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Monitoring Lodging Extents of Maize Crop Using
Multitemporal GF-1 Images

Xuzhou Qu , Dong Shi, Xiaohe Gu , Qian Sun , Xueqian Hu, Xin Yang, and Yuchun Pan

Abstract—Maize crop lodging is a recurrent phenomenon which
results in significant reduction of grain yield and quality in addition
to the impediment of mechanical harvesting. The large-scale mon-
itoring of maize crop lodging is important for production policy
adjustment and agricultural insurance compensation. In this arti-
cle, we derived a variety of features from multitemporal GaoFen-1
(GF-1) images before and after maize crop lodging. We screened
the most sensitive features of the spectrum, texture, and vegeta-
tion index to monitor maize crop lodging. The recursive feature
elimination method based on cross-validation and mutual infor-
mation were compared to obtain the optimal feature combination
for monitoring the lodging extents of maize crop. The random
forest classifier was used to classify the lodging extents. The results
showed that the most sensitive features of the spectrum, texture,
and vegetation indices of lodging extents included the difference of
reflectance in blue, green, and red bands, the difference of normal-
ized difference vegetation index, the difference of ratio vegetation
index, the difference of enhanced vegetation index difference, the
difference of mean value of blue band, the difference of mean value
of green band, and the difference of mean value of red band. The
total accuracy of lodging extents classification was 87.50%, and the
Kappa coefficient was 0.83 for testing samples. Based on multiple
features derived from GF-1 images before and after lodging, the
lodging extents of maize crop can be monitored on a large scale.

Index Terms—Lodging, maize crop, multitemporal, random
forest (RF), recursive feature elimination (RFE) method based on
cross-validation (RFECV).

I. INTRODUCTION

A S ONE of the three major food crops in China, maize crop
plays a critical role in grain production [1]. Lodging is a

phenomenon in maize crop production, and is mainly caused
by strong winds, hail, and heavy rainfall [2]. Lodging seriously
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affects the photosynthesis, nutrient, and water transport of maize
crop, and makes the plant more vulnerable to diseases and insect
pests, resulting in the reduction in maize crop yield [3], [4].
Maize lodging causes nearly 15%–30% yield on an average, and
it can reach up to 50% or even total loss in case of severe lodging
(SL) case [2]. Therefore, the timely and accurate monitoring
of maize crop lodging is beneficial to assess the growth status
of maize crop for agricultural departments, which provide a
powerful data for agricultural insurance claims of farmers [5]
and adjust agricultural production policy [6].

In traditional crop lodging monitoring, lodging information
is mostly obtained from field observation, subjected to expert
knowledge and subjectivity [7]. Remote sensing technology
has the advantages of rapid and all weather application, and
provides objective information [8]. Remote sensing technol-
ogy can be applied to achieve rapid, objective, and large-scale
monitoring of crop lodging [9]. Crop lodging cause changes
in the canopy structure, radiation use efficiency of the crop
canopy, and its spectral characteristics. Therefore, crop lodging
information can be extracted by comparing the differences in
spectral reflectance, texture, and plant height between lodged
and nonlodged plants [10]. The canopy reflectance is mainly
obtained by spectrometry, hyperspectral remote sensing, multi-
spectral remote sensing, and other means to analyze the spectral
reflectance differences between lodging and nonlodging (NL)
crops [11]. The texture features extracted by the method of local
binary patterns and gray-level co-occurrence matrix (GLCM)
[12] are used to describe the relationships of ground objects
with surrounding ground objects [13]. The textural features with
significant differences between lodging and NL crops can be
found, and crop lodging distributions can be identified. The
canopy height of crops can be obtained using LiDAR, ultrasonic
waves, depth cameras, and visible light cameras. The height
difference can be used to identify between lodging and NL crops
[14]–[16].

