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Open-Pit Mine Area Mapping With Gaofen-2
Satellite Images Using U-Net+-

Tao Chen

Abstract—Obtaining information on the surface coverage of
open-pit mining areas (OPMAs) is of great significance to ecological
governance and restoration. The current methods to map the OP-
MAs face problems such as low mapping accuracy due to complex
landscapes. In this article, we propose a hybrid open-pit mining
mapping (OPMM) framework with Gaofen-2 (GF-2) high-spatial
resolution satellite images (HSRSIs), using an improved U-Net
neural network (U-Net+). By concatenating the previous layers
with each subsequent layer to ensure that there is a maximum of
feature maps of each layer in the network, the U-Net+- can reduce
the loss of feature information and make the extraction capability
of the network more powerful. Two independent OPMAs were
selected as the study area for the OPMM. By taking advantage
of GF-2 HSRSIs, a total of 111 open-pit mine sites (OPMSs) were
mapped and each OPMS boundary was validated by field surveys.
Then, these OPMSs were used as input to assess the accuracy of
the OPMM results obtained by the U-Net+. By comparing our
results with those provided by five state-of-the-art deep learning
algorithms: Fully Convolutional Network (FCN), SegNet, U-Net,
Residual U-Net (ResU-Net), and U-Net+-+, we conclude that the
proposed framework outperformed these methods by more than
0.02% in Overall Accuracy, 0.06% in Kappa Coefficient, 0.03 %
in Mean Intersection over union, 8.36 % in producer accuracy and
4.44% in user accuracy. Therefore, the proposed framework thus
exhibits very promising applicability in the ecological restoration
and governance of OPMAs.

Index Terms—Deep learning, Gaofen-2 (GF-2), open-pit mine
mapping, U-Net.
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1. INTRODUCTION

INERAL resources are of great significance for the
M survival and development of mankind. Since modern
times, the exploitation and utilization of mineral resources has
become more and more important. The open-pit mining areas
(OPMAs) formed after mining destroyed the surface landscape
and land resources, and caused ecological problems [1], [2] and
geological disasters such as landslides [3]-[6]. To address this
situation, researchers are paying more and more attention to the
ecological restoration of OPMAs [7]. In the process of ecolog-
ical restoration of mining areas, it is particularly important to
obtain the distribution of ground features. In the early days, the
ground feature information of the OPMAs was obtained through
field surveys [8]. This method is not only time-consuming and
labor-intensive, but it is also unsuitable to conduct whole-region
surveys. High-spatial resolution satellite images (HSRSIs) can
provide more clear surface information, and can achieve large-
scale and rapid surface type coverage survey and monitoring
[9]. Through remote sensing mapping of OPMAs, we can find
out the classification of mining areas, effectively define the
scope of ecological damage caused by mining, and provide basic
data for ecological environment management and restoration in
OPMA . Therefore, it is feasible to use HSRSIs to obtain surface
information in OPMAs.

Since the 1970s, remotely sensed data have been used for
classification and mapping of ground features in OPMAs mainly
based on visual interpretation, such as land cover information
extraction [10], land use database establishment [11], land use
mapping [12], [13], maximum likelihood [14], Model estimation
[15], and long-term mining area changes analysis [16], [17].
The visual interpretation method reduces the cost of on-site
investigation and improves the efficiency of open-pit mining
mapping (OPMM), but it is still time-consuming, costly, and
subjective, although the results are reliable. With the devel-
opment of computer science, researchers have begun to adopt
computer graphics techniques, such as gray-scale edge detection
[18], to map the surface coverage in mining areas. In recent
years, with the development of machine learning, scholars have
gradually applied various machine learning algorithms to extract
ground feature information in mining areas, such as decision
trees [19], support vector machines (SVM) [20], and deep belief
networks [21]. Although the machine learning methods achieve
good results in OPMM, there are remain many unsolved prob-
lems due to the complex composition of ground features, and
irregular spatial distributions in OPMAs.
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In recent years, deep learning methods have become more and
more popular in pattern recognition, especially in the field of im-
age processing, including remote sensing images [22]. The most
discriminative and representative features can be hierarchically
learnt in end-to-end fashion [23]. Deep learning methods can
extract the features of ground information through the training
process, which intelligently completes the classification of the
mining area and obtains a fine classification map of ground
features without the need to manually design features or rules.
The OPMA can be directly mapped after the remote sensing
images of the open-pit mining area are classified by using the
deep learning algorithm. Convolutional neural networks (CNNs)
have been used in OPMM [24]. The CNN-based OPMM method
outperforms traditional SVM based OPMM methods, but it still
faces low efficiency and a poor performance due to the fact that
it cannot process complicated large-scale HSRSIs.

