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Multiple Spectral-Spatial Representation Based on
Tensor Decomposition for HSI Anomaly Detection

Yujian Wang *“, Dan Li

Abstract—To exploit the spectral-spatial information of hyper-
spectral image (HSI) and achieve higher the detection accuracy,
a novel multiple spectral-spatial representation based on tensor
decomposition method is proposed for HSI anomaly detection
(AD) in this article. First, tensor decomposition is employed to
separate the original HSI dataset into anomalous tensor from back-
ground tensor to, respectively, utilize the priors of background and
anomaly. Then, the segmented smoothing prior is characterized by
10-11 hybrid total variation regularization for the spatial dimensions
of the background tensor, which can not only complement the
image details but also fully consider the global spectral-spatial
structure. Moreover, the low-rank prior is represented with trun-
cated nuclear norm regularization for the spectral dimension of the
background tensor to make full utilization of global information
in the background and reduce data redundancy. Next, 12,1-norm
regularization is applied to characterize the sparse prior for the
anomaly tensor, which is beneficial to inscribe the local spectral
structure of each image element. Finally, all these priors are fuses
to model a unified convex optimization problem and obtain the final
results by alternating direction method of multipliers, which can
fully explore the discriminative spectral-spatial priors and improve
the AD accuracy significantly. Experiments carried out on several
real data indicate that our presented method reaches excellent
performance in comparison to a few advanced AD methods.

Index Terms—i-norm, hyperspectral image (HIS) anomaly
detection, /p-I; hybrid TV (Ip-1; HTV), 15, truncated nuclear norm
(TNN).

1. INTRODUCTION

OMPARED with traditional two-dimensional (2-D) im-
C age, hyperspectral image (HSI) contains numerous narrow
and continuous spectral bands spanning various wavelengths,
which provides a wealth of information on the spatial spectrum
for the observation of terrestrial objects [1], [2]. As each feature
has different characteristics of electromagnetic reflection at var-
ious wavelengths, target detection allows the application of their
spectral information [3]. Based on whether prior knowledge of
target features is employed, target detection could be classified
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as supervised target detection and unsupervised anomaly target
detection [4]. In practical applications, the target detection algo-
rithms are more limited due to the difficulty of obtaining accurate
prior information about the target to be detected; in contrast,
anomaly detection methods are more practical and have a more
comprehensive range of applications [5]-[7]. Anomaly detec-
tion (AD) is commonly adopted in various applications, such as
geological survey [9], intelligence, environmental surveillance,
and military defense [6]-[10].

Finally, numerous HSI anomaly detectors have been pro-
posed. The best-known AD method for HSI is Reed-Xiaoli (RX)
algorithm [11], [12], which supposes the background to a multi-
variable Gaussian distribution. The similarity of the tested pixel
to the surrounding background is determined through the calcu-
lation of the Mahalanobis distance. In general, global RX detec-
tion (GRX) [13]-[15] uses all pixels in the scene to approximate
the background statistics, whereas local RX detection (LRX) is
estimated considering only the neighboring pixels of the test
pixel. In practice, however, the background components of HSI
are often complex and heterogeneous. In addition, the calculated
statistics are susceptible to contamination due to the presence of
noise and anomalies. On the basis of these limitations, a couple
of modified RX-based methods are presented. For instance, Ker-
nel RX [16]-[18] characterizes non-Gaussian distributions over
high dimensional eigenspace by reprojecting the primitive data
onto the high-dimensional space with the kernel function. The
subspace-based RX [19] method exploits the expected difference
in spectral variability between background and anomalies to
achieve more accurate detection performance. To enhance the
robustness of background estimation to anomalies, weighted
RX [20] and blocking adaptive computation efficient outlier
nominator [21] are presented. However, the detection results
are restricted by these methods since the background-specific
distribution assumptions are usually invalid.