At present, scholars have conducted many studies on moni-
toring crop lodging. In the field experiment, digital cameras and
spectrometers were widely used in lodging research [17]. For
example, digital cameras were used to monitor rice lodging [8].
Based on the analysis of canopy spectral reflectance, principal
component analysis and artificial neural network (ANN) [18]
were used to monitor rice lodging. With the development of
unnamed aerial vehicles (UAVs) and satellite remote sensing,
the methods of monitoring crop lodging become more diver-
sified [19]–[21]. The spectrum, texture, color, and topographic
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information obtained from UAV images are important features of
monitoring crop lodging [6], [22], [23]. Moreover, from UVA
images, the method of combining structure-from-motion with
geostatistics [24] and particle swarm optimization combined
with supporting vector machine (SVM) [25] made crop lodging
monitoring more precise. Whether field experiment or UAV,
it will spend a lot of time and manpower for large-scale crop
lodging monitoring [8], [12], [26]–[28]. Synthetic aperture radar
(SAR) can overcome the influences of clouds and shadows. A
few studies have explored crop lodging from different perspec-
tives [29], [30]. Zhao et al. [31] used a series of polarized SAR
(PolSAR) to explore the ability of monitoring lodging in wheat
and rape. It was found that the lodging monitoring ability of
PolSAR was related to the canopy structure of crops. The radar
polarization index derived from Radarsat-2 image data could
be used to monitor wheat lodging [32]. The changes of canopy
height before and after lodging were also used to monitor the
lodging of crops [33], [34]. Chauhan et al. [35] estimated the
lodging angle by Sentinel-1 and Radarsat-2, and evaluated the
lodging degree of crops. At present, optical satellites images
have been applied in crop lodging monitoring. Chen et al. [36]
proposed a spectral sum index to identify the lodging range of
large-scale maize crop by analyzing the spectral changes of NL
and lodging maize crop. These studies [36], [37] mainly focused
on the monitoring of lodging range of crops. Therefore, the
evaluation of large-scale lodging extents is of great significance.
Machine learning methods, such as SVM [25], ANN [18], and
random forest (RF) [37], [38], were widely used in crop lodging
monitoring. Among them, RF was used most frequently and had
the highest accuracy.

Selecting effective feature combination is helpful to improve
the accuracy and efficiency of crop lodging monitoring. Feature
selection algorithms can be divided into three categories: filter,
wrapper, and embedding. The filter algorithms appeared first,
of which the process is independent of the classifier [39]. Its
main algorithms include the Pearson correlation coefficient and
the mutual information (MI) criterion [39]. The calculation
processes of these algorithms are simple and quick. Wrapper
algorithms select the feature subset that is most beneficial to
the performance of a given learner, but its computation burden
is huge [40]. Embedding algorithms are integrated with the
classifier, and the optimal feature is selected in the learning
process of the learner [41]. For example, the decision tree
algorithm performs feature screening when the optimal vari-
ables of the tree nodes are automatically selected. The recursive
feature elimination (RFE) algorithm combines the advantages
of wrapper and embedding algorithms, and is more closely
combined with the learner, which is more conducive to feature
selection [42].

Based on GaoFen-1 (GF-1) image and statistical analysis
methods, and combined with field samples, the article aimed to
find sensitive features in the spectrum, texture, and vegetation
indices to monitor maize crop lodging. Recursive feature elimi-
nation based on cross-validation (RFECV) and MI were used to
select the best feature combination for sensitive features. Then,
we achieved the classification of lodging extents using an RF

classifier. The purpose of this article was to provide a technical
reference for monitoring maize crop lodging.

II. DATA SOURCE

A. Overview of the Study Area

Lishu County, Siping City, Jilin Province is located in
the Songliao Plain with geographic coordinates of 123°45’–
124°53′E and 43°02′–43°46′N. It has a north, temperate, semi-
humid, continental monsoon climate with simultaneous rain and
heat, and four distinctive seasons. In 2016–2020, the planting
area of maize crop in Lishu County was approximately 200 000
hectares, accounting for 90% of the total grain planting area. The
annual output of maize crop was approximately 2 million tons,
accounting for more than 90% of the total grain output in the
county. Maize crop is important for grain production in Lishu
County.1 In recent years, severe meteorological disasters such
as spring droughts, summer waterlogging, strong winds, and
heavy rainfall have occurred in the county, which have seriously
affected the sustained and stable yield of maize crop. Lodging,
caused by strong winds and heavy rainfall, is an important factor
for maize yield reduction. The location of the study area and the
distribution of the field samples in Lishu County are shown in
Fig. 1.

