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Abstract—The nonlinear relation between the spectral informa-
tion and the corresponding objects (complex physiognomies) makes
pixelwise classification challenging for conventional methods. To
deal with nonlinearity issues in hyperspectral image classification
(HSIC), convolutional neural networks (CNN) are more suitable,
indeed. However, fixed kernel sizes make traditional CNN too
specific, neither flexible nor conducive to feature learning, thus
impacting on the classification accuracy. The convolution of differ-
ent kernel size networks may overcome this problem by capturing
more discriminating and relevant information. In light of this, the
proposed solution aims at combining the core idea of 3-D and 2-D
inception net with the attention mechanism to boost the HSIC CNN
performance in a hybrid scenario. The resulting attention-fused
hybrid network (AfNet) is based on three attention-fused parallel
hybrid subnets with different kernels in each block repeatedly using
high-level features to enhance the final ground-truth maps. In short,
AfNet is able to selectively filter out the discriminative features
critical for classification. Several tests on HSI datasets provided
competitive results for AfNet compared to state-of-the-art models.

Index Terms—Attention mechanism, convolutional neural
network (CNN), hyperspectral images classification (HSIC),
inception network.
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I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) systems based on
collections of electromagnetic spectrum, ranging from

visible to near-infrared region, reflected by the objects of
interest [1]. The images thus obtained are usually generated by
a preconfigured HSI camera installed on either mobile (e.g.,
satellites, drones, air-crafts) or static (e.g., indoor, rooms, labs)
setups depending upon the problem at hand [2]–[11]. Thereby,
HSI sensors gather a huge amount of data from hundreds of
contiguous spectral bands [12], [13].

Such big and rich HSI dataset, including the different spec-
tral bands data related by the (spatial) geo-located position,
may contain hidden information and patterns. HSI classification
(HSIC) [14], [15] aims to discover, detect, identify, and recog-
nize such patterns. However, the spectral dataset size usually
increases combinatorially with the problem size (e.g., the area,
the resolution), leading to the curse of dimensionality, and, thus,
making traditional HSIC methods inefficient [16]. To mitigate
such issues, several dimensionality reduction and feature selec-
tion techniques have been proposed [17], [18]. Conventional
feature extraction/selection methods rely on hand-crafted fea-
tures, however, due to the spatial variability of spectral informa-
tion [19], the extraction of discriminative and most informative
features is still a big challenge [20].

Hand-crafted features may be insubstantial in the case of HSI
data, therefore, it is challenging to achieve a tradeoff between
discriminability and robustness on features, which also consid-
erably differ on the different HSI datasets. Furthermore, the
process of feature design and selection is strongly affected by
the designer and architect knowledge and skills [20]–[23]. To
such a purpose, an automatic approach to hierarchically identify
the features was developed by Hinton back in 2006 [21], [24],
[25], based on a deep learning model developed in growing
semantic layers until a desirable representation is achieved.
Similarly, other models have been proposed on feature learning
and classification as well [21], [26]–[28], automatically learning
and improving the underlying system representation from the
available data without any prior knowledge. They can extract
both linear and nonlinear features, thus capable of handling HSI
data in both spatial and spectral domains [29].

In nature, HSI datasets are usually nonlinear due to the un-
desired light-scattering phenomena given by land cover objects
and particles in the atmosphere [30]. Thus rendering the use
of linear transformation or feature learning methods [31] for
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HSIC. To overcome the nonlinearity issues, convolutional neural
network (CNN) was proposed to extract both high as well
as low-level features which ultimately lead to the extraction
of abstract and invariant features [32], [33]. As a result, 2-D
CNN achieved remarkable performance but unfortunately not so
good for HSIC due to the missing channel-related information,
i.e., 2-D CNN are not able to learn spectrally discriminative
features. Unlike 2-D CNN, 3-D ones can jointly extract the
spatial–spectral information for HSIC providing higher accu-
racy than 2-D CNN [34]. However, 3-D CNN models are both
computationally and time-intensive due to the high number of
parameters involved by 3-D convolutional filters on each layer.