Fully convolutional networks (FCNs) were proposed in 2014
[25] and were pivotal for end-to-end, pixel-level classification
of images. The most popular semantic segmentation neural
networks (SSNNs) are FCNs [25], SegNet [26], U-Net [27],
ResU-Net [28], and U-Net++ [29]. These SSNNs exhibit good
potential in many tasks, such as medical image processing and
autonomous driving, but to the best of our knowledge, only a few
models are used in OPMM [30]. Due to the network structural
limitations, the accuracy of SSNNs in OPMM still needs to be
further improved [31].

To address these issues, this article proposes a new OPMM
framework based on Gaofen-2 (GF-2) HSRSIs, using an im-
proved U-Net neural networks (U-Net+). The main contribu-
tions of our work can be summarized as follows: 1) Animproved
deep learning network U-Net+ with multilevel feature associa-
tion is proposed, which can reduce the loss of feature information
and make the extraction capability of the network more powerful
by making sure a maximum of feature maps of each layer in the
network; 2) The proposed U-Net+ is applied to the mapping
of OPMAs, which improves the accuracy of mapping and can
provide basic data for ecological environment governance.
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Location of the study areas (R: Band4, G: Band3, B: Band2 of GF-2 HSRSIs). (a) Site 1: Dengfeng City. (b) Site 2: Yuzhou City.

The rest of this article is organized as follows. Section II
introduces the data used in the work. Section III presents the
methods compared in this article. Results and discussions are
given in Section IV, followed by a summary in the last section.

II. STUDY AREA AND DATA SOURCES
A. Study Area

In this study, two independent areas are selected as the study
area. Site 1 is in Dengfeng City [Fig. 1(a)] while Site 2 is located
in Yuzhou City, which is in the central part of Henan Province
[Fig. 1(b)].

1) Site 1. Dengfeng City: The study area of Site 1 is located
in the east of Dengfeng City, Henan Province, between 113°15’E
to 113°17°E and 34°27°N to 34°28’N with an area of 2.9 km?.
The types of terrain in this area are mainly mountains and
hills. The terrain in Dengfeng City gradually decreases from the
north to south. The area is with a warm temperate continental
monsoon, with bright sunshine and a clear distinction between
the four seasons. Dengfeng City is rich in mineral resources, the
main mineral are coal and aluminum mines. The Dengfeng City
has a frequent crust activity, complex geological structure, and
different rock metamorphosis, which create favorable conditions
for the formation of multisample minerals in this city.

2) Site 2. Yuzhou City: The study area of Site 2 is in the east of
Yuzhou City, Henan Province, between 113°22’E to 113°33’E
and 34°14° to 34°21’with an area of 150 km?. The terrain in
Yuzhou City is high in northwest, and low in southeast. The area
has a mainland monsoon climate, with four distinct seasons. It
is located in the transitional zone between the Yudong Plain and
the Funiu Mountain Range with a changing topography. Yuzhou
City has a complex formation structure. Its mineral resources are
rich with the main mineral deposits of coal, aluminum mines,
iron, ceramic soil, and limestone. Since most of these mineral
deposits are open-pit mining, the open-pit mining activities may
cause a lot of environmental problems which conflicts with
the Chinese government’s green mining policy. This situation
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makes the mapping of open-pit mine (OPM) necessary for the
future studies and government decision makers to strengthen the
ecological construction of mines.

B. Data Sources

Two GF-2 HSRSIs were used in this study. The first one was
captured on October 30, 2017 for Dengfeng City, while the sec-
ond one was captured on April 16, 2018 for Yuzhou City. GF-2
HSRSIs has four multispectral bands [blue (0.45~0.52 pm),
green (0.52~0.59 pm), red (0.63~0.69 pm), and near infrared
(0.77~0.89 pm)] with a spatial resolution of 4 m. Based on the
land use map provided by the Geological Environmental Mon-
itoring Institute of Henan Province, the land use types (LUTSs)
were classified into six domain groups, including OPM, build-
ings (BUI), bare soil (BAS), road (ROA), vegetation (VEG), and
waste-dump area (WDA) in Site 1 and seven domain groups,
including OPM, water (WAT), BUI, BAS, ROA, VEG, and
WDA, in Site 2.