B. Data Acquisition

On August 27 and September 3, 2020, Jilin Province was
affected by Typhoons Bavi and Maysak, which led to large-
scale maize crop lodging in Lishu County. Typhoon informa-
tion came from the typhoon network of China Meteorological
Observatory.2 The spatial resolution of digital elevation data is
30 m.3 The path and magnitude of the typhoon are shown in
Fig. 2. The meteorological data was obtained from August 25th
to September 6th from the Central Meteorological Network in
Table I.4 In this article, we selected two GF-1 WFV images,
before and after lodging as data sources. The parameters of the
satellite data are listed in Table II.5 The imaging dates were
August 16, 2020 (before lodging) and September 6, 2020 (after
lodging). According to Table III, the two remote sensing images
were at the filling stage, which is the key period of formation of
maize yield. Atmospheric correction, orthocorrection, geomet-
ric correction, clipping, mosaic, and stitching operations were
performed on the GF-1 images in ENVI 5.3.

On September 6, 2020, maize crop plots with 30 m × 30 m
were randomly selected for field investigation. A portable
decimeter GPS (Trimble GeoXH2008) was used for positioning.
The lodging rate was estimated by agronomic experts in the field.
Similarly, nonmaize samples were collected, including building,
water, forest, rice, and bare soil. There were 100 maize crop and
69 nonmaize samples.

1[Online]. Available: http://www.stats.gov.cn
2[Online]. Available: http://typhoon.nmc.cn/web.html
3[Online]. Available: https://search.earthdata.nasa.gov
4[Online]. Available: http://weather.cma.cn/
5[Online]. Available: http://www.cresda.com/CN/Satellite/3076.shtml

http://www.stats.gov.cn
http://typhoon.nmc.cn/web.html
https://search.earthdata.nasa.gov
http://weather.cma.cn/
http://www.cresda.com/CN/Satellite/3076.shtml
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Fig. 1. Location of study area and distribution of field samples. (a) Location of study area. (b) Distribution of maize crop and nonmaize samples. (c) Distribution
of maize crop extents samples.

Fig. 2. Typhoon track. TD: tropical depression, TS: tropical storm, STS: severe tropical storm, and TY: typhoon.
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TABLE I
METEOROLOGICAL CONDITIONS OF LISHU COUNTY

Fig. 3. Photos of maize crop lodging in Lishu County. (a) Light lodging. (b) Moderate lodging. (c) Severe lodging.

TABLE II
PHENOLOGICAL INFORMATION OF MAIZE CROP IN LISHU COUNTY

The lodging ratio per unit area was divided into 0%–10%,
11%-60%, 61%–90%, and 91%–100% [38], which correspond
to NL, light lodging (LL), moderate lodging (ML), and SL,
respectively. Finally, we obtained 35 SL, 10 ML, 5 LL, and 50
NL samples. Photos of maize crop lodging are shown in Fig. 3.

III. RESEARCH METHODS

A. Technical Process

The technical process of this article is shown in Fig. 4. The
main steps are as follows:

1) The supervised classification method was used to extract
the spatial distribution of maize crops from the GF-1

Fig. 4. Technical flowchart.

images on August 16, which were declouded based on
the image of September 6.

2) Based on GF-1 images after maize crop masking, the
spectral, vegetation indices, and texture features were
calculated, and the features that were different before and
after lodging were constructed.

3) A method based on statistical analysis was used to analyze
the features with differences, and the features sensitive to
lodging extents were screened.
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TABLE III
REMOTE SENSING DATA PARAMETERS OF THE GF-1 SATELLITE

TABLE IV
CALCULATION FORMULA OF VEGETATION INDICES

4) RFECV and MI were used to optimize the features, and
the optimal feature combination of lodging extents was
obtained.

5) The RF classifier was used to classify the optimal feature
combination, and the extents of the lodging were obtained.

B. Feature Construction

For the spectral features, after preprocessing the remote sens-
ing image, we obtained the reflectance of four bands, including
the reflectance of the blue band (Rblue), green band (Rgreen), red
band (Rred), and near infrared band (Rnir).