For instance, in [35], a spatial–spectral residual network
(SSRN) implemented a 3-D CNN residual network based on
ResNet [36]. Despite SSRN achieves remarkable classification
results, the summation method used to aggregate features at each
layer requires output feature maps to have consistent scale as the
residual feature maps. Hence each layer has self weights which
overall lead to an explosion of network parameters [30]. Thereby,
high accuracy comes at expense of the computational power, i.e.,
SSRN is more complex than traditional 3-D CNN. Similarly,
Ahmad et al.[21] proposed a fast and compact 3-D CNN (FC-
3D-CNN) model to overcome the limitations of computational
cost and reduce the number of training parameters. FC-3D-CNN
achieves better results in a computationally efficient manner than
SSRN due to the reduced spectral information used in the experi-
mental process. Recently, Roy et al. introduced trainable kernel
for dilation and erosion operation to extract more meaningful
morphological features from HSI and classify them in various
land used and land covers [37].

In general, CNN models tend to poorly perform especially
in the case of pixels of different classes but similar texture
over contiguous spectral bands [38]. To deal with that, the
authors in [18], [39], and [40] proposed hybrid models that
combine the power of 2-D and 3-D convolutional layers to
extract high and low-level features, i.e., extraction of abstract and
invariant features. The hybrid models achieve better accuracy
than state-of-the-art 2-D and 3-D CNN solutions. Despite the
high accuracy, hybrid models still require a large number of
parameters as compared to the 3-D CNN network [21] while, on
the other hand, 3-D CNN/SRNN has a longer processing time
than hybrid models. Therefore, inception models have proved
that the network topology significantly affects the complexity
and the accuracy [41]. Recently, graph convolutional network
(GCN) shows the superiority in HSIC, Hong et al. [42] pro-
posed a novel GCN in a mini-batch fashion, called miniGCN,
which solves the problem of large-scale graph computation and
learning. Apart from the complexity and accuracy tradeoff, all
the inception models have one common property, i.e., a split–
transform–merge strategy which proved to be a good strategy
for HSIC. Traditional 2-D, 3-D, hybrid, and inception models
exploit the fixed convolution kernel size, however, HSI class
distribution is complicated thus conventional CNN with fixed
kernel size is not flexible enough. Convolutions with different
spatial sizes may capture more discriminative and important
information for pixel-based HSIC.

Nowadays, an attention mechanism has been extensively used
to suppress redundant information, while extracting features
for classification. SENet [43] was the first network proposed
to suppress the redundant features by weighting channel direc-
tion features. The work [44] proposed CBAM (convolutional
block attention module) combines spatial attention with channel
attention through pooling, whereas the work [45] proposed a
NLNet which combines the convolution operations with matrix
multiplication operations to capture the long-range relationship
in the global space. A combination of SENEt and NLNet was
proposed in [46], which consists of a simplified lightweight
module GCNet for effectively extracting global context. Very
recently, a novel transformer framework was rapidly developed
and its spectral version, called SpectralFormer, was for the first
time proposed with the application to HSIC, yielding state-of-
the-art classification performance [47]. In addition, multimodal
fusion transformer (MFT) opens another direction in research
for joint hyperspectral and LiDAR classification [48].

Though, attention networks have achieved remarkable results
for HSIC based on the internal architecture of the attention
module. These works, to some extent, put attention weights in
either one or two dimensions and ignore the rest of the HSI
dimensions. For instance, single and double attention networks
were proposed in [49] and [50], in which the work [49] only
consider the spectral information and ignore the spatial infor-
mation, whereas, the work [50] was proposed to reduce the
interference between the spatial and channel information. The
work [51] was proposed to jointly explore the spectral and spatial
information, where spectral–spatial dimensions were weighted
by the spectral–spatial attention module. The combination of
attention in more or less in one or two dimensions may improve
the performance, however, it is highly recommended to integrate
all channel information for better classification.

Wang et al. [52] significantly improved the squeeze and
excitation structure attention mechanism proposed in [43], re-
ducing the model complexity by a local cross-channel inter-
action strategy without any preprocessing, i.e., dimensional
reduction. Zheng et al. [53] worked to overcome the limita-
tions of inconsistent class ratio and overparameterization using
a stratified sample-based training strategy. While the spectral
attention module was proposed to render the soft band selection
process to further refine the redundant spectrum information.
However, all these spatial or spectral attention models are to
some extent isolated in which the spatial attention ignores to
make a connection between spectral dimension, whereas the
spectral attention ignores the spatial connection and uses only
the correlation between different spectral bands.