Open-pit mine sites (OPMSs) and boundaries in this study
were first visually interpreted on GF-2 HSRSIs. Then, with the
help of Geological Environmental Monitoring Institute of Henan
Province, a sequence of field investigations was implemented
from 27 August to 26 September 2018. After the field inves-
tigations, 16 OPMSs, which covered a total area of 0.93 km?,
were mapped in Site 1, accounting for 32.07% of the area of
Site 1, while 95 OPMSs were mapped in Site 2, which covered
an area of 10.1 km? in total, accounting for 6.73% of the area
of Site 2. The largest area of OPM is 0.6 km? in Site 1 and
2.11 km? in Site 2 while the smallest one is 1514 m?, in Site
1 and 1361 m? in Site 2. Finally, all the mapped OPMSs were
subsequently digitized and rasterized into the same resolution
(4 x 4 m) as the HSRSIs used for the study in Environmental
Systems Research Institute’s ArcGIS software (Version 10.3.0).
In this study, after dicing the data from the two study areas, we
randomly selected 70% as training data and 30% as validation
data for experiments.

III. METHODOLOGY

The whole OPMM framework consists of three parts which
is shown in Fig. 2. The first part is the data preprocessing
workflow for image processing, and the preparation of OPMM
training dataset is designed for the training samples generation.
In data preprocessing stage, it mainly includes the optical image
processing, and sample annotation. A sample set was created in
this stage by using standardization and cutting operations. In the
second part, an improved U-Net neural network (U-Net+) was

Flowchart of the proposed U-Net+-based OPMM (UN+OPMM) framework.

used to mapping the OPM, which is the first-time that SSNNs
used in the OPMM area. The third part is the model evaluation,
in which we used several evaluation metrics to assess the perfor-
mance of our proposed U-Net+ OPMM model (UN+OPMM)
among five other common semantic segmentation networks:
FCN-8s [25], SegNet [26], U-Net [27], ResU-Net [28], and
U-Net++ [29].

A. Data Preprocessing

In the first step, a radiometric calibration was carried out
through the radiometric calibration tool in Envi 5.3 software.
Then an orthorectification progress was done to the radiometric
calibrated images by combing the digital elevation model (DEM)
data and using the RPC Orthorectification Workflow in Envi 5.3
software. After that, the image data were normalized to facilitate
the training progress of the deep neural network, and the pixel
patches were generated with a size of 512 x 512 pixels. By
means of integration with the land use map, each pixel was
labeled with a land use type, then the sample set was created
for the deep neural network.

B. Fully Convolutional Neural Network (FCN)

CNN s solve the classification at the picture level, but cannot
achieve the classification at the pixel level. If the classification
of all pixels is carried out, it is necessary to construct an image
block for each pixel first, and then classify the pixel block
[32]. This method achieves pixel-level classification, but has
some disadvantages such as data redundancy, excessive memory
usage, large amount of calculations, and slow training speed, and
the size of the image block is difficult to determine, which will
affect the network’s learning of information around the pixel
and result in poor classification accuracy [25], [33]. FCNs were
proposed to solve these problems [25]. FCNs replace the fully
connected layer in the CNN with a convolutional layer, and
introduces an upsampling layer in the network to achieve the
same output structure and the size of the input image. According
to the different upsampling multiples, FCN has three structures:
FCN-8s, FCN-16s, and FCN-32s (Fig. 3). We selected FCN-8s
as the FCN OPMM model in this study since it performs best
among these three FCN models in most research tasks [25].

C. SegNet

SegNet is a symmetric network. There is an encoder and
a corresponding decoder in the network, and the end of the
network is a pixel-by-pixel classification layer [26]. The network
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structure of SegNet is shown in Fig. 4. The encoder network
consists of 13 convolutional layers, corresponding to the first
13 convolutional layers in the VGG16 network [34], and uses
the convolutional layer weights of the VGG network as the pre-
training convolutional layer weights. The appropriate decoder in
the decoder network uses the memory maximum pooling index
from the corresponding encoder feature map to up-sample its
input feature map.

