proposed SLaSD detector is mainly composed of three
steps. First, the high-dimensional HSI data are reduced into
low-dimensional HSI data by dimensionality reduction. Second,
based on the assumption that the background has low-rank char-
acteristics and the anomaly has sparse characteristics, the aug-
mented Lagrange multiplier (ALM) model is used to construct
the functional model of low-rank and sparse decomposition.
The sparse component in the functional model is solved by the
proposed S-ADM solution. Third, the dual strategy of integrating
guided filter and the difference between the S-ADM-derived
sparse features of pixels is applied to obtain the final anomaly
detection map. A schematic of the proposed SLaSD detector is
shown in Fig. 1. The details are described as follows.

A. Dimensionality Reduction

Due to the high spectral resolution of HSI, the difference
in ground features can be distinguished using a larger number
of features (i.e., by comparing continuous spectral properties).
Therefore, in the field of anomaly detection, especially in ex-
ploration and recognition of subtle targets, HSI has irreplace-
able advantages. However, the redundancy of high-dimensional
data increases the computational cost of data processing and,
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furthermore, the complexity of the detection model, which may
reduce the generalizability of the model in practical applications
[44]. Meanwhile, due to the hardware limitations of the exist-
ing hyperspectral remote sensing sensors and the interference
of the imaging environment, the acquired HSIs are inevitably
contaminated by noise. Therefore, in practical applications, it
has been a common choice to distil low-dimensional data from
the original data to simplify the calculation process and increase
the robustness to noise [45].

To cope with the computational complexity caused by data
redundancy, this article applies a commonly used band average
method [46]. Specifically, all bands of the original HSI (denoted
as X) are divided evenly into l subgroups, each of which has N
bands. The low-dimensional data are produced as follows:

Yk =

∑N
n=1 X

n
k

N
, k = 1, . . . ., l (1)

where Xn
k is the nth band in the kth subgroup of the original HSI

and Yk is the fused single-band data of the kth subgroup.

B. Sparse Feature Extraction Based on S-ADM

RPCA is a low-rank and sparse matrix decomposition model
that has been widely applied to image processing. For example,
RPCA can be used to remove noises and low signal-to-noise
ratio (SNR) shadows in the raw image [47]. It is performed based
on the assumption that the noise conforms to discretely sparse
characteristics. The raw image can be decomposed into two com-
ponents: the low-rank component and the sparse component. The
sparse component is the noise that needs to be removed, whereas
the low-rank component is the restored image. Compared with
principal component analysis (PCA), which is more suitable for
removing simple noise, RPCA has stronger image denoising
ability when the raw image is contaminated by complex noise
(e.g., an integration of different types of noises) because most
noises conform to a discretely sparse distribution.

In the field of anomaly detection, compared with other low-
rank and sparse decomposition models, the RPCA model not
only has simple structure of the constraints, but also has satisfac-
tory decomposition ability. Thus, RPCA is used for low-rank and
sparse decomposition in this article. The details are introduced
as follows.

Suppose the original HSI data M are a 3-D image cube with a
size of m× n× b, where m and n are the length and width of a
single band image, and b is the number of bands. To reduce data
redundancy and maintain the spatial structure simultaneously
in each band, the original HSI data M are reduced to the low-
dimensional data Mwith a size of m× n× l by (1), where l
is the number of bands after dimensionality reduction. This is
different from the existing schemes that transform each 2-D band
image to 1-D vector (i.e., the low-dimensional data are presented
in a 2-D matrix with a size ofmn× l) to facilitate the calculation.
Accordingly, the low-dimensional data M are characterized as
follows:

M = L+ S (2)

Fig. 2. Low-rank and sparse decomposition model for the kth band in HSI.