To break through this limitation, attention has been cast to
representation-based methods devoid of any statistical assump-
tions [22]-[25]. Such approaches are based on the fact that back-
grounds could be characterized by the constructed dictionaries,
while anomalies cannot. The aim of this type of method is to
construct an ultracomplete dictionary with the least amount of
data information possible to briefly represent the entire image.
Nevertheless, these methods consider only spectral information
without spatial information, thus, it is challenging to acquire
satisfying detection performance. Li and Du [26] proposed a
collaborative-representation-based detector (CRD) for anomaly
detection. In essence, CRD means that the background image
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elements are well indicated by their surroundings, while anoma-
lies are not. Compared with CRD, collaborative representation-
based with outlier removal anomaly detector [27] method elim-
inates outliers that differ markedly from the background, and
enables a more accurate background approximation. Du et al.
[28] proposed local summation anomaly detection model, which
fuses spatial-spectral features with numerous local windows
around the tested pixel to take advantage of the spatial nearest-
neighbor relationship of its local background distribution. Apart
from CRD, several other detectors also have incorporated spatial
information into their detection. Li et al. [29] proposed back-
ground joint sparse representation detector, which automatically
chooses the best typical background bases in each partial domain
and projects test pixels into the orthogonal subspace formed by
these background bases to detect anomalies. Minh et al. [30] de-
veloped a framework to combine spatial, spectral, temporal, and
feature domain information for detecting spectral anomalies and
applied it to soil detection. Generally speaking, most of methods
mentioned above detect pixels in an independent manner and do
not exploit pixel-to-pixel correlation in hyperspectral images.
More recently, low-rank-based approaches have also been
adopted for HSI anomaly detection. They utilize the low-rank
property of background and the sparsity of anomaly [31]. The
classical robust principal component analysis (RPCA) [32] de-
tects anomaly by separating them from the low rank background.
Chen et al. [33] proposed RPCA-RX anomaly detection algo-
rithm, which applies the classical RX method to sparsity matrix
to improve the detection accuracy. Later, low-rank representa-
tion (LRR) method is established [31], [34], whereby it sup-
poses its data is derived from multiple subspaces. Owing to the
sophisticated background characteristics of the actual data, it is
more suitable for hyperspectral image detection. The LRR model
is initially taken up for the problem of hyperspectral anomaly
detection in low-rank and sparse representation (LRASR) [35].
Sparse components are modeled by adopting a dictionary con-
struction strategy, and the lo-norm of the sparse components
is chosen to characterize the anomaly. LRaSMD-based Maha-
lanobis distance method for hyperspectral anomaly detection
(LSMAD) [29], [36] essentially exploits the low-rank property
of the background to compute background statistics, which
enhances detection efficiency by mitigating anomalous contam-
ination and inverse covariance matrix problems. However, most
low-rank and sparse decomposition related methods only take
into account the low-rank property of the background and the
sparsity of the anomaly, but ignore the structural features of HSI
itself and the segmental smoothness in the background. Total
variation (TV) regularization-based image restoration technique
is one of the more popular techniques nowadays, which can
effectively enhance spatial smoothness and preserve image edge
information [37]-[39]. Cheng and Wang [40] introduced a TV
regularization term to improve detection rates by taking into
account the spatial homogeneity of background. Besides, Cheng
and Wang [41] proposed a graph and TV regularized LRR
(GTVLRR) method that preserves regional geometric features
and spatial information in HSI. Then, TV and sparsity regular-
ized decomposition model is established by Cheng et al. [42].
They characterize background spatial smoothness and anomaly
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sparsity by TV and sparse regularization, respectively, to im-
prove the detection performance. Even though the problem of
segmental smoothness is solved by TV regular terms, the 3-D
spatial structure features of HSI are not fully utilized due to
matrix transformation. Also, global feature extraction is not
considered. Li ef al. [43] proposed a prior-based tensor ap-
proximation (PTA) model, which employs the traditional linear
TV parametrization instead of the original TV parametrization
to enhance the smoothness in HSI. However, it still has the
limitation that it cannot extract image details. To address this
issue, lo-1; hybrid TV (ly-[;HTV) is introduced to characterize
global spectral-spatial smoothness to complement image details
such as sharp edges and valuable textures.

In addition to the aforementioned methods, tensor
decomposition-based methods that exploit the structural
information of the 3-D data are extensively applied recently [44],
[45]. Low-rank tensor decomposition-based anomaly detection
designed by Li et al. [46] utilizes Tucker decomposition
to further decompose the low-rank tensor for anomaly
detection. Xu et al. [47] employed tensor robust principal
component analysis model, which comprehensively describes
the spectral-spatial information in HSI. Zhang et al. [48]
proposed a TenB algorithm, which finds the first maximum PC
along each mode to remove background features in the greatest
amount possible and model the surplus data as the anomaly.
These methods fully consider the low rank and sparse properties
of HSI, while neglect its segmental smoothness.

In this article, a novel multiple spectral-spatial representation
based on tensor decomposition (MSSR) model is proposed for
hyperspectral anomaly detection. First, tensor decomposition is
employed to separate the original HSI dataset into anomalous
components and background components, which is beneficial to
utilize the individual priors of background and anomaly. Then,
the background tensor is decomposed into two spatial dimen-
sions and one spectral dimension to fully explore the discrimi-
native 3-D spatial structure feature of HSI. Next, the low-rank
prior for the spectral dimension of background tensor is modeled
by utilizing truncated nuclear norm (TNN) regularization [49]
with the aim of making reasonable utilization of the global back-
ground information and reduces data redundancy. Moreover,
the segmented smoothing prior is characterized by lp-/{HTV
regularization for the two spatial dimensions of the background
tensor, which can not only complement the image details but also
fully consider the global spectral spatial structure. [p-/{HTV is
a globally and locally integrated TV regularization that captures
local information across spatial and spectral domains to recover
the overall structure of HSIs. The TV regularization compensate
each other to overcome artifacts or oversmoothing drawbacks.
Segmental smoothing prior is caused by the smooth variation
of feature targets in HSI, whose distribution tends to remain
coherent and homogeneous. Mutations are only present at a
few feature edges or anomalies. Therefore, [y-[{HTV regular-
ization is constructed to strengthen the segmental smoothing
of the background in the spatial dimension to improve detection
accuracy. In addition, an /> ;-norm regularization on the spectral
dimension is employed to represent the sparse prior for the
anomaly tensor, which can inscribe the local spectral structure
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of each image element. All these prior regularizations are fused
and modeled into a unified convex optimization problem to fully
explore more discriminative spectral-spatial prior information
and improve the AD accuracy significantly. Eventually, the
presented model is optimized by the alternating direction method
of multipliers (ADMM) method to obtain the final results. Three
HSI datasets are tested for the purpose of verifying the presented
method and the results demonstrate that our presented method
detects more accurately than several advanced methods.

Our proposed method mainly has the following contributions.

1) The low-rank prior in the spectral dimension of the back-
ground tensor is characterized by truncated kernel norm,
which can not only adequately explore the global spatial
information of the background but also reduce the data
redundancy.

2) lp-11HTV regularization is constructed to model the seg-
mental smoothing prior to the spatial dimensions of the
background tensor, which can fully exploit the global
spectral-spatial smoothness and the local spatial-spectral
structures to complement image details and improve the
detection accuracy.

3) Iy ;-norm regularization is employed to represent the
sparse prior for the anomaly tensor and accurately use
the local spectral structure of each image element.

4) The unified convex optimization problem constrained with
low-rank prior, segmental smoothing prior and sparse prior
is modeled to fully explore discriminative spectral-spatial
prior information and solved by ADMM, whose results
are outstanding over several advanced methods.

The rest of this article is organized as follows. Notations and
preliminaries of TV are introduced in Section II. The detailed
introduction of our presented method is given in Section III.
Section IV provides the results and interpretations of the exper-
iments in three true datasets. Finally, Section V concludes this
article.