For the features of the vegetation indices, we selected five
vegetation indices [30], [43]–[47]. Their calculation formulas
are listed in Table IV.

For texture features, we calculated the GLCM of the spectral
image with a 3 × 3 filtering window [48], [49] and a moving
direction of 45° after comparing with other kernels and direc-
tions. Eight texture features were calculated, including mean,

variance, homogeneity, dissimilarity, contrast, entropy, correla-
tion, and second moment. Their calculation formulas are listed in
Table V.

For the difference features, we subtracted the spectral, vegeta-
tion indices, and texture features after lodging from those before
lodging. The calculation formula used is shown as

ΔT = TAug.16 − TSep.6 (1)

whereΔT is the difference features, TAug.16 is the features of the
remote sensing images on August 16, and TSep.6 is the features
of the remote sensing images on September 6.

The values of each difference feature were extracted by field
samples of maize crop. We used these values to generate a
box plot, and then observed the differences between different
states of maize crop. One-way analysis of variance with post-hoc
comparisons (Games–Howell Post-hoc test [55], which assumes
unequal variance between groups) was used to find the sig-
nificant pairwise differences among the classes. Significance
was calculated in SPSS software (version 20.0; SPSS Inc.,
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TABLE V
TEXTURE FEATURE CALCULATION FORMULAS

where B: blue band, G: green band, R: red band, NIR: near infrared band, i, j: gray level of the pixel, i: mean value of pixel i, ρ: variance of the pixels, p(i, j): the probability of
the occurrence of i, j. C. Feature analysis method.

Chicago, IL, USA). The Games–Howell test corrects the degree
of freedom of the t-test based on Welch’s [55].

D. Feature Combination Optimization of RFECV and MI

The RFECV is an effective method for feature combination
screening [56]. The first stage is the RFE, which is used for
finding the optimal feature subset. The RF was used as the
estimator of RFE. When the dataset was input into the model,
the importance of each feature could be calculated based on
the mean decrease of impurity (MDI). More information on
MDI and feature importance evaluation with RF can be found
elsewhere [57]. The model is repeatedly built to exclude the
least important features [58]. This process is repeated on the
remaining features to rank the importance of all features. The
next stage is the cross-validation (CV) [59]. Different numbers
of features were selected based on the importance of features
determined in RFE stage. The CV method was used to verify
the selected feature set. The number of features with the highest
average score was determined [60], and the optimal feature
combination was obtained. The five-fold CV was used in the
article.

In feature selection, MI [61] is to find features that are highly
related to the class and have low redundancy between features.
Its principle is simple and its calculation speed is fast. However,
if there is a high correlation between features, the algorithm
can easily lead to the redundancy of feature variables. The MI
can be calculated as formula (2). First, MI was used to evaluate
the importance of input features, and then the method of CV
was used to verify the selected feature set. The number of
features with the highest average score was determined, and
the feature selection was completed. Both RFECV and MI were

implemented in Python (version 3.8)

I (X,Y ) =
∑
y∈Y

∑
x∈X

p (x, y) log

(
p (x, y)

p (x) p (y)

)
. (2)

For two random variables X and Y, their joint probability
density function is p (X, Y), the marginal probability density
function is p (Y) and p (Y), and I (X, Y) is the MI.

E. RF Classifier

RF is a classifier that uses multiple trees to train and predict
the samples [62]. Each decision tree is a classifier. For an input
sample, n trees generate n classification results [63]. The RF
integrates all the classified voting results and designates the
category with the most votes as the final output. Compared
to other nonparametric classifiers, RF has a faster calculation
speed and lower cost [64]. RF can deal with high-dimensional
data, has strong anti-interference ability, and strong anti-over-
fitting ability [65]. In this article, the RF classifier of ENVI
5.3 [66] was used to extract and classify the maize crop. The
parameter settings were as follows: number of trees is 100,
number of features is square root, and impurity function is Gini
coefficient.