Moreover, it has been proven fact that accuracy improves,
while increasing the depth of the model, thus requiring more
parameters and higher computational burden, which makes opti-
mization an NP-hard problem. Therefore, to overcome the afore-
said issues, this work explicitly investigates the possibilities of
combining the core idea of 2-D as well as 3-D inception models
into a hybrid attention architecture to boost the pixel-based HSIC
performance. We tested the model on several publicly available
HSI datasets, which shows competitive results compared to the



3950 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

state-of-the-art methods. Our proposed pipeline achieved an
overall accuracy of 97% for the Indian Pines dataset, 100% for
Botswana, 99% for both Pavia University, and Salinas datasets,
respectively. In a nutshell, the contributions made in this article
are summarized as follows.

1) A novel densely connected hybrid inception net is pro-
posed to enrich the spatial–spectral feature learning pro-
cess. Different from the conventional inception model
which consists of a single branch in each block, the pro-
posed densely connected hybrid blocks are composed of
parallel multiple sized filters which significantly improves
the propagation and reuse of features with less number of
tuneable parameters. Moreover, the proposed hybrid in-
ception net comprehensively utilizes features of different
scales from HSI dataset.

2) A dual-branch attention fusion block is introduced which
boosts the robustness of the discriminative network.
As compared with recently published attention blocks
for HSIC, the proposed pipeline simultaneously model
interactions across different spectral bands and spatial
regions by reweighting the significance of features. The
triple-branch attention block adaptively emphasizes the
important information and significantly suppresses the
redundant and ineffective information.

3) A hybrid spectral convolutional block is used to reduce
the required number of parameters for the HSIC model.
Moreover, the activation inducted convolutional layer can
further improve the nonlinear representation capacity of
the whole network.

The rest of the article is organized as follows. Section II
presents the pipeline proposed in this article. Section III de-
scribes the experimental settings along the metrics used to
compute the accuracies. Sections III-A–III-C exhibits the ex-
perimental datasets used to conduct the experiments and to
validate the proposed methodology. Moreover, Sections III-A–
III-C demonstrates the experimental results as compared with
the state-of-the-art methods proposed in the literature. Finally,
Section IV concludes this article.

II. PROBLEM FORMULATION

Lets assume R = [r1, r2, r3, . . ., rL]
T ∈ RL×n be the HSI

cube, where n = N ×M samples associated with C classes
and L band images. Each ri = (ri, cj) where cj be the class
associated with ri sample. In nature, ri exhibit high intraclass
variability and interclass similarity, overlapping and nested re-
gions. Therefore, HSI cube has been first divided into small
spatial patches to overcome the aforesaid issues. For each patch,
the ground truths are formed based on the central pixel of the
patch. Principle component analysis (PCA) has been used before
creating the patches which eliminate the redundancy among the
band images, i.e., L → B, where B � L.

The patching process creates neighboring patches P ∈
RS×S×B centered at the spatial location (a, b) covering S × S
spatial windows [21], [39]. The total of Z patches given by
(U − S + 1)× (V − S + 1). Thus, in total, these patches cover
the width from a+(S−1)

2 to a−(S−1)
2 and height from b+(S−1)

2

to b−(S−1)
2 [39]. The Z patches are first convolved with a

kernel function which computes the sum of the dot product
between the input patch and kernel function to introduce the
nonlinearity [21], [25], [39], [54]. The activation maps for
spatial–spectral position (x, y, z) at ith feature map and jth layer
can be represented as v(x,y,z)i,j

vx,y,zi,j = ReLu

( di−1∑
τ=1

γ∑
ρ=−γ

δ∑
φ=−δ

ν∑
λ=−ν

wρ,φ,λ
i,j,τ

× v
(x+ρ),(y+φ),(z+λ)
(i−1),τ + bi,j

)
(1)

where di−1 be the total number of feature maps at (i− 1)− th
layer, wi,j and bi,j be the depth of the kernel and bias, respec-
tively. Moreover, 2γ + 1, 2δ + 1, and 2ν + 1 be the height,
width, and depth of the kernel [21]. Similarly, 2-D modules
do the same process with 2-D input as well as the 2-D kernel
function. In both 3-D and 2-D layers, the kernel is striding over
the input to cover the whole spatial dimension. More specifically,
as the proposed model combines the power of 3-D and 2-D kernel
functions, thus, 2-D convolution V x,y

i,j represents the activation
value of ith feature map at (x, y) spatial position on jth layer and
can be formulated as vx,yi,j and finally can be formed as follows:

vx,yi,j = ReLu

( dl−1∑
τ=1

γ∑
ρ=−γ

δ∑
φ=−δ

wρ,φ
i,j,τ

× v
(x+ρ),(y+φ)
i−1,τ + bi,j

)
(2)

where 2γ + 1 and 2δ + 1 be the height and width of the kernel,
respectively. In short, the proposed hybrid attention-fused hybrid
network (AfNet) convolutional filters are as follows with the
input of 9× 9× 15. The size of 3-D filters are 3D1 = (7×
7× 9), K1