where L and S are the low-rank and the sparse components,
respectively, both with the same size of m× n× l. The rela-
tion between the two parts is displayed in Fig. 2. For (2), the
decomposition is transformed into the following optimization
problem:

min
Lk,Sk

rank(Lk) + λ‖Sk‖0, s.t.M = L+ S (3)

where rank(·) is the rank of Lk, ‖ · ‖0 is the sparsity of Sk,
k (k = 1, . . . , l) represents the processing of the kth band, and
λ > 0 is the penalty parameter controlling the contribution of
Sk in the optimization process. However, (3) is a nonconvex
optimization problem that cannot be solved directly. Thus, its
convex optimization is considered, which is shown as follows:

min
Lk,Sk

‖Lk‖∗ + λ‖Sk‖1, s.t.M = L+ S (4)

where ‖ · ‖∗ is the nuclear norm and ‖ · ‖1 is the l1−norm. (4)
is a convex optimization problem that can be solved directly.

To solve (4), the ALM [48] function is constructed accord-
ingly. Then, the low-dimensional data M are decomposed into
low-rank and sparse components through the proposed S-ADM
solution. The details are described as follows.

Based on ALM, the low-rank and sparse model in (4) is
transformed into the following augmented Lagrange function:

F (Lk,Sk,V)

= ‖Lk‖∗ + λ‖Sk‖1 + 〈V,J−Lk−Sk〉+ ρ

2
‖J−Lk−Sk‖2F

(5)

where V is the Lagrange multiplier matrix and ρ is the tradeoff
parameter. J is the weight optimization matrix, which is calcu-
lated using a self-adaptive scheme

J = W
ln(1+γ)−ln(1−γ)
k �Mk. (6)

In (6),� is the Hadamard product operator, Wk is the weight
matrix, which is equal to Sk−1, γ ∈ (0, 1) is a parameter, and
ln(1 + γ)− ln(1− γ) is used to expand the range of γ to
(0,+∞). As shown in (6), the extracted sparse component of the
(k-1)th band is used adaptively for the next (i.e., the kth) band,
which can be used for the self-adaptive matrix of anomalies band
by band. An example is provided in Fig. 3 for illustration for the
self-adaptive process.
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Fig. 3. Self-adaptive process for extracting the sparse component from the
bands.

For each band, the minimization problem in (5) is a convex
optimization problem. There are several unknown variables L,
S, andV, which cannot be predicted directly to obtain the global
optimal solution of F (Lk,Sk,V). Therefore, the S-ADM is
proposed to cope with this issue, which is implemented using
an alternate iteration scheme based on the defined self-adaptive
model in (6). The global minimization of F (Lk,Sk,V) is ob-
tained through the iterative descent of the variables. Specifically,
(5) is decomposed into three subproblems, which are solved as
follows.

1) The first step is to fix other variables and update L. The
prediction for L can be transformed into the following
problem:

L
(t+1)
k

= argmin
Lk

∥∥∥L(t)
k

∥∥∥
∗
+
〈
V(t),J− L

(t)
k − S

(t)
k

〉

+
ρ

2

∥∥∥J− L
(t)
k − S

(t)
k

∥∥∥
2

F
(7)

where t is the number of iterations. The subproblem in (7) can
be solved by the following:

L
(t+1)
k ← Θ1/ρ(J− S

(t)
k + ρ−1V(t)) (8)

where Θ is the singular value threshold operator and it is calcu-
lated as follows:

Θτ (Y) = UΩτ (Λ)V∗, s.t.Y = UΛV∗

Ωτ (Λ) = sgn(Λ)max(|Λ| − τ, 0). (9)

In (9), Y = UΛV∗ presents an SVD process and sgn(·) is a
symbolic function.

1) The second step is to fix other variables and update S. The
prediction for S can be transformed into the following
problem:

S
(t+1)
k

= argmin

Sk

λ

∥∥∥S(t)
k

∥∥∥
1
+
〈
V(t),J− L

(t+1)
k − S

(t)
k

〉

+
ρ

2

∥∥∥J− L
(t+1)
k − S

(t)
k

∥∥∥
2

F
. (10)

The problem in (10) can be calculated by the following:

S
(t+1)
k ← Ωλ/ρ(J− L

(t+1)
k + ρ−1V(t)) (11)

where Ω is the shrinkage operator and it is calculated by (9).
1) The third step is to fix other variables and updateV, which

is calculated as follows:

V(t+1) ← V(t) + ρ(J− L
(t+1)
k − S

(t+1)
k ). (12)

The iteration process of S-ADM is terminated when the
predefined maximum number of iterations tmaxis reached or
the convergence condition defined in (13) is satisfied

‖J−Lk−Sk‖F /‖J‖F < ε. (13)

Through the proposed S-ADM, the dimensionality reduced
HSI data M can be decomposed into the low-rank background
component L and sparse anomaly component S.