F. Lodging Classification Method

The algorithms of RFECV and MI were used to optimize
all features, respectively. After comparison, the most sensitive
feature combination for lodging extents of maize crop was
obtained. 3/5 of all field samples were randomly used to train
the models and the remaining samples were used to validation.
We used the training samples to train the RF classifier. The
extents of lodging were obtained. We verified classification
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TABLE VI
SEPARABILITY OF TRAINING SAMPLES

TABLE VII
CONFUSION MATRIX OF MAIZE CROP EXTRACTION

Total accuracy: TA, Kappa Coefficient: K.

accuracy by calculating the confusion matrix with the testing
samples.

IV. RESULTS

A. Extraction of Maize Crop Planting Area

The cloud distribution was extracted from GF-1 image on
September 6 to obtain the cloudless region of the two-phase
images. The training samples were randomly selected from
Google high-resolution images, including 100 maize and 82
nonmaize samples. The separability of training samples was
above 1.90 in Table VI. After comparing two classifiers, the RF
was used to classify the imagery of removing cloud on August
16. The testing samples included 100 maize crop samples and 69
nonmaize samples. The total accuracy of training samples was
98.90% and Kappa coefficient was 0.98. The total accuracy of
testing samples was 93.49% and Kappa coefficient was 0.87. The
confusion matrix of maize crop extraction is shown in Table VII.
The maize distribution is shown in Fig. 5. According to the
official report of Lishu County, the maize crop planting area
was 210 000 hectares in 2020.6 The maize crop planting area by
classification is 203 500 hectares, which is 6500 hectares less
than the official report (3%). This is caused by the removal of
the area where clouds exist in planting area. This accuracy met
the requirements for our subsequent research in this article.

B. Spectral Features Analysis

Fig. 6 shows the mean and standard deviation of reflectance
between lodging and NL maize crop samples obtained from the
image on September 6. The mean and standard deviation of Rblue

6[Online]. Available: http://www.lishu.gov.cn

Fig. 5. Spatial distribution of maize crop.

(485 nm), Rgreen (550 nm), Rred (660 nm), and Rnir (830 nm) of
lodging maize were higher than NL maize. Because the canopy
height of maize crop decreased after lodging and the canopy
structure of maize crop considerably changed, which led to a
significant change in the proportion of stalks and leaves in the
view of the maize crop canopy spectrum [15], the reflectance of
maize crop stalk is higher than that of leaf. The more serious
the lodging, the higher the straw exposure [67], and higher the
reflectance (Fig. 6).

The quartile is the value of a set of data sorted at 25% and
75%. The description of the data in the quartile interval can
more effectively represent the characteristics of the data and
eliminate the interference of data outliers. We used field samples
to extract the difference of spectral reflectance. The ML and SL
in ΔRblue, ΔRgreen, and ΔRred are obviously separated from

http://www.lishu.gov.cn
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TABLE VIII
POST-HOC GAMES–HOWELL P-VALUE STATISTICS OF DIFFERENT LODGING EXTENTS FOR DIFFERENCE OF REFLECTANCE

∗, ∗∗, and ∗∗∗ indicate 0.05, 0.01, and 0.001 levels of significance.

Fig. 6. Mean and standard deviation of reflectance between lodging and
nonlodging maize crop.

the quartile of NL and LL, while the separability of NL, LL,
ML, and SL in ΔRnir is not obvious in Fig. 7(a). The Post-hoc
Games–Howell (pairwise) test comparison identified significant
differences between NL and ML and between NL and SL (for
ΔRblue, ΔRgreen, and ΔRred) in Table VIII. Among the four
features, ΔRblue, ΔRgreen, and ΔRred show good separability
in the lodging extents, while theΔRnir before and after lodging is
not obvious. This is consistent with the conclusion in [44], [67].

Through the analysis of the spectral, we found that the sen-
sitive characteristics of the lodging extents of maize crop were
ΔRblue, ΔRgreen, and ΔRred.

C. Vegetation Index Analysis

The vegetation indices before and after lodging using field
samples were obtained. Because the scales of ΔNDVI, ΔRVI,
ΔEVI, ΔARVI, and ΔSIPI were different, the five vegetation
indices were compared by calculating the change rate before
and after lodging, as shown in Fig. 7(b). The relative change of
lodging was calculated as

VIc =
VIb −VIa

VIb
(3)

where VIc is the change rate of vegetation index before and after
lodging, and VIb and VIa are the vegetation indices before after
lodging, respectively.