D. ResU-Net

The ResU-Net model used in this article is improved based
on U-Net by adding a residual block [35] between the various
information extraction layers of the U-Net neural network to
characterize the input information. Fig. 5 is a schematic diagram
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of the residual block. This method increases the number of layers
of the network, which can solve the problem of gradient disap-
pearance or gradient explosion, and ensures feature integrity
[36]. The structure of ResU-Net is shown in Fig. 6.

E. U-Net++

Zhou et al. [29] proposed U-Net++- in 2018, which integrates
more feature layer information by densely connecting and skip
connecting the shallow feature layers in U-Net. The structure of
U-Net++ is shown in Fig. 7.

F. U-Net+

As the depth of the network increases, after the information
about the input and gradient passes through many layers, it may
disappear gradually when it reaches the end (or the beginning)
of the network [37]. Most networks reduce information loss by
creating shortcuts between the previous and subsequent layers
in the network [38]-[40]. The previous layers in the network
will be concatenated with each subsequent layer. Through the
cascade between the layers, the feature maps obtained from
different layers in the network are combined to ensure that
there is a maximum of each layer in the network, and then
subsequent convolution operations are performed to reduce the
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loss of feature information to a certain extent, making the feature
extraction capability of the network more powerful. Inspired by
the ResNet [28] and DenseNet [41], the network structure of
the improved U-Net mainly performs one or more upsamplings
of the feature layer obtained in the downsampling process, and
expands to the same level of features. The size of the map is
then used to add and sum the corresponding pixels in the way
of adding, and integrate it into the up-sampling path to enhance
the feature information of the network. The improved network
structure is shown in Fig. 8, named U-Net+.

G. Evaluation Metrics

In order to evaluate the performance of our proposed UN+
OPMM model, six evaluation metrics (EMs): overall accuracy
(OA), kappa coefficient (Kappa), mean intersection over union
(mIoU), intersection over union (IoU), user’s accuracy (UA),
and producer’s accuracy (PA) are used to analyze the mapping
results [42]. The definition of each indicator is as follows.

1) OA: OA is the ratio of the number of correctly classified
pixels to the total pixels, which represents the overall classifica-
tion accuracy rate of the classification result. The formula is as
follows, where P; represents the number of pixels predicted to
be the correct category, and L,, represents the total number of
pixels.

OA = P,/L, x 100%. (1)

2) Kappa: Kappa is used in remote sensing image classi-
fication accuracy evaluation to judge the degree of agreement
between the prediction result and the label [43]. N represents
the total number of pixels, n is the number of classification
categories, X;; is the number of correctly classified pixels in
the ith category, X is the sum of the number of pixels in the
column of the ith type, X, is the sum of the number of pixels
in the row of the ith type. The calculation formula of Kappa
coefficient is

N1 X — 30 Xir Xy
N2 =50 X X

Kappa = (2)

3) mloU: mloU is used to evaluate the degree of overlap
between the classification result and the label, which is the
average of Intersection over union (IoU).
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TABLE I
PARAMETER SETTINGS OF THE SIX DIFFERENT NETWORKS

SN\ DePh  Comtruction  Function _Funetion
FCN 22 Conv2DTranspose ReLU Cross Entropy
SegNet 37 UpSampling ReLU Cross Entropy
U-Net 27 Concatenate ReLU Cross Entropy
ResU-Net 43 Resblock ReLU Cross Entropy
U-Net++ 27 Concatenate ReLU Cross Entropy
U-Net+ 27 Add ReLU Cross Entropy

4) UA: UA refers to the ratio of the total number of pixels
correctly classified into a certain class to the total number of
pixels classified into this class by the classifier in the entire
image, and its calculation formula is as follows:

UA = X;;/ Xy A3)

5) PA: PA represents the ratio of the number of pixels that
the classifier correctly classifies the pixels of the entire image
into a certain category to the total number of true references for
that category. The calculation formula is as follows:

PA = ,X“/)(JrZ (@)

IV. RESULTS AND ACCURACY ASSESSMENT
A. Sample Set Construction and Parameters Setting

In total, 2393 samples patches with a size of 512 x 512 pixels
are generated in the sample set. Training samples and validation
samples are randomly selected according to a ratio of 7:3 with
the sklearn module in the TensorFlow-Keras framework. After
20 epochs in the training process, the whole-area tests are done
based on the model with the minimum loss and maximum accu-
racy. Then the confusion matrix is calculated and the prediction
image are produced in the “Python-3.6" platform.