1 = 7,K2
1 = 7, K3

1 = 9, 3D2 = (5× 5× 7), K1
2 =

5,K2
2 = 5, K3

2 = 7, and 3D3 = (3× 3× 5), K1
3 = 3,K2

3 = 3
and K3

3 = 5 for each layer on each block with different number
of filters, i.e., (30, 20, 10) for first block, (40, 20, 10) for second
block and (60, 30, 10) for third block. Similarly the size of
2-D filters are 2D1 = (3× 3), K1

1 = 3,K2
1 = 3, 2D2 = (3×

3), K1
2 = 3,K2

2 = 3, and 2D3 = (1× 1), K1
3 = 1,K2

3 = 1 for
each layer on each block with different number of filters, i.e.,
(16, 32, 64) for first block, (16, 32, 64) for second block, and
(16, 32, 64) for third block. A 2-D fusion module has been used
to incorporate the information learned hierarchically at different
blocks. Finally, a 2-D convolutional layer is used with (1× 1)
kernel size with total of 128 filters to better represent the low to
high level information.

To decrease the number of spectral–spatial feature maps,
nineteen densely connected 3-D and 2-D convolutional layers
are used prior to the flatten layer to make sure the convolutional
process discriminate the spatial information, while consider-
ing different spectral bands with no loss and less number of
parameters to boost the performance [21]. The weights are
randomized initially and optimized using Adam optimizer based
on back-propagation with a soft-max loss function. Later the
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Fig. 1. Irrespective of the traditional dense connections, this work proposes
dense connections along with the attention mechanism among different inception
blocks highlighted in red dotted lines. AfNet for HSIC, where S × S be the
height and width of the patch,B refer to the number of Bands, (k11→9 × k21→9 ×
k31→9) are 3-D Conv layers and (k11→10 × k21→10) are 2-D Conv layers. The size
of 3-D filters are 3D1 = (7× 7× 9), 3D2 = (5× 5× 7), 3D3 = (3× 3×
5) with different number of filters, i.e., (30, 20, 10) for first block, (40, 20, 10)
for second block and (60, 30, 10) for third block. Similarly the size of 2-D
filters are 2D1 = (3× 3), 2D2 = (3× 3), and 2D3 = (1× 1). A 2-D fusion
module has been used to incorporate the information learned hierarchically at
different blocks. Finally, a 2-D convolutional layer is used with (1× 1) kernel
size with total of 128 filters to better represent the low to high level information.

Fig. 2. Indian Pines Dataset illustration in-terms of HSI cube and ground truth
(GT) label maps. The classification maps obtained using AfNet with overall
accuracy of 92.82 (%), 2-D inception net with overall accuracy of 94.18 (%),
and 3-D inception net with overall accuracy of 81.51 (%). (a) IP Cube. (b) GT.
(c) AfNet. (d) 2D. (e) 3D.

randomized weights are updated using a mini-batch size of 256
for 50 epochs. The overall structure of the proposed hybrid
AfNet using the Indian Pines dataset as an example is presented
in Fig. 1.

A. Dense Connections and Attention Blocks

CNN extracts different features with different characteristics
on each layer in which lower and middle layer features have
relatively high resolution and encompass more location and
detailed information. However, it may have lower semantics and
more noise due to fewer convolutional layers passing through.

Fig. 3. Botswana Dataset illustration in-terms of HSI Cube and Ground-Truth
(GT) label maps. The classification maps obtained using AfNet with overall
accuracy of 98.94 (%), 2-D Inception Net with overall accuracy of 98.81 (%)
and 3-D Inception Net with overall accuracy of 98.46 (%). (a) BS Cube. (b) GT.
(c) AfNet. (d) 2D. (e) 3D.

Fig. 4. Pavia University Dataset illustration in-terms of HSI Cube and Ground
Truth (GT) label maps. The classification maps obtained using AfNet with
overall accuracy of 99.27 (%), 2-D inception net with overall accuracy of 99.09
(%) and 3-D inception net with overall accuracy of 98.55 (%). (a) PU Cube. (b)
GT. (c) AfNet. (d) 2D. (e) 3D.