II. RELATED WORKS
A. Preliminaries and Notations

In this article, boldface capital letters are applied to denote
matrices, e.g., X. Vectors, scalars, and tensor are denoted by
boldface lowercase letters e.g., x, lowercase letters, e.g., x, and
Euler script letters, e.g., X', respectively. For a 3-D hyperspectral
image tensor X' € R>*¥*d where z, y, d denote the height, the
width and the number of spectral bands, respectively. ., is
denoted as the (m, n)th item of the matrix, and use x,,,,,; to
represent the (m, n, [)th item of the tensor. The /th largest sin-
gular value of the matrix X is defined by wy, (X). The Frobenius
norm is written as | X||p = (Tr(X7X))'/2, where X7 is the
transpose of the matrix X and 7' (.) represents the trace of the
matrix.

Definition 1: (mixed [y o pseudonorm [50]): Let z € R" be
a vector, and (q,..., (; ,..., Cw(1l < w < h) be the index sets
satisfying the following situations.

1) Each (; is a subset of {1,..., h}.

2) N¢ =0forany # j.

3) UL G =1,...,h
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The mixed {1 o pseudonorm of z is defined by

||Z||§,0 = ||(HZC1 ”17 R HZCq‘, 10 HZCWH1)H0 (D

where z, indicates a subvector of z whose entries are designated
by (. || - || is described as the sum of the absolute values of all
terms of () , and || - ||o is described as an amount of nonzero
terms of (+).

Definition 2: (function £(z) of the inequality constraint on
the mixed /; o pseudonorm [50] is defined by

00, otherwise

¢
Criegs y<n) (2) = {07 1€211,0 < .

where ¢ is a diagonal tensor with binary entries (0 or 1) in this
article.

B. 1y Hyperspectral TV

Xu et al. [51] introduced the [ gradient minimization model
to maintain the edge information of the image and sharpen image
edges effectively. For a traditional 2-D image X € R**Y | the
lp gradient is written by

x y
Grale - Z Zg(lxm+1,n - Xm,n| + |Xm,n+1 - Xm,n )

3)

where G(X) denotes a binary function calculating the amount
of nonzero imagery gradients and G(X,, ,,) = 1, if X,,, , # 0;
G(X,n.n) = 0, otherwise.

III. PROPOSED METHOD

The general illustration of our presented MSRR is shown in
Fig. 1. As shown in Fig. 1, there are three major procedures in
our method: tensor decomposition, modeling of the proposed
method, and optimization by ADMM. More details of each step
are described below.

A. Objective Function

The 3-D HSI is assumed to be a third-order tensor ), which
allows for decomposition to a background tensor X and an
anomaly tensor S. It can be represented by

Y=X+S8. )

Since adjacent pixels in HSI have similar spectral properties
and their spectral features are highly correlated, the background
tensor of HSI shows low-rank property as prior. Aiming at
depicting the global structure of the background and char-
acterize the low-rank prior in the spectral dimension of the
background, TNN regularization is adopted for constraint. Seg-
mental smoothing property is caused by the smooth variation
of anomaly targets in hyperspectral images, whose distribu-
tion tends to remain coherent and homogeneous. Mutations
only occur in a few feature edges or anomalies. Therefore,
lo-1; HTV regularization is constructed to strengthen the segmen-
tal smoothing of the background along the spatial dimension.
For the anomaly tensor, as anomalies are only a small fraction
compared to the background, it shows sparse characteristics. In
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Fig. 1. Illustration of the proposed MSRR.

view of the accurate representation of each image element, the
sparse constraint is placed on its representation coefficients, and
the local spectral structure of each image element is inscribed.
In this article, these prior constraints are fused to create a novel
optimization model that exploits spatial-spectral information to
improve detection accuracy, which can be expressed as

. 1
argr)lg,lglpng_uio (€DX) + §(HD1XDd”1 + [[DyXDall;)

+ 71X, A+ 7SI, ®)

where D, and D, denote the 2-D difference operators for the
length and width of the image along the spatial dimension,
respectively. D is a 1-D finite- difference operator that employs
the spectral features of the image. This regularization explores
the correlation between both spatial and spectral dimensions.
The first two items of the objective function in (5) denote
lp-1yHTV regularization, and the third and the fourth items are
TNN regularization and /5 ;-norm regularization, respectively.
The regularization constraints employed in this model are, re-
spectively, described in detail as follows.

1) ly-l; Hybrid TV Regularization: Despite the fact that the
traditional [y gradient leverages the spatial smoothing of HSI,
it disregards the spectral correlation of HSI. The edges are
strengthened by limiting the amount of nonzero gradients, and si-
multaneously realize smoothing globally. For HSI X' € R#*¥*,
TV;,(X) is defined as

TVi(X)=) >0

d
X <Z (|Xm+1,n,l - Xm,n,l| + |Xm,n+1,1 - Xm,n,lD) (6)
l

where G(X) :=1, if  # 0; G(X) := 0, otherwise. Bound-
ary values of gradients are given by | X111 — Xmna| = 0,
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if m=ua, and |X,, nt11 — Xnil =0, if n=y. In short,
nonzero gradients in the spatial dimension are calculated utiliz-
ing all spectral bands, which greatly enhances the spatial edges
of HSI.

For the mixed [ ¢ pseudonorm characterized by Definition 1,
it calculates the quantity of subvectors where the /;-norms are
nonzero. Then, another formulation of the gradient is presented
as

TV, (X)= DX )

where D is a discrete difference operator with periodic bound-
aries that maps HSI to their vertical and horizontal discrete
differences. £ is a diagonal matrix with binary elements (0 or 1)
that forces the discrete differences between opposite boundaries
(due to the periodic boundary conditions) to be zero.