C. Background and Noise Suppression

The sparse anomaly component S does not only contain
anomaly information but also inevitable noise and background
contamination. For this situation, a dual strategy of integrating
guided filter and the difference between the S-ADM-derived
sparse features of pixels is proposed to suppress the background
and noise.

Although sporadic backgrounds exist inevitably in the S-
ADM-derived sparse anomaly component S, their features are
closer to the first-order statistics of S than sparse anomalies and
noises. Therefore, the interference of the backgrounds can be
removed by the following:

E(x,y) =
∥∥S(x,y,:) − uS

∥∥2
2

(14)

where (x, y) is the 2-D spatial location of a pixel,uS is the mean
of the S-ADM-derived sparse features for all pixels in S, and E
is the image after background suppression.

Usually,E contains a number of isolated sparse noises, which
could lead to missed detection of anomalies. The spatial size
of sparse noises is generally one pixel, which are significantly
different from the sparse anomalies (assumed to be larger than
one pixel in this article). It is important to remove these sparse
noises while retaining the spatial texture of anomalies to the
largest extent. The guided filter has shown its advantages in
preserving edges of objects in images. Therefore, in this article,
the guided filter is used to suppress the sparse noises and,
moreover, a dual strategy is proposed as follows:

D = Gf (E, δ)�E (15)

where Gf is the operator of guided filter, δ is the penalty term
of the energy constraint, and D is the final detection result.

The entire flow of the proposed SLaSD detector is summa-
rized as Algorithm 1.

III. EXPERIMENTS

Six HSI datasets were used in this section to evaluate the
effectiveness of the proposed SLaSD method. The SLaSD
method was compared with ten state-of-the-art methods, includ-
ing two statistical model-based methods (RXD, LRXD [16],
and LKRXD [17]), two representation-model-based methods
(CRD [26] and LSD [27]), three low-rank and sparse de-
composition model based methods (LRaSMD [33], LSMAD
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Algorithm 1: The SLaSD Algorithm.

Input: a) the original data: M ∈ Rm×n×b

b) parameters: l ∈ N+, γ ∈ (0, 1)
c) error threshold for termination: ε

Output: Detection map: D

1. Obtain the dimensionality reduced data:

Mm×n×b
(2)−−→Mm×n×l

2. Initialize conditions:
Set the variables L(0)

k , S(0)
k ,V(0) to zero matrix;

Set the variables W to one matrix;
Set other parameters to empirical values Tmax = 4e3,
λ = ρ = 1/

√
max(m,n) , ε = 1e− 4 and δ = 1e− 3.

3. Optimization for the ith band:
a). Obtain the adaptive weighted matrix J by Eq. (6);
b). Update the low rank matrix L

(t)
k by Eq. (8). Update

the sparse matrix S
(t)
k by Eq. (11). Update the Lagrange

multiplier V(t) by Eq. (12). The above iterations are
summarized as follows:

L
(0)
k

(11)⇒ S
(0)
k

(12)⇒ V(0)
(8)⇒L

(1)
k

(11)⇒ · · ·
(12)· · · ⇒V(t−1) (8)⇒L

(t)
k

(11)⇒ S
(t)
k

(12)⇒ V(t)

c). t← t+ 1; if t < Tmax or Eq. (13) is unsatisfied, go
to step (b).

4. k ← k + 1; repeat step 3 until k = l. Produce the final
anomaly detection map by Eqs. (14) and (15).