The parameter settings of the six different SSNNs are shown in
Table I. In this study, the activation function of the six employed
deep learning neural networks all select ReLU function, since it
is one of the most effective and widely used activation functions
in network construction. The ReLU function has two main
advantages: one is it can overcome gradient disappearance and
the other is that it can be used to train prediction methods more
effectively [44]. The cross-entropy function is chosen as the
loss function while the adaptive moment estimation (Adam)
algorithm is the optimizer for its suitability for solving opti-
mization problems with large-scale data and related parameters.
The learning rate used in Adam’s algorithm in this work is set
to 0.0001.

The experiment environment in this study is a work sta-
tion equipped with an Intel Xeon(R) Silver 4210R CPU
@2.4GHZ x40, 128GB RAM, and Nvidia GeForce RTX 3090
graphics card. The OPMM models constructed in this study
are all built in the Python programming language based on the
TensorFlow-Keras deep learning framework.
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TABLE II
EMS OF DIFFERENT MODELS (THE BOLDED AND UNDERLINED VALUE MEANS THE HIGHEST EMS OF THE ROW)

EMs OPMMmodels OPM (%) WAT(%) BUI(%) BAS(%) ROA(%) VEG(%) WDA (%)
PA/UA  FCOPMM  86.77/86.91 72.60/96.60 84.84/77.28 0.07/34.64 10.24/52.70 98.78/95.38  5.81/59.25
ScOPMM  73.78/80.36  0.00/0.00  87.41/66.83  0.00/0.00  7.54/97.86 98.57/95.18  0.09/25.28
UOPMM  95.10/95.04 90.71/97.81 92.11/94.84 77.48/94.20 74.15/85.20 99.42/98.67 87.66/95.64
RUOPMM  78.17/90.49 80.84/90.90 84.35/82.83 33.04/59.78 52.11/73.63 98.63/96.68 57.92/51.55
UN++OPMM  60.19/76.20  81.15/53.25 61.24/89.92  0.20/27.79  33.92/64.87 99.23/92.52  5.56/32.94
UN+OPMM  95.13/94.92 88.46/98.35 91.41/95.36 83.36/91.63 67.69/89.30 99.52/98.70  85.26/92.41
ToU FCOPMM 76.74 70.79 67.90 0.07 9.38 94.28 5.59
ScOPMM 62.51 0.00 60.96 0.00 7.53 93.89 0.09
UOPMM 90.60 88.90 $7.72 73.95 65.69 98.10 84.29
RUOPMM 72.23 7478 71.80 27.04 43.92 95.40 37.50
UN-++OPMM 50.67 47.39 5730 0.20 28.66 91.87 4.99
UN+OPMM 90.52 87.17 87.51 77.46 62.61 98.23 79.68

B. OPMM Results and Analysis

In this section, the mapping results of six SSNN-based
OPMM models which are FCN-based OPMM (FCOPMM),
SegNet-based OPMM (SeOPMM), U-Net-based OPMM
(UOPMM), ResU-Net-based OPMM (RUOPMM), U-Net++--
based OPMM (UN++OPMM), and UN4+OPMM are analyzed
and discussed.

1) Site 1. Dengfeng City: Six LUTs are mapped in Site 1,
which are OPM, BUI, BAS, ROA, VEG, and WDA (Fig. 9).
The red color area in Fig. 9 is the OPM extracted by the six
SSNN-based OPMM models. The black solid area shows the
verified OPM.

From Fig. 9, we can see that, among these six SSNN-
based OPMM methods, SeOPMM performs the worst while
UN+OPMM performs the best. Except UN+OPMM, other five
OPMM models missed or/and misclassified a lot of OPMs,
especially in the northwest corner in Site 1. The mapping results
of FCOPMM and SeOPMM are not satisfactory since there
are many unmapped OPMs in Fig. 9(a) and (b). In particular,
SeOPMM missed BAS, and some small OPMs. Many OPMs
are misclassified into BUI. Same as SeOPMM, RUOPMM’s
performance was not satisfactory because some OPMs with large
area was classified into several BUI and BAS, and some WDAs
was misclassified into BUI and BAS, too. In Fig. 9(f), we can see
that the mapping results of UN+OPMM are good with complete
categories and accurate boundaries of all six LUTs, but with a
misclassification of WAT, which should not be exist in Site 1.