With continuous iterative optimization, the edges of HSI will
gradually get sharper. However, if the /y-norm is overpenalized,
the eventual result will be oversmoothed. To make fuller uti-
lization of global and local spatial information, /y-/; hybrid TV
(lp-1tHTV) is constructed as

I~ HTV(X)=p) ¢ ¢ (€DX)+(|DeXDlall, +[D, XDyl
(®)

where ||D,XDgl|y and ||D,XDg||; are designed to character-
ize local smoothing in the spatial dimension of the data and
Pl (¢DX) is designed to enhance image edges.

1,0

The lp-[;HTV employs an [y penalty term to gauge gradient
sparsity, and enhances convergence by applying /; at most
positions in the image. The novel regularization integrates [y and
[ effectively and, thus, has the advantages of both. [y-l{HTV
is a globally and regionally integrated TV regularization that is
specifically designed to extract local information across spatial
and spectral domains to recover the overall structure of the HSI.
The global and local aspects of TV regularization compensate
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each other to overcome artifacts or oversmoothing drawbacks.
lp-[; TV can extract edge information better than conventional
linear TV, thus enabling more accurate detection of anomalous
targets and improving detection accuracy.

2) TNN Regularization: The traditional nuclear norm-based
approach minimizes the sum of all singular values, but TNN
regularization minimizes only the smallest min(x,y) — r sin-
gular values due to the fact that the rank of the matrix is only
for the first 7 nonzero singular values. The nuclear norm cannot
perfectly approximate the rank function. All nonzero singular
values contribute about the same in rank(X), but contribute quite
differently in the nuclear norm || X||, of the HSI. In this manner, a
more accurate and robust approximation of the rank function can
be obtained. TNN can adequately describe the global structure
information of background and reduce data redundancy.

The low-rank prior of X € R**Y is stated in terms of trun-
cated nuclear norm as regularization. Given two matrices P €
R*Y, Q € R®Y where PPT = QQT = I,.,. | X]|, is de-
noted as the sum of min(z, y) — » minimum singular values by

min(z,y)

Xl = Y w(X).

k=r+1

€))

Since the rank of the matrix is not impacted with respect to
the maximum nonzero singular values, they are neglected in
the novel design of the truncated nuclear norm and focus only
on minimizing the sum of the smallest min(z, y) — rsingular
values. Equation (9) can be expressed as

X|, =X, - Tr(PXQ" 10
X, = X, - e TH(PXQT)  (10)
where [|X]||. = zinl(m’y) wy, is defined as the nuclear norm of

X, and wy, is the kth largest singular value of X. Generally
speaking, the part corresponding to a large singular value will
contain more information. The main part of them can be ex-
tracted by using singular value decomposition. After singular
value decomposition (SVD) decomposition, the main singular
values are retained to remove redundant information and depen-
dencies between data. Therefore, || X||,- can be obtained with the
following two-step method.

Step 1: First, Pand Q are obtained by maximizing the first r
singular values via SVD.

Step 2: Then fix P and Q to update X. The variables are
optimized in the abovementioned two steps alternately and
iteratively through the algorithm.

3) lg,-Norm Regularization: Compared to the background,
only a small quantity of anomalies in hyperspectral images is
relatively infrequent and, thus, it has a sparse characteristic.
Applying the square of /;-norm as the loss function is insensitive
to smaller outliers but sensitive to larger ones, while employing
the /;-norm as the loss function is insensitive to larger outliers
but sensitive to smaller ones. In order to address these issues,
I3 1-norm is introduced so that the model can better handle
outliers. The local spectral structure of each image element is,
thus, inscribed.
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The anomaly tensor S is expanded in its spectral dimension
and the /5 1-norm regularization is exploited to characterize the
sparse prior of the data. The /5 ;-norm regularization employed
for the expanded matrix Sg,e € R4x(zy) appends the /5-norm to
the spectral dimension and the /;-norm to the spatial dimension,
which is defined as

xy d
||SSPe||2,1 = Z Z Span
n=1 m=1

where s denotes the element of the /th band of the ith row and
Jjth column of the anomaly tensor. The solution to the /5 1-norm
regularization would be derived by addressing the following:

(In

. 1
argmén ”SSPeH2,1 +5 HSSPe - YH?«“ (12)

2

B. Optimization Procedure

The novel model constructed in this article can be approx-
imated by ADMM to alternately minimizes X and S. The
auxiliary variables A; , Ay, Az, Ay, and A5 are introduced
to enable the objective function to be independent and uncon-
strained, where X;= A;,i=1,2,3,4,and Ay, = A5. Moreover,
E=D,XDgy, F = DyXDy, and G = DX. The augmented
Lagrangian function of (5) is rewritten by

L(X757A’L'77: = 17 .. '757B17B2u®7PaQ)
1
= piess (C12(IE], +IF], o [B-D, XDy Ay

+a|F —D,XDy — Ao|3 + |G — DX — As%

max

. (||A4|*
PPT=QQT=IL,

Tr(PA5QT)> +7[[Sspells 1

+u(IX — As+Bif + | As — Ag+ Bs|3)

+ U(Yspe - Xspe - Sspe + (I)) (13)

where ® , By, and B, are Lagrange multipliers, a and 7 are
two positive constants designed to balance the contribution of
each term. 1 and o are non-negative tradeoff parameters. Y
and X, denote the hyperspectral matrix and the background
matrix expanded along the spectral dimension, respectively. The
augmented Lagrangian function (13) is solvable by fixing the
other variables to update only one variable alternatively. In
particular, in the kth iteration, the optimization could be achieved
in the below ten steps.