[34], and LRASR [35]), ADLR [32] that integrate abundance
vector and low-rank model, and LRCRD [36] that integrate a
low-rank and sparse model with a representation model.

To evaluate the performance of each method, we analyzed
visually the anomaly detection maps, the capability of separat-
ing anomaly and background, and the detection accuracy. The
anomaly-background separation capability of each method was
assessed using box-plots presenting the statistical information
of the pixel values of anomaly and background classes in the
detection map. For quantitative assessment, the receiver operat-
ing characteristic (ROC) and the corresponding area under the
curve (AUC) were used. In addition, the 3D-ROC [42] was also
considered, which represents the relationship between the dis-
crimination threshold τ , the probability of detection Pd, and the
false alarm rate Pf . The experimental platform was a computer
with a 3.6-GHz CPU, 32-GB RAM, and 64-b Windows 10. All
methods were implemented using MATLAB R2020a.

A. Datasets

For the six real HSIs, we eliminated the low SNR bands with
noise and water absorption. The details are described as follows.

1) Texas Coast Dataset: The datasets contain two HSIs
named Texas Coast 1 and Texas Coast 2, which were acquired
by the AVIRIS in 2010. The coverage areas are both located at
the Texas Coast, USA, and the spatial resolution is 17.2 m per
pixel. After excluding the low SNR bands, 204 and 207 bands
are retained for Texas Coast 1 and Texas Coast 2, respectively.

Both datasets have a spatial size of 100× 100 pixels, as shown
in Fig. 4(a) and (b), where the false-color images and references
of the anomaly maps are provided.

2) Los Angeles Dataset: The datasets contain two HSIs, that
is, Los Angeles 1 and Los Angeles 2, which were acquired by
the AVIRIS in 2010. They cover two different areas located
at Los Angeles, USA. The spatial resolution is 7.1 m, and the
wavelength interval is 0.43–0.86 μm. 205 bands are retained
after excluding the low SNR bands. Both datasets have the same
spatial size of 100× 100 pixels, as shown in Fig. 4(c) and (d).

3) Pavia Dataset: The dataset contains a HSI covering an
area in the Pavia city center in northern Italy, which was acquired
by the reflective optics system imaging spectrometer sensor.
The spatial resolution is 1.3 m. The wavelength interval is
0.43–0.86 μm. After removing the low SNR bands, 102 bands
are retained, each with a spatial size of 150× 150 pixels. The
HSI is shown in Fig. 4(e).

4) Gulfport Dataset: The dataset was acquired by the
AVIRIS in 2010. It covers an area in Gulfport, Southern, Mis-
sissippi, USA, as shown in Fig. 4(f). The spatial resolution is
3.4 m, and the wavelength interval is 0.40–2.50 μm. 191 bands
are selected out after removing the low SNR bands. The spatial
size is 100× 100 pixels.

B. Anomaly Detection Performance

To ensure the fairness of the comparison, for each benchmark
method, the results under the optimal parameter settings were
chosen after a number of tests. For the proposed SLaSD method,
the band number l = 6 was used as the empirical value and the
adaptive weight ambiguity parameter γ was selected as 0.1, 0.7,
0.2, 0.9, 0.2, and 0.1 for the six datasets (the parameter selection
of the proposed SLaSD method is detailed in Section III-C).
Fig. 5 shows the anomaly detection maps of the 11 methods for
the six HSI datasets. Generally, four points can be observed.
First, the maps of the proposed SLaSD method are the closest to
the reference compared to the other ten benchmark methods and
have a more satisfactory background suppression effect. Second,
LKRXD, LRaSMD, LRASR, and LRCRD outperform the other
six benchmark methods, but their weaker background suppres-
sion ability lead to relatively larger false alarm rate. For example,
the LRaSMD method produces bright background false alarms
in the lower left corner of the Los Angeles 2 dataset, and
LKRXD produces noticeable false alarms in the Pavia dataset.
Third, RX, CRD, and LSMAD show weaker performance than
LRaSMD, LRASR, and LRCRD. Their detection results present
a number of missed anomalies and false alarms, especially when
the background of the dataset is complex. For example, in the
Los Angeles 2 and Pavia datasets, the ability of these methods
to distinguish between anomaly and background is obviously
weaker, and the recognition of anomalies is relatively patchy.
Finally, LRX, ADLR, and LSD show the weakest detection
performance among all methods. Specifically, a large number
of anomalies are undetected by the LRX detector. The main
reason for this is that the background is over suppressed.