2) Site 2. Yuzhou City: Seven LUTs are distributed in Site 2,
including OPM, WAT, BUI, BAS, ROA, VEG, and WDA. The
classification results are shown in Fig. 10. The performances of
each model in Site 2 are better as they are in Site 1. Among
these six OPMM results, SeOPMM performed the worst while
UN+OPMM achieved the best performance, since SeOPMM
missed WAT and BAS in Site 2 while the other five models
mapped all the seven LUTs. From the point view of OPMM,
all these six SSNN-based OPMM models can identify most of
the OPMs, and can achieve satisfied results, which indicates
the SSNN-based OPMM methods can be applied in OPMM.
But for the details of OPMM, FCOPMM and SeOPMM missed
some OPMs in the northwest and misclassified some OPMs in
the south area in Site 2. RUOPMM has the lower omission
error of OPMs in the in the northwest and lower commission

error of OPMs in the south, but it misclassified some BAS into
OPM in the northeast corner in Site 2. UN+OPMM has the
best performance in mapping the OPMs, the OPMM results in
Fig. 10 shows the complete boundary of each OPM with the
lowest omission and commission error.

C. Accuracy Assessment

Six EMs are selected to assess the performance of these six
SSNN-based OPMM models, which are OA, Kappa, mloU, PA,
UA, and IoU. The EMs of different models are shown in Fig. 11
and Table II.

In general, our proposed UN+OPMM model was more ef-
fective in the task of mapping all the seven LUTs, with the
highest OA, and Kappa values, which means the UN-++OPMM
mapped a largest number of correct samples than that of the
other five models classified. The OA values of the six models
are all above 90%, which means these six models can classify
LUTSs accurately. Compared with OA, the Kappa coefficient are
different for the Kappa coefficient of UN++OPMM, FCOPMM
and SeOPMM are just 63.83%,76.47%, and 71.62%, while the
Kappa coefficient of UOPMM, RUOPMM, and UN+OPMM
are 80.23%, 93.1%, and 93.16%, respectively, indicating that our
proposed UN+OPMM performs best among these six models.
In terms of mloU, the newly proposed UN+OPMM reaches
83.31%, which is 0.86% lower than the original U-Net, followed
by RUOPMM, FCOPMM, and UN++OPMM, while SeOPMM
has the lowest mloU of 32.14%. The higher OA values but
lower mloU values of FCOPMM, SeOPMM, RUOPMM, and
UN+-+OPMM shows the unstable mapping performance of the
network.

From the perspective of PA and UA, although not ev-
ery category of UN4+OPMM achieved the highest value, the
number of the highest values was relatively large, indicating
that UN+OPMM performed more prominently in all models.
Among these seven LUTs, the UA values are higher than PA
values in BAS, ROA, and while the PA values are higher than
UA values in VEG in all the six SSNN-based OPMM models.
For OPM, the PA value is higher than UA value in UOPMM, and
UN+OPMM while the value of PA is lower than that of UA in
other four models. For WAT, the PA values are higher than UA
values in UN++OPMM but lower in other five models. From the
perspective of BUI, the values of PA are higher than that of UA in
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Fig.9. OPMM results based on various SSNN-based OPMM methods in Site 1. (a) FCOPMM. (b) SeOPMM. (c) UOPMM. (d) RUOPMM. (e) UN++OPMM.
(f) UN4+-OPMM.
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UN+OPMM.

three models (FCOPMM, SeOPMM, and RUOPMM) but lower
in UOPMM, UN++OPMM, and UN+OPMM. For WDA, the
PA values are higher than UA values only in RUOPMM but
lower in other five models. A higher PA means that less objects
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were misclassified into other LUTs, and a higher UA means the
number of mapped samples were more than that of total samples.
As forIoU of each LUTs, the top two highest values are obtained
by UOPMM, and UN+OPMM.
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TABLE III
COMPLETION OF THE EVALUATION INDICATORS OF EACH MODEL