1) Update E: The optimization problem for E can be written
by

1
argmin —[B|l, + a |[E - D,XDy — Auflz: (14)
where the symbolic operator sgn(x) is the definition of
1, >0
sgn(z) =4 0, =0 (15)
-1, <0
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The solutions are derived from (16) via the application of
operator S:[z] = sgn(x) x max(|z| — £,0)

E = S,/2[D. XDy + A4]. (16)

2) Update F: Similar to E, the updated solution of Fcan be
obtained by the derivative calculation as

F = S,/2[D, XD, + Ay] (17)

3) Update G: The optimization problem for G is the same as
the constrained minimization problem as

min |G — DX — A7

(18)
st. [€GI1 , <.

The parameter « is neglected since it has no effect on the
optimization. First, G’ is initialized to G’ = (DX + Aj),

and at the kth iteration, G'*) is in declining order. Gl94,+1 =

0,..., G’en are shaped like zero vectors, preserving sharper
image edges. I is defined as the unit matrix.

The optimization problem for G to be solved by

G =G + (I-B)(DX + Aj). (19)

4) Update A 3: The optimization problem for A 5 can be solved
by

AGT! = argmin [ A,

(]| XE - A%+ By|[5 + ||Af - A%+ Bao|3)

= arg min o||Aj (20)
A3 *
Xk Ak +BF+BE |2
_|_MHA§_ + 3'2"' 1+B5

.
5) Update A 4: The optimization problem for A 4 can be solved
by

AR = arg min ~Tr(P*ALQM) + p||Af — ATH + B3|
(2))

The updated solution of A’ZH can be obtained by the deriva-
tive calculation as

PEQFT
ARTL = ARFL_BE 4 Q. (22)
6) Update P and Q: P and Q would be obtained utilizing

singular values decomposition of
[P+, 3, QUHIT] = SVDs(AT ™, r) (23)

where X denotes the singular values matrix.SVDs represents the
singular values decomposition function.

7) Update X: X, is updated for solutions. The subproblem
associated with X is reformulated as its vector by

x = arg min F'(x)
X
= argmin |y —x — s|; + alle — Tox — a3
+olf =Ty —aofp+alg—Dx—asli (24

Where s, a;, as, az are the vector forms corresponding to their
matrices, respectively. I, = D, ® Dg,I'y = Dy, ® Dg4, and the
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Kronecker product is denoted by ®. Let the partial derivative
F(x) be zero, and then the linear equation is obtained by

(1+aD*D + o'} Ty + ol Iy )x

25
=y—-s+a(p—a;+q—ay+g—az+as—by). (25)

Equation (25) can be solved by the least square method [52].
8) Update X7, X5, and X3

X{H'l _ Ll(Xk:)
Xot = Lo(X*)
Xyt = Ly(XF)

(26)

where X , X5, and X3 are the expansions of the tensor A" along
the spatial and spectral dimensions, respectively.

9) Update Sy, : The optimization problem for Sy, can be
solved by

k

Sfptl = arggzirelTHSSpeHM + 0 |[Yepe — Xspe — Sspe + @] -
) 27
10) Update Lagrange Multiplier ®, A, and B; by
P = oF + (Yspe - betl - Ss]?;él)
ATt = A} 4 (D, XD, — E)
At = Ak 4+ (D, XD, — F) (28)

Bl -m O
B, =Bf + (AT - AfTY).

Eventually, the background tensor X* and anomaly tensor
S* optimizations are accomplished when the iteration reaches
convergence. The anomaly detection map is then obtained.

IV. EXPERIMENTS AND ANALYSIS

In this section, our presented MSSR method is compared to
a series of advanced and widely employed anomaly detection
algorithms, including auto-AD, PTA, LRX, CRD, LRASR, LS-
MAD, and GTVLRR. All the experiments are performed with
a personal computer with Intel Core i7-6700H 2.40 GHz and
16 GB RAM.

To quantitatively assess the detection results, receiver oper-
ating characteristic (ROC) is applied to represent the tradeoff
between true positives and false positives. Additionally, the
area under the ROC curve (AUC) value represents the region
encompassed by the ROC curve. As the AUC value increases, the
result of the detector gets better. All experiments are conducted
ten times and the results are obtained by taking the average.

A. HSI Dataset Descriptions

The first HSI dataset is acquired from the hyperspectral digital
image acquisition experiment (HYDICE) sensor. There are 210
bands in this image with a spectral resolution of 10 nm and
a spatial resolution of 1 m. After removing the absorption
regions and low SNR bands, 174 bands are retained. It covers
an urban area, including a vegetated area, a built-up area, and
several roads. A subimage of size 80 x 100 is employed in this
experiment. In total, 21 anomalous pixels are about vehicles of
different sizes. The false color image of the whole scene and the
ground truth map are shown in Fig. 2.
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Algorithm 1: MSSR for HSI Anomaly Detection.

Input: HSI tensor Y, parameters: r, o, 7, i, o, 1, A and
maxlter.

1: Initialization: X =0, S=0,E=F =G =0,

Ai =0, B1 =0, X1 = UZ(X), E = 1076, k= 1,

: while not converged, do

: Update E with Eq. (16).

: Update F with Eq. (17).

: Update G with Eq. (18).

: Update A3 with Eq. (20).

: Update A4 with Eq. (21).

: Update P and Q with Eq. (23).

9: Update X with Eq. (25).

10: Update &7, X>, and X5 with Eq. (26).

11: Update S with Eq. (27).

12: Update @, A; and B; with Eq. (28).

13:if ||Vipe — XEE — SEEL3 < € or k > maxIter

then

14:  end if

15: end while

16: S* = Ugpe(S), and final map 7 is derived from Eq.
(29).

Output: an optimal solution (X*, S*), anomaly map 7.

0NN AW

(b)

HYDICE HSI: (a) false color image; (b) ground truth.

Fig. 2.