Since we know that the high-level features hold strong semantic
information with low resolution and poor perception capability.
Therefore, cross-layer feature fusion can be considered as an
effective strategy to preserve the quality features and ultimately
improve classification performance [55].

Dense connectivity (e.g., different kinds of connectivity pat-
terns irrespective of the traditional network) has been first
proposed as DenseNet and widely used framework in many
real-life applications. Traditionally, all layers are connected one
after another, in order to maximize the feature information flow
between layers. In this hierarchy, each layer accepts the features
of all previous layers in front of it as input and passes its output
to the subsequent layer. However, irrespective of the traditional
dense connections, this article proposes dense connections along
with the attention mechanism among different inception network
blocks, as shown in Fig. 1. From Fig. 1, one can see that the
output of the second convolutional layer of block-1 is densely
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Fig. 5. Salinas Dataset illustration in-terms of HSI Cube and Ground Truth
(GT) label maps. The classification maps obtained using AfNet with overall
accuracy of 99.59 (%), 2-D inception net with overall accuracy of 99.76 (%)
and 3-D inception net with overall accuracy of 99.29 (%). (a) SA Cube. (b) GT.
(c) AfNet. (d) 2D. (e) 3D.

Fig. 6. Classification performance in terms of ground truth maps on different
spatial dimensions. (a) IP:9×9. (b) IP:11×11. (c) IP:13×13. (d) IP:15×15.
(e) BS:9×9. (f) BS:11×11. (g) BS:13×13. (h) BS:15×15. (i) SA:9×9. (j)
SA:11×11. (k) SA:13×13. (l) SA:15×15. (m) PU:9×9. (n) PU:11×11. (o)
PU:13×13. (p) PU:15×15.

connected with the second layer of block-2, where the other
layers of each block are densely connected traditionally as well
followed by the nonlinear transformation in both cases.

Let us assume Xi be the output of the ith block and X0 be
the output of the previous convolutional block. Thus the output
of the ith convolutional block is not only related to the output of
(i-1)th block but also includes the middle output of all previous

Fig. 7. Classification performance of different percentages of training samples
in terms of ground truth maps. (a) IP:5%. (b) IP:7%. (c) IP:10%. (d) IP:12%. (e)
IP:15%. (f) BS:5%. (g) BS:7%. (h) BS:10%. (i) BS:12%. (j) BS:15%. k) SA:5%.
(l) SA:7%. (m) SA:10%. (n) SA:12%. (o) SA:15%. (p) PU:5%. (q) PU:7%. (r)
PU:10%. (s) PU:12%. (t) PU:15%.

blocks. Similarly, each 3-D CNN block is densely connected
along with the attention mechanism with the 2-D CNN blocks,
respectively, as just explained above. However, while connecting
the 3-D feature maps with 2-D feature maps, a reshape and
max-pooling with 3× 3 kernel is used. Finally, a concatenation
(fusion) layer is deployed to fuse the output maps obtained from
all three blocks, and subsequently, a 2-D convolutional layer
is used to further refine the feature maps obtained from the
densely connected network. The attention blocks are flexible
in the proposed model and can be positioned anywhere in the
network as explained in Fig. 1.

B. Overview

For high-level intuition of the proposed model, the overall
structure has been illustrated in Fig. 1 in which each block of
the network is densely connected with the help of an attention
mechanism. The proposed AfNet is an end-to-end framework
for HSIC in which the input RL×n is the original HSI dataset
and output is regarded as the probability of each HSI pixel for
cj classes.
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Since HSI composed of hundreds of contiguous spectral
bands, and some of these are highly correlated with each other,
which provides no new information for classification. Moreover,
some noisy bands exist in HSI, therefore, to eliminate the noisy
and redundant bands, PCA transformation has been applied
before feature learning and classification, which significantly
reduces the processing time and memory capacity as well.

The HSI cube has been divided into overlapping 3-D cubes to
take full advantage of spatial–spectral information present in the
HSI dataset. These 3-D cubes are composed of the target pixel
and its neighboring pixels to perform pixel-level feature learning
and classification. Let us assume each 3-D patch formed from
HSI is RS×S×B , where S × S denotes the spatial size of each
patch and B be the number of PCs preserved in the spectral
dimension. In AfNet, a densely connected convolutional (3-D
and 2-D) layers with rectified linear unit (ReLu) and without
normalization is a basic building unit of the network.