Fig. 6 shows the box-plots of the statistical information of
the anomaly and background in the detection maps for different
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Fig. 4. Six HSIs used in the experiments. (a) Texas Coast 1. (b) Texas Coast 2. (c) Los Angeles 1. (d) Los Angeles 2. (e) Pavia. (f) Gulfport. The first and second
rows show the false-color images of the HSIs and the references of anomaly maps.

methods. Overall, the methods show different separation effects
for different datasets. For example, the box-plot values of the
LRXD for the Texas Coast 1 dataset are very close to zero,
and the boxes of the anomaly and background present a large
amount of overlap, suggesting that the degree of separation is
limited. However, for the Texas Coast 2 dataset, the LRXD
suppresses the background to be close to zero. The anomaly and
the background overlap only a small amount, and thus, the degree
of separation is more satisfactory than that for the Texas Coast 1
dataset. Similar phenomenon can be observed for other methods.
For the proposed SLaSD method, however, the background is
suppressed to be much closer to zero for all six datasets, which
is consistent with the visual check of the detection maps in
Fig. 5, indicating that the proposed SLaSD method has su-
perior ability for background suppression than the benchmark
methods.

To comprehensively compare the detection accuracy of the
methods, Fig. 7 shows the 3D-ROC curves of (Pd, Pf , τ) and
the three derived 2D-ROC curves for each dataset. From the
2D-ROC curves of (Pd, Pf ) in Fig. 7, it can be seen that in
the Texas Coast, Los Angeles 2, and Gulfport datasets, the
proposed SLaSD method has a larger probability of detection
than the other methods under different false alarm rates. For the
Los Angeles 1 dataset, when the false alarm rate is less than
1%, LSMAD has the largest probability of detection, but the
proposed SLaSD has the largest probability of detection when
the false alarm rate is larger than 1%. From the 2D-ROC curves
of (Pd, τ) in Fig. 7, it can be seen that the ADLR method has a
larger probability of detection overall. From the 2D-ROC curves
of (Pf , τ) in Fig. 7, it can be seen that for the six datasets, the
proposed SLaSD method has a very low false alarm rate under
different thresholds τ . It should be pointed out that for the Texas
Coast 1 and Los Angeles 1 datasets, although the false alarm
rate of the LRXD method is lower than that of the proposed
SLaSD method, from the 2D-ROC curves of (Pd, Pf ) , it is seen
clearly that the probability of detection for LRXD was lower
correspondingly.

Table I shows the three AUC values derived from the three
2D-ROC curves. The three types of AUC values (i.e., (Pd, Pf )

(Pd, τ), and (Pf , τ)) reflect the overall detection accuracy,
anomaly detectability, and background suppression accuracy for
the methods. As shown in Table Ⅰ, the AUC values of (Pd, Pf ) of
the proposed SLaSD method for six datasets are 0.9994, 0.9983,
0.9969, 0.9869, 0.9837, and 0.9981, which are all larger than
those of the other methods. The AUC value of (Pf , τ) also
indicates that the SLaSD method has the greatest background
suppression accuracy overall.

Based on the detection maps, box-plots of anomaly-
background, 3D-ROC, and Table Ⅰ, we can conclude that com-
pared with the ten benchmark methods, the proposed SLaSD
method shows more reliable performance in anomaly detection
and background suppression.