The second HSI dataset is collected from San Diego. It is
captured by the AVIRIS sensor over the San Diego airport
region in California, USA. Its spatial resolution of roughly 3.5
m, with 224 spectral bands spanning wavelengths from 0.37 to
2.51 pm. In total, 189 bands are maintained by stripping out the
bands corresponding to the absorption and low SNR sections.
A subarea of 100 x 100 pixels is experimentally chosen, and
the background type consisted primarily of tarmac, roads, roofs,
and shadows. In the following experiments, three aircraft are the
detected anomalous targets. The false color image of the whole
scene and the ground truth map are shown in Fig. 3.

The third hyperspectral dataset are Airport-Beach-Urban
(ABU) scenes, consisting of four airports, four beaches, and five
urban scenes. The HSI with 100 x 100 or 150 x 150 pixels is
mostly collected by the AVIRIS sensor, but beach-4 images are
captured by the ROSIS-03 sensor. The datasets applied in this
article are Beach-1 and Urban-1 covering the wavelength range
of 0.43 pum to 0.86 pm. In the following experiments, a 100
x 100 region is chosen. The false color image and the ground
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(@) (b)

San Diego HSI: (a) false color image; (b) ground truth.

.
(a) (b)

Fig. 3.

Fig. 4. Beach-1 HSI: (a) false color image; (b) ground truth.
(a) (b)
Fig. 5. Urban-1 HSI: (a) false color image; (b) ground truth.
TABLE I
SELECTION OF PARAMETERS FOR EACH DATASET
Dataset r a T H o
San Diego 1 1050 | 0.0002 | 0.0002 0.50
Beach-1 2 9.8 0.0001 0.02 0.57
Urban-1 1 32.2 | 0.0001 0.005 0.59
HYDICE | 2 160 | 0.0001 | 0.55 0.09
MUUFL 1 12 0.002 0.5 0.0002

truth map of two datasets are presented in Figs. 4 and 5. Some
parameters of these HSI are presented in Table I.

The fourth HSI dataset is MUUFL Gulfport, which is ac-
quired from an airplane platform over the University of Southern
Mississippi Gulf Park campus by the CASI-1500 sensor. The
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(b)

Fig. 6. MUUFL HSI: (a) false color image; (b) ground truth.

—— Urban-1
0.75 |——MUUFI
San Diego
——HYDICE
Beach

Fig. 7. Low rank of truncation r in different datasets.

wavelength range is 375 to 1050 nm, and the experimentally
selected spatial size is 325 x 220 with 64 bands. There are
269 anomalous pixels available for detection at the MUUFL
Gulfport. The false color image of the whole scene and the
ground truth map are shown in Fig. 6.

B. Parameter Discussion

In our proposed MSSR method, there are a number of main
parameters that affect the final detection results, including the
low-rank of truncation r and some parameters, i.e., a, T, (i, and
o. Aiming to assess the influence that each parameter has on the
detection performance, simulations are performed by utilizing
several HSI datasets and the optimal values of these parameters
are discussed in our proposed method.

First, the effect of low-rank of truncation r on detection
performance is investigated with other parameters fixed. The
best values are sought in the range 0—40. For each of different
datasets, Fig. 7 illustrates the evolution of AUC values with 7. In
the San Diego and Beach-1 datasets, the AUC tends to decrease
as r increases. However, there is essentially little change in the
HYDICE , MUUFL, and the Urban-1 HSI. It can be inferred
from the figure that the optimal r is always less than 10 for
most HSI. This suggests that there are not many singular values
that minimize the smallest min(x, y) -r singular value, so that
the first r nonzero singular values obtained match the rank of
the matrices, i.e., the rank is small. In the San Diego, MUUFL,
and Urban-1 datasets, the best AUC is derived when » = 1. In
the HYDICE and the Beach-1 HSI, AUC reaches its maximum
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TABLE II
AUC VALUES OF ABLATION EXPERIMENTS FOR EACH DATA SET
Dataset Sparse and Sparse and | Low rank and
Low rank Smoothness | Smoothness
San Diego 0.4284 0.3316 0.2345
Beach-1 0.4118 0.2971 0.2053
Urban-1 0.4029 0.3181 0.2098
HYDICE 0.4517 0.3628 0.2476
MUUFL 0.4285 0.3274 0.2269

value when r = 2. However, in practice, it is still necessary to
determine whether it is less than 10 for an unknown dataset.

All these parameters are adjusted in the range {1074, 1073,
1072,107', 1,10, 10%, 10%, 10*}. Each parameter is tuned ON the
basis of fixing the others, and finally the whole process of tuning
is iterated until convergence. Fig. 8 shows how the AUC of the
three datasets changes as each parameter varies. It is not difficult
to observe that the performance tends to be smooth for o and 7,
which is insensitive on the two datasets of ABU, MUUFL, and
HYDICE. However, « and 7 are not stable in the San Diego HSI.
The opposite trend of « and 7 indicates that for the background
tensor, the detection performance improves with increasing the
proportion of segmented smoothing constraint. Nevertheless, it
gradually decreases as the weight of the low-rank constraint
increases. Compared to v and 7, 4 and o are more sensitive,
so the modulations for them need to vary depending on the
dataset so as to achieve the best detection performance. Thus, we
choose =9.8, 7=0.0001 and av=32.2, 7= 0.0001 for Beach-1
and Urban-1 datasets, respectively. For the San Diego HSI, « is
chosen 1050 and 7 is chosen 0.0002. As for the HYDICE, « is
chosen 160 and 7 is chosen 0.0001. For the MUUFL, «v is chosen
12 and 7 is chosen 0.002. We set u=0.02, 0= 0.57 and u=0.005,
o= 0.59 for the Beach-1 and the Urban-1 dataset, respectively.
Besides, we choose = 0.0002, o= 0.5 for San Diego HSI and
u=0.55, 0= 0.09 for HYDICE. As for MUUFL, o= 0.0002
and p= 0.5. The specific parameters are selected, as shown in
Table I.