The 3-D patches are first to go through nine attention-based
3-D interconnected convolutional layers. The obtained feature
maps are further fed to nine attention-based 2-D interconnected
convolutional layers which are designed to improve the prop-
agation and reuse of features with a fewer number of tuneable
parameters. Moreover, a hybrid structure can discriminate the
spatial information, while considering different spectral bands
with no loss to increase the generalization performance. On the
other hand, the proposed network is built by stacking multiscale
parallel filters of various sizes. On top of that, the attention
module has been added to handle the skip connections from
the first block to the second and all other subsequent blocks,
which improves the flow of information. As a result, the fused
features provide surpass feature space as compared to the stacked
single-sized convolutional layers.

Another way around, attention blocks are incorporated to
selectively filter out the information (features) which are critical
for classification, i.e., weakening information that is useless for
classification has been eliminated which leads to obtaining a
feature representation that is more discriminative to get a higher
class probability for each pixel. Following the fusion, a 2-D con-
volutional layer is employed to aggregate the obtained features
once again. Afterward, feature maps are converted into feature
vectors by flattening, and finally, class labels are generated using
Softmax.

III. EXPERIMENTAL SETTINGS

The experimental results explained in this article have been
obtained through Google Colab, an online platform to execute
any python environment with graphical process unit (GPU), up
to 358+ GB of cloud storage, and up to 25 GB of random
access memory (RAM). In all the stated experiments (not only
for the proposed method but also for all comparative methods),
the training, validation, and test sets are randomly divided into
three parts; 15%/15%/70% (i.e., Training/Validation/Test sets).

For fair comparative analysis and to make the claims more
reliable, the learning rate for all experimental methods are set to
0.001, Relu as the activation function for all hidden layers except
the final (output) later on which Softmax activation function is
used. Patch size is set to 9× 9 for all experimental results, and
15 most informative spectral dimensions were selected using

PCA to reduce the computational burden in terms of time and
space. All the models are evaluated on 100 epochs without batch
normalization.

To compute the experimental results, several metrics, such
as average accuracy (AA), overall accuracy (OA), and Kappa
(κ) have been used, where κ metric is known as a statistical
metric that considered the mutual information regarding a strong
agreement among the classification and ground-truth maps.
AA represents the average classwise classification performance,
whereas the OA is computed as the number of correctly classified
examples out of the total test examples.

A. Experimental Datasets and Initial Experiments

Several publicly available hyperspectral datasets have been
used to evaluate the performance of the proposed AfNet. These
datasets are acquired at different times and locations using
different sensors, such as Hyperion NASA EO-1 satellite, reflec-
tive optics system imaging spectrometer (ROSIS), and airborne
visible/infrared imaging spectrometer (AVIRIS) sensor. Further
information regarding the experimental datasets can be found
from [21], [56]–[58]. As earlier explained, the performance of
AfNet is evaluated using four publicly available HSI datasets,
namely, Indian Pines, Pavia University, Botswana, and Salinas.
For each of the above datasets, the samples are randomly splited
into three subsets, i.e., training, validation, and test sets. Table I
provides a summary or description of each dataset used in the
following experiments.

1) Indian Pines: Indian Pines dataset was acquired back in
1992, June 12 over the Purdue University Agronomy farms,
northwest of West Lafayette and the surrounding area using
AVIRIS sensor. This dataset was mainly acquired to facilitate
soil research being initiated by Prof. Marion Baumgardner and
his graduate students. Indian Creek and Pine Creek watersheds
contain most of the part of the dataset thus known by Indian
Pines and include two flight lines: 1) Flown East-West and 2)
Flown North-South. There are three 2× 2 miles intensive test
sites with the area as; 1) northern portion of north-south flight
line, 2) near the center, and 3) southern portion.

Indian Pines dataset consists of 145× 145 spatial dimensions
per spectral band and in total 224 spectral bands in the wave-
length range 0.4− 2.510−6 m. The scene used in this research is
a subset of a larger scene. It consists of 1/3 forest, 2/3 agriculture,
and natural perennial vegetation, a rail line, two major dual-lane
highways, low-density housing, other structures, and small roads
as earlier explained. Some crops, e.g., corn, soybeans are in the
early stages of growth, i.e., less than 5% coverage due to the
reason that the dataset was acquired in June. The ground truths
are available and distinguished into 16 nonmutual exclusive
classes. The image cube and true ground truths label maps
are shown in Fig. 2(a) and (b), whereas Fig. 2(c)–(e) show
the classification performance in terms of classification maps
(ground-truth label maps) for three different models, i.e., AfNet,
3-D attention inception net, and 2-D attention inception net.
These maps clearly show that the proposed method performs
better than 3-D as well as 2-D attention inception networks. The
higher accuracies are emphasized.