OPMM models OA Kappa mloU PA/UAIOY Count
OPM WAT BUI BAS ROA VEG WDA
FCOPMM X X X X /X [% X /X [% X /X [% X/%[x X/%[x X/x[% X /X [% 0
SeOPMM x x XX/ x[x[xox[x/xxfx[x xPlx xfx/x o x/x/x 1
UOPMM v v v NN NN NRNN - NN NN RN NN 23
RUOPMM X X x X/X/[% X/X/[% X/X/[% X/X[x x/x/x /X /% X/X/[% 0
UN++OPMM X X X /X [% X /X [% X /X [% X/%[x X/X[X X /X [% X /X [% 0
UN+OPMM v v v VAN ANN - ANN - NNN S NN RN NN 24
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40.00%
30.00%
20,00%
1000%
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WFCOPMM ®SeOPMM ®UNOPMM =RUOPMM MUN+OPMM  ® UN+OPMM

Fig. 11.  OA, Kappa, and mloU values of various SSNN-based methods.

D. Experimental Summary

The performance of each model is summarized and the results
are shown in Table III. We considered a model successful when
the six EM values achieved the top two in the experiment.
We counted the performance of each model separately and
summarized its number of successes.

It can be found that UN+OPMM performs stable in the six
EMs since it reaches all top two accuracies among the six SSNN-
OPMM model, indicating that our proposed UN+OPMM is
more robust.

V. DISCUSSIONS
A. Factors Affecting the Mapping Accuracy

It is significant that UN+-OPMM improves the mapping per-
formance of all the seven LUTs of the OPMA. Among all the
seven LUTs, the PA, UA, and IoU values of OPM type and
VEG type are all above 90%. The main reason is that these two
LUTSs are the most common ones in Site 1 and Site 2, and their
characteristics are obvious and easy to distinguish. The PA, UA,
and IoU values of ROA, BAS, and WDA are all below 80%,
especially for ROA, the PA and IoU values are below 70%,
indicating that these three LUTs are not mapped well in Site
1 and Site 2, the main reasons are these three LUTSs are less
distributed and relatively dispersed in both two Sites. There are
some similarities in the LUTs which caused by mining activities,
such as OPM and WDA. These two LUTSs can be easily confused
since the composition of substances in WDA are extracted from
the OPM. Also, the impact of the topography, landforms, and
human activities within these two LUTs make it difficult to
distinguish between them.

B. Uncertainties in OPMM

Some uncertainties still remain in this study although
our newly proposed UN+OPMM model achieves promising
results in these two Sites. First, the performance of the OPMM
model depends on the number of samples. From Table III and
Figs. 9-11, we can see that the more samples in the LUTs,
the higher the EMs of mapping results. Second, in this work,
different types of OPMs are not mapped individually when we
applied the SSNN-based OPMM methods, which may cause
uncertainty because for a large area of OPMA, the types of OPM
are often different and should be treated differently. Last but not
least, the inventory of OPMM in the study area is not complete
and consistent. This insufficient information may also introduce
uncertainties, since we may not recognize the newly OPMA in
these two Sites in our existing OPM inventory datasets.

C. Limitations and Future Work

Since deep learning model which achieve good performance
need a lot of samples for training, the sample numbers and
labeling becomes the first and biggest problem. In Fig. 10, we
can see that, for the LUTSs which are less distributed, we obtain
the lowest EMs (ROA, BAS). So, the ability of the model to deal
with a small number of samples in OPMM is an issue that needs
to be addressed.

VI. CONCLUSION

In this article, we propose a hybrid SSNN-based OPMM
framework for GF-2 HSRSIs by using UN+OPMM model,
which was constructed by concatenating the previous layers with
each subsequent layer, so that there is a maximum of feature
maps of each layer in the network, which can reduce the loss
of feature information and make the extraction capability of the
network more powerful. A sample set of 2393 sample patches
with a size of 512 x 512 pixels are generated, with a ratio of
7:3 of training samples and validation samples. The results of
UN-+OPMM are compared with five state-of-the-art deep learn-
ing algorithms: FCN, SegNet, U-Net, ResU-Net, and U-Net++-.
The results show that the proposed framework outperforms the
original U-Net by 0.02% in OA, 0.06% in Kappa, and 0.03%
in PA of OPMs, achieving higher accuracy than the other four
methods. It can be concluded that the proposed framework
exhibits promising performance in ecological restoration and
governance of OPMAs.
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