C. Ablation Experiment

In this article, each of the three priors is constrained by
regularization and incorporated into a model framework to better
detect anomalies. To verify the impact of the three regularization
terms on the model, the ablation experiments have conducted.

The experiments have conducted on different datasets with
sparse, low rank, and smooth prior removed, respectively. The
results of the experiments are illustrated by the following Ta-
ble II. First, the sparse term and low-rank term are retained
and the smoothing term is removed, thus verifying the role of
lp-1;HTV regularization in the overall model. The experimental
results show that the value of AUC without the smoothing termis
the lowest. After that the smoothing term and the low-rank term
are preserved as well as the sparse term is eliminated, in order to
verify the role of /5 1-norm regularization in the whole model.
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Fig. 9.
(h) MSRR.

Finally, with the aim of verifying the role of TNN regularization
in the overall model, the smoothing term and the sparse term are
maintained, and the low-rank term is deleted.

The abovementioned experimental analysis indicates that all
three constraint terms are beneficial to the improvement of
anomaly detection accuracy, and none of them is unavailable.

D. Detection Performance

The proposed MSSR method is compared with seven ad-
vanced detectors to evaluate the detection performance, includ-
ing auto-AD, PTA, LRX, GRX, CRD, LSMAD, LRASR, and
GTVLRR. The sizes of dual-windows in LRX (woyu¢, Win) i8S
set as (13,11) for San Diego HSI, (5,3) for two ABU datasets
(beach-1 and urban-1). For CRD, the sizes of dual-windows are
set as (7,5) while the parameter A is set as 1 for all datasets.
Besides, LSMAD have no specific parameters that significantly
affect the performances. In LRASR, there are three significant
parameters, two tradeoff parameters A, 3, and the number of
clusters K. [A, 81€[0.01,1] in five datasets, and K is set as 6 as
the same. In regards to GTVLRR algorithm, the clustering count
K is 15 with 20 pixels retained in each category. The important
parameters in GTVLRR are: A= 0.1, 8= 0.01, and y= 0.5. In
PTA, there are four significant parameters r, «, 3, and p. r€[1],
[20] and [«, B, 1]€[0.0001,1] for all datasets.

As can be seen from Fig. 9, for the HYDICE dataset, the
visual effect of our proposed method is significantly better than
that of CRD and LRASR. These methods have a high false alarm
rate compared to the other methods and do not accurately extract
anomalous targets. As shown in the ROC curve in Fig. 14, MSSR
has a low false alarm rate based on a high detection rate. From
the comparison of the AUC methods, it can be seen that our
proposed method has the largest AUC value and achieves a fairly
good detection accuracy of 99.36%. In summary, our proposed
method is an efficient detection method.
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Detection maps of various anomaly detectors for HYDICE dataset. (a) Auto-AD (b) PTA (c) LRX (d) CRD (e) LRASR (f) LSMAD (g) GTVLRR

With regard to San Diego HSI, Fig. 10 shows the performance
of the various anomaly detectors. Apparently, the detection
result of our presented method significantly outperforms the
compared LRX, LRASR, and GTVLRR in visual effect. None
of these four methods can fully extract the anomalies from the
background. Additionally, numerous false alarms appear in the
LRASR results. CRD and LSMAD have better visual effect, but
still inferior to the proposed method. The size of the aircraft can
affect the detection performance. CRD is similar to the presented
MSSR method in terms of background suppression. As far as
the ROC curves in Fig. 15 are concerned, the proposed method
remains outstanding. The AUC values for each method are
shown in Table III and our presented method has the remarkable
AUC value, which achieves a pretty good detection accuracy
with 98.98%. Although the AUC value of the MSSR method is
slightly inferior to the PTA method, they still have advantages
compared to other methods. Fig. 15 illustrates that the ROC
curves of CRD, LRASR, LSMAD, and GTVLRR are approx-
imately similar, whereas the performance of MSSR appears to
be more significant. Combining the visual observations, ROC
curves and AUC values, MSSR proves to be a valid method.

For the Urban-1 HSI, MSSR also has the best visual effect than
other compared methods shown in Fig. 11. The visual effects of
the other methods are approximately the same, but MSSR has the
highest AUC value of 99.30%. From the ROC curves in Fig. 16,
the position of detection of MSSR is smaller than that of CRD
at the beginning, but the presented MSSR method curve is the
highest as the false alarm rate is greater than 3%, which means
that it achieves the greatest detection result.

For the Beach-1 HSI, CRD, and RX have a closer visual effect
to the proposed method with regard to visual effects, but MSSR is
more distinct and visible shown in Fig. 12. It is noticeable that the
segmentation between background and anomalies is successful
from the detection results of MSSR. As can be seen by the ROC
curves in Fig. 17, MSSR has the best performance compared to
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Fig. 10.
(h) MSRR.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

©) (d) |

® (®

(h)

Detection maps of various anomaly detectors for San Diego dataset. (a) Auto-AD. (b) PTA. (c) LRX. (d) CRD. (e) LRASR. (f) LSMAD. (g) GTVLRR.

TABLE III
AUC VALUES FOR THREE REAL DATASETS COMPARED BY DIFFERENT METHODS
Methods

Datasets
PTA LRX CRD | LRASR | LSMAD | GTVLRR | Auto-AD | MSSR
San Diego | 0.99205 | 0.79437 | 0.95053 | 0.91233 | 0.97934 | 0.97710 | 0.97842 | 0.98980
Beach 0.98321 | 0.94657 | 0.9831 | 0.90824 | 0.97708 | 0.98460 | 0.99279 | 0.99588
Urban 0.98065 | 0.98687 | 0.99268 | 0.94961 | 0.98232 | 0.95081 | 0.98755 | 0.99302
HYDICE | 0.98677 | 0.99132 | 0.94822 | 0.94317 | 0.98995 | 0.9788 0.99330 | 0.99364
MUUFL | 0.98791 | 0.95813 | 0.92375 | 0.98124 | 0.62583 | 0.95356 | 0.99592 | (.99845

(@)
Fig. 11.
(h) MSRR.
(@) (b) © (d)
Fig. 12.
(h) MSRR.

the other detectors. Moreover, the AUC value of MSSR is still
the highest among all methods with 99.59%.