C. Advantage of the Proposed Self-Adaptive Model

To show the advantage of the proposed self-adaptive model
(i.e., S-ADM) for sparse feature extraction in SLaSD, it was
compared with the classic ADM model. For the two models,
the AUC values of (Pd, Pf ) for all six datasets are shown in
Table II. It is seen clearly that the AUC values of the proposed
S-ADM model is larger than that of the classic ADM model,
suggesting that S-ADM is a more accurate solution for sparse
feature extraction.

D. Robustness to Noise

To analyze the detection performance of the proposed SLaSD
method in relation to noises, four levels of zero-mean Gaussian
noises (with SNRs of 30, 25, 20, and 15 dB) were added to the
Texas Coast 1 dataset, as shown in Fig. 8. The proposed SLaSD
and ten benchmark methods were used for detection based on
the four datasets in Fig. 8, and the results are shown in Fig. 9. It
can be seen that SLaSD, LRASR, and LRCRD were much more
robust to noise.

E. Parameter Analysis

The SLaSD method involves two main parameters: the num-
ber of bands after dimensionality reduction (denoted as l) and the
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Fig. 5. Anomaly detection maps of different methods for the six HSIs. (a) Texas Coast 1. (b) Texas Coast 2. (c) Los Angeles 1. (d) Los Angeles 2. (e) Pavia. (f)
Gulfport.
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Fig. 6. Box-plots of the statistical information of the anomaly and background in the detection maps for different methods. (a) Texas Coast 1. (b) Texas Coast 2.
(c) Los Angeles 1. (d) Los Angeles 2. (e) Pavia. (f) Gulfport.

adaptive weight γ. To analyze the sensitivity to these parameters,
in this section, the parameter l was enumerated in the region
(3, 30) with a step of 3, and the parameter γ was enumerated
in the region (0, 1) with a step of 0.1. For all six datasets,
the AUC values of (Pd, Pf ) for different combinations of l
and γ are shown in Fig. 10. Generally, the performance of
the proposed SLaSD method depends on the two parameters

to different degrees. Specifically, the first four datasets are much
less sensitive to the two parameters, but the accuracy for last two
datasets varies obviously with the variation of the parameters.
Overall, the proposed SLaSD method generally has satisfactory
detection performance when l is low, which can also reduce the
computational burden. Therefore, l ∈ (3, 12) could be suggested
as an appropriate choice for the SLaSD method in practical
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Fig. 7. 3D-ROC curves along with their three derived 2D-ROC curves for different methods. (a) Texas Coast 1. (b) Texas Coast 2. (c) Los Angeles 1. (d) Los
Angeles 2. (e) Pavia. (f) Gulfport.
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TABLE I
AUC VALUES OF THE METHODS FOR THE SIX DATASETS

The value in bold means the most accurate result in each case.

TABLE II
AUC VALUES OF THE S-ADM AND ADM MODELS FOR THE SIX DATASETS

Fig. 8. False-color images of the Texas Coast 1 dataset with different SNRs.
(a) 30 dB. (b) 25 dB. (c) 20 dB. (d) 15 dB.

applications. In this article, l = 6was used as the empirical value
for experiments. In practical applications, however, the value of
γ needs to be determined case by case.

IV. DISCUSSION

A. Dimensionality Reduction

To analyze the influence of dimensionality reduction methods
on the proposed method, two methods (i.e., the scheme of
averaging bands in the divided subspace used in this article and
PCA) were compared using the six experimental datasets. The
AUC values of (Pd, Pf ) are shown in Table III. Generally, the

Fig. 9. AUC values of (Pd, Pf ) of different methods for the Texas Coast 1
dataset with different SNRs.

TABLE III
AUC VALUES OF SLASD FOR DIFFERENT DIMENSIONALITY

REDUCTION METHODS

two dimensionality reduction methods show very similar accu-
racy. Furthermore, no matter which method is used for dimen-
sionality reduction, the proposed SLaSD method consistently
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Fig. 10. AUC of SLaSD with the change of the band number l and the weighting coefficient γ. (a) Texas Coast 1. (b) Texas Coast 2. (c) Los Angeles 1. (d) Los
Angeles 2. (e) Pavia. (f) Gulfport.

produces greater detection accuracy than the ten benchmark
methods.