2) Botswana: The Hyperion NASA EO-1 satellite acquired
the Botswana dataset over OkavangoDelta, Botswana back in
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TABLE I
SUMMARY OF THE HIS DATASETS USED IN THE FOLLOWING EXPERIMENTS

2001–2004. The WO-1 sensor acquired the subject data at 30-
m pixel resolution over a 7.7-km strip in 242 spectral bands
covering the 400–2500-nm portion of the spectrum in 10-nm
window.

To mitigate the effects of bad detectors, inter detector mis-
calibration, and intermittent anomalies, extensive preprocessing
has been carried out by UT Center for space research. While
processing, uncalibrated and noisy bands (i.e., water absorption
features) were removed and the remaining 145 spectral bands are
used for experimental purposes. The data used in this article was
acquired back on May 31, 2001, and it consist of observations
from 14 mutually exclusive classes, which represent the land
cover types in seasonal swamps, occasional swamps, and drier
woodlands located in the distal portion of the Delta. The image
cube and true ground truths label maps are shown in Fig. 3(a)
and (b), whereas Fig. 3(c) and (d) show the classification perfor-
mance in terms of classification maps (ground-truth label maps)
for three different models, i.e., AfNet, 3-D attention inception
net and 2-D attention inception net. These maps clearly show
that the proposed method performs better than 3-D as well as
2-D attention inception networks. The higher accuracies are
emphasized.

3) Pavia University: Pavia university dataset was acquired
using ROSIS sensor during a flight campaign over Pavia, north-
ern Italy. The total number of spectral bands is 103 in which each
spectral band covers 610× 610 spatial dimensions per spectral
band. Some of the samples contain no information in the above
spatial dimensions, thus have to be discarded before the analysis.
The geometric resolution is 1.3 m. Pavia Center image ground
truths differentiate nine mutually exclusive classes. The image
cube and true ground truths label maps are shown in Fig. 4(a)
and (b), whereas Fig. 4(c) and (d) show the classification perfor-
mance in terms of classification maps (ground truth label maps)
for three different models, i.e., AfNet, 3D attention inception
net and 2-D attention inception net. These maps clearly show
that the proposed method performs better than 3-D as well as
2-D attention inception networks. The higher accuracies are
emphasized.

4) Salinas: The Salinas dataset was acquired using the
AVIRIS sensor over Salinas Valley, California, and is
characterized by high spatial resolution with 3.7-m per pixel
with 224 spectral bands. The area covered by each spectral
band is 512× 217 samples. As with the Indian Pines dataset,
20 water absorption bands which are [108–112], [154–167],
and 224 were discarded. Salinas dataset is only available as
sensor radiance data. It includes vegetables, bare soils, and vine-
yard fields. Salinas ground truths contain 16 mutually exclusive
classes. The image cube and true ground truths label maps are
shown in Fig. 5(a) and (b), whereas Fig. 5(c) and (d) show

TABLE II
CLASSIFICATION PERFORMANCE AND TRAINING (TR) AND TESTING (TE) TIME

(IN SECONDS) ON DIFFERENT SPATIAL DIMENSIONS, I.E., 9× 9×B,
11× 11×B, 13× 13×B, AND 15× 15×B

The training, validation, and test sets are randomly divided into three
parts, i.e., 15%/15%/70% (Train/Validation/Test).

the classification performance in terms of classification maps
(ground truth label maps) for three different models, i.e., AfNet,
3-D attention inception net, and 2-D attention inception net.
These maps clearly show that the proposed method performs
better than 3-D as well as 2-D attention inception networks. The
higher accuracies are emphasized.