With regard to MUUFL Gulfport HSI, Fig. 13 shows the
performance of the various anomaly detectors. Obviously, the
detection results of our presented method are remarkably better
than the compared LRX, LRASR, and GTVLRR methods in
terms of visual effects. It is observed from the ROC curves in
Fig. 18 that MSSR has the greatest performance compared to the
other detectors. In addition, the AUC value of MSSR remained
the highest among all methods with 99.85%. In conclusion, the
performance of MSSR is remarkable.

As shown in Table IV, although the execution time of the
proposed method is less than LRX, GTVLRR, and auto-AD for
each dataset, it is still computationally expensive, especially for

(b) (c) (d)

(2 (h)

®

Detection maps of various anomaly detectors for the Urban-1 dataset. (a) Auto-AD. (b) PTA. (c) LRX. (d) CRD. (e) LRASR. (f) LSMAD. (g) GTVLRR.

® (@ (h)

©

Detection maps of various anomaly detectors for Beach-1 dataset. (a) Auto-AD. (b) PTA. (c) LRX. (d) CRD. (e) LRASR. (f) LSMAD. (g) GTVLRR.

the MUUFL and ABU datasets. The reason is due to the fact that
the detector extracts more features, such as edge information,
which makes the computation time longer.

To sum up, our presented method has the greatest performance
on these datasets. The main reasons for the MSSR compared to
these comparative algorithms can be categorized by the follow-
ing points: 1) Our proposed method does not require any assump-
tions about the background, which breaks the main limitations of
traditional statistical-based RX methods. 2) Abnormal pollution
could trigger false alarms and leakages during detection of LRX,
which affects detection performance.

Moreover, CRD, auto-AD, and PTA can effectively detect the
center of anomalous targets, but tends to ignore the edges. Our
proposed method exploits /p-/;HTV to efficiently extract edge
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Fig. 13.  Detection maps of various anomaly detectors for MUUFL dataset. (a) Auto-AD. (b) PTA. (c) LRX. (d) CRD. (e) LRASR. (f) LSMAD. (g) GTVLRR.
(h) MSRR.
TABLE IV
EXECUTION TIME OF VARIOUS ANOMALY DETECTORS USING DIFFERENT DATASETS (SECONDS)
Methods
Datasets
PTA LRX CRD LRASR | LSMAD | GTVLRR | Auto-AD | MSSR
San Diego 34.2417 | 49.4641 19.5122 21.3831 9.0235 98.6137 112.7081 45.7244
Beach 91.2623 | 89.1669 | 32.7432 68.5516 20.3538 149.7873 172.0588 87.5237
Urban 36.4035 | 55.7084 | 21.3380 29.0071 10.0532 80.7802 92.5041 52.3602
HYDICE | 50.3932 | 27.3284 | 15.0128 | 24.7859 | 6.5306 | 60.8106 67.81 27.6534
MUUFL 157.8684 | 65.1373 | 28.9275 | 406.47065 | 44.59534 | 1110.2036 | 1427.0541 | 59.7731
1 _j 1
08 0.8
' “;4 1(;7; “1‘(‘)" - ;6": D o False jn(ly"nlrm rate o “
False alarm rate aEmEEE
Fig. 14.  ROC curves of the HYDICE data by different methods. Fig. 16. ROC curves of the Urban-1 data by different methods.
02 o1 _l _I PTA-HAD
s Fig. 17.  ROC curves of the Beach-1 data by different methods.
Fig. 15. ROC curves of the San Diego data by different methods.

information, making detection more accurate. 3) For LSMAD,
it is based on LRaSMD, which can cause some false alarms due
to the sparse background and the presence of decomposition
errors. Our proposed method employs /5 1-norm regularization
to represent the sparse prior for the anomaly tensor and accu-
rately use the local spectral structure of each image element

to improve detection performance. 4) However, LRASR and
GTVLRR based on LRR fail to adequately take into account the
structural features of the data, so the detection performance is
still inadequate compared to our proposed method. Compared
to LRASR and GTVLR, our proposed method fully considers
the structural features of the data by applying various prior, so
the detection performance is superior to other detectors.
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V. CONCLUSION

In this article, a novel hyperspectral anomaly detection
method named MSSR is constructed. It cleverly combines the
prior properties (low rank, sparsity, and segmentation smooth-
ing) with HSI tensor decomposition. Different regularizations
are adopted for different dimensions of the tensor to embed
these priors in order to fully extract the spectral and spatial
information of the hyperspectral data and, thus, improve the
detection accuracy. In particular, the low-rank property along
the background spectral dimension is represented by TNNR,
the sparse prior anomaly components are expressed by /> 1-norm
regularization, and the segmented smoothing in the background
spatial dimension is denoted by [y-/; hybrid TV regularization
to better extract the edge information. In addition, the tensor
decomposition representation efficiently extracts global struc-
tural features to better separate anomalies from the background.
All regularization constraints are fused into a convex optimiza-
tion function and optimized iteratively utilizing the ADMM
algorithm. Ultimately, when the iterations have converged, the
detection map is obtained. The experimental results confirm that
our proposed MSSR is capable of extracting more discriminative
spectral and spatial features to further improve the detection
performance. In addition, MSSR achieves the highest detection
accuracy and significantly outperforms other state-of-the-art
anomaly detection methods. Nevertheless, there are still some
areas where further improvements can be made. In future work,
we will focus on how to optimize the algorithmic framework in
order to extract more discriminative spectral-spatial features in
different application scenarios and further improve the detection
performance.
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