B. Comparison of Computational Efficiency

The SLaSD method proposed in this article and the LRaSMD,
LSMAD, LRASR, and LRCRD methods are detection methods
based on the low-rank and sparse model, but the methods for
low-rank and sparse decomposition are different. Both LRaSMD
and LSMAD use the GoGec algorithm, but their difference
lies in the iteration process. Specifically, the LRaSMD method
uses SVD, whereas the LSMAD method uses bilateral random
projection. For LRASR and LRCRD, they use the linearized
alternating direction method with adaptive penalty (LADMAP)
for low-rank and sparse decomposition, whereas the proposed
SLaSD method uses S-ADM alternatively. Generally, the S-
ADM converges slower than LADMAP, but its advantage lies
in the robustness and the generalizability. On the other hand, the
original HSI data are reduced to lower dimensionality, and S-
ADM is used for low-rank and sparse decomposition. Therefore,
the computational cost can be reduced greatly for the proposed
SLaSD method.

To objectively compare the computational efficiency of the
methods based on low-rank and sparse models, the average
computing time of the aforementioned five methods for the
six datasets is provided. As shown in Table IV, SLaSD has
the lowest computational cost. However, considering the slow
convergence of the S-ADM process, a fast version for S-ADM

TABLE IV
AVERAGE COMPUTING TIME (IN UNITS OF SECONDS) OF DIFFERENT METHODS

FOR THE SIX DATASETS

could be investigated to further expedite the SLaSD method in
future research.

C. Model Uncertainty

Each detection method has its own advantages in practical
applications. For statistics-based methods, it is difficult for them
to satisfy the specific assumption of background distribution in
complex HSIs and they are prone to produce false background
alarms. Nevertheless, their main advantages lie in simplicity,
stability, and sensitivity to anomalies [49]. These characteristics
are important in some special application fields, especially where
missed detection is much more serious than false detection,
such as in small military target detection. On the other hand,
the principle of the representation-based methods is that the
anomaly cannot be represented by the surrounding background.
When the background presents strong homogeneity, the detec-
tion performance tends to be more satisfactory than that of the
statistics-based methods. Therefore, the representation-based
methods have been developed rapidly in recent years. However,
due to the limitations of hardware in existing remote sensing sen-
sors, it is difficult to acquire satellite remote sensing images with
both fine spatial and spectral resolution, but images with coarse
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spatial but fine spectral resolution instead. Generally, coarse
spatial resolution images tend to have strong heterogeneity [50],
and it is more difficult for them to meet the hypothesis of the
representation-based models, leading to inferior performance in
anomaly detection.

For the proposed SLaSD and the low-rank and sparse
representation-based methods, they can cope with the limita-
tions mentioned earlier to some extent, but still suffer from the
uncertainty in two points. First, sparse anomalies are difficult
to be decomposed thoroughly from the original HSI. That is,
a small number of anomalies (subpixel anomaly) are retained
in the low-rank components, leading to leak detection. Second,
when the original HSI presents strong heterogeneity, a small
amount of false alarms cannot be avoided.

V. CONCLUSION

The representation-based methods have received increasing
attention in hyperspectral anomaly detection. However, this type
of methods suffers from the problems of involving a number of
controlled parameters, slow rate of convergence, and limited
ability in background suppression. To deal with these issues and
enhance the performance for hyperspectral anomaly detection,
in this article, we proposed the SLaSD method. In the SLaSD
method, we proposed the S-ADM scheme for the low-rank
and sparse decomposition, which not only increases the iter-
ation speed and the separation between low-rank and sparse
components, but also provides a new insight for characterizing
the low-rank and sparse model. Meanwhile, to cope with the
contamination produced by the sparse noise and background
information, a strategy integrating the guided filter and the
difference between the sparse features of pixels is proposed
for more effective suppression. The experimental results on six
HSI datasets showed that the proposed SLaSD method produced
greater detection accuracy with more satisfactory background
suppression than ten state-of-the-art methods.
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