B. Artefacts of Spatial Dimensions

To process the HSI cube in any CNN, the Spatial dimensions is
being considered an important component and have an important
impact on classification results [21]. This section experimentally
illustrates the impact of spatial dimensions on classification
results, i.e., OA, AA, and Kappa (κ) accuracy irrespective of
the processing time and the computational cost which gradually
increases as the spatial dimensions increase. The OA, AA, and κ
accuracy is presented on all four experimental datasets to explore
the impact of spatial dimensions on our proposed hybrid AfNet.
All the experimental settings and tuning parameters for this
particular experiment remain the same except spatial dimensions
in which we tested the models on several different sizes, i.e.,
9× 9×B, 11× 11×B, 13× 13×B, and 15× 15×B.

All these experimental results are presented in Fig. 6 and
Table II in which one can observe that the classification ac-
curacy improves as the spatial size improves. The reason behind
this trend is that “the larger spatial dimensions contain more
samples.” However, this trend does not remain the same for all
the spatial dimensions, as it may contain redundant samples,
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TABLE III
CLASSIFICATION PERFORMANCE (κ, OA, AND AA IN PERCENTAGE) ON

DIFFERENT PERCENTAGES OF TRAINING SAMPLES ALONG WITH THE

PROCESSING TIME (IN SECONDS) FOR BOTH TRAINING (TR) AND TESTING (TE)
PROCESS

or by increasing the spatial dimension may contain interfering
samples in a spatial patch or may contain the overlapping regions
which bring nothing new to the classifier but just confuse the
classifier and deteriorate the classification performance with
redundant samples. Thus, in a nutshell, an appropriate size of
spatial dimension with respect to the characteristics of the data
is quite important to attain reliable accuracy.

C. Artefacts of Training Samples

CNN’s have been extensively utilized for HSIC, however,
deep CNN requires a large number of annotated training samples
for appropriate learning. However, the collection of annotated
samples for HSI is expensive and critical, which demands human
experts or exploration of real-time scenarios. Limited availabil-
ity of annotated training samples hinders HSIC performance.
Thus, an appropriate size of annotated training samples is an
important factor for HSIC performance. This section provides
the performance evaluation in terms of OA, AA, and κ accuracy
for different percentages of training samples. These percentages
include 5/5/90% (Train/Validation/Test), 7/7/86%, 10/10/80%,
12/12/76%, and 15/15/70% respectively. We intentionally did
not use below 5% training samples as several classes of different
datasets do not have enough training samples to include, for
instance, Oats class of IP dataset which only have 20 samples
in total, thus selecting 1–4% of training samples for this class
would only include one sample from this class, which is not
enough to train the model. There is another option to avoid such
limitation is to select the number of training samples rather using
the percentage. However, this process will lead to another issue
which is known as the “Class Imbalance” issue, which is not
the problem under study. This may be considered as a potential
future research direction.

Table III and Fig. 7 show the classification performance of
AfNet with different percentages of annotated training samples.
One can observe from these results, as the number of anno-
tated training samples increases the classification performance
significantly improves. However, the trend is for some certain

stage not for the entire group of percentages. This is due to the
redundancy among the training samples, as the higher number
of annotated samples may contain samples spectrally similar to
each other, brings no new information, or may lead to confusion
for learning. The performance evaluation indicates the quality
of spatial–spectral features learned by our proposed model, i.e.,
the features learned by AfNet. From these results, one can also
conclude that the 7–10% training samples are enough to get
satisfactory results. For all these experimental results,9× 9×B
spatial dimension are used, rest of the experimental protocols
remains the same except the number of training samples, which
are further explained in Table III. From the computational time,
similar observations can be made, as the number of training
samples increases, the training, and testing time significantly
increase as well the accuracy increases.

IV. CONCLUSION

CNNs are known to overcome the nonlinearity issues with
fixed kernel sizes which are not flexible enough because these
kernels are specific and not conducive to feature learning thus
impairs classification accuracy. However, CNN with different
kernel sizes may capture more discriminative and important
features. Thus, taking into account the aforesaid advantages,
this work proposed a hybrid (3-D–2-D) inception net with an
attention mechanism to boost the classification performance.
The proposed AfNet used attention-based six parallel hybrid
subnets with different kernels in each subblock to enhance the
final ground-truth maps. The proposed AfNet selectively filters
out the discriminative feature, i.e., the critical features for classi-
fication. AfNet has been tested on several hyperspectral datasets
and shows competitive results as compared to the state-of-the-art
models except for a few expensive choices. The possible future
research directions include incorporating the attention mecha-
nism and hybrid process into the exception net which can pro-
duce better accuracy and generalization performance of CNNs.
Other possible research directions could include the utilization
of different convolutional processes in hybrid scenarios.
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