In Fig. 8, there is a significant difference in quartile between
the NL of NDVI, RVI, and EVI, and the other three lodging

extents. LL and SL of NDVI and RVI are separable in quartile.
The Post-hoc Games–Howell (pairwise) test comparison iden-
tified significant differences between NL and ML (for ΔNDVI,
ΔRVI, and ΔEVI), between NL and SL (for ΔNDVI, ΔRVI,
and ΔEVI), and between LL and SL (for ΔNDVI and ΔEVI)
in Table IX. After lodging, the canopy structure of maize crop
changed significantly, which led to significant changes in the leaf
area index [68] and canopy reflectance of the maize crop. There-
fore, ΔNDVI, ΔRVI, and ΔEVI, which are sensitive to changes
in canopy structure, produced better effects in distinguishing the
grade of lodging maize crop. SIPI is generally used to maximize
the sensitivity of the carotenoid-to-chlorophyll ratio when the
canopy structure decreases and is sensitive to pigment changes.
Remote sensing images were acquired on the third day after
lodging. Because the change of chlorophyll content was small,
SIPI was unable to distinguish the lodging extents of maize crop.

Through the analysis of the vegetation index, we found that
the sensitive characteristics that can distinguish the extents of
lodging maize crop were ΔNDVI, ΔRVI, and ΔEVI.

D. Texture Feature Analysis

The differences of texture features were extracted by field
samples, which were analyzed by box plot and Games–Howell
significance test. Among all the differences of texture features,
only the ΔB_MEA, ΔG_MEA, and ΔR_MEA have obvious
separability between NL and other lodging extents in Fig. 8.
ΔG_MEA and ΔR_MEA have obvious separability in all
lodging extents. There is a partial overlap between SL and
ML of ΔB_MEA. The Post-hoc Games–Howell (pairwise) test
comparison identified significant differences between NL and
ML (ΔB_MEA, ΔG_MEA, and ΔR_MEA), between NL and
SL (ΔB_MEA,ΔG_MEA, andΔR_MEA), between LL and SL
(ΔB_MEA, ΔG_MEA, and ΔR_MEA), and between ML and
SL (ΔR_MEA) in Table X. In summary, the texture features that
distinguished the sensitivity of lodging maize were ΔB_MEA,
ΔG_MEA, and ΔR_MEA.

E. Evaluating Maize Crop Lodging Grades

All the difference features extracted from the field samples
were put into RFECV and MI for screening sensitive features,
respectively. Fig. 9 shows the results of RFECV and MI feature
screening. The highest accuracy of RFECV is 95.00% when nine
features are selected for the first time. The highest accuracy of MI
is 93.00% and the number of features is 33. The result of RFECV
was taken as the result of feature combination screening. These
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Fig. 7. Changes in the reflectance and vegetation indices in different lodging extents. (a) Difference of reflectance. (b) VIc of five vegetation indices.

Fig. 8. Changes in the texture characteristics of different lodging extents before and after lodging.
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TABLE IX
POST-HOC GAMES-HOWELL P-VALUE STATISTICS OF DIFFERENT LODGING EXTENTS FOR VIc

∗, ∗∗, and ∗∗∗ indicate 0.05, 0.01, and 0.001 levels of significance.

Fig. 9. Plot of feature screening based on RFECV and MI.

nine features are ΔRblue, ΔRgreen, ΔRred, ΔNDVI, ΔRVI,
ΔEVI,ΔB_MEA,ΔG_MEA, andΔR_MEA, respectively. The
result of RFECV is consistent with that of feature analysis. So the
optimal combination of feature was ΔRblue, ΔRgreen, ΔRred,
ΔNDVI, ΔRVI, ΔEVI, ΔB_MEA, ΔG_MEA, and ΔR_MEA.

The RF classifier was used to classify the optimal feature
combination, and a confusion matrix to verify the accuracy of
the lodging classification. The accuracy of training samples
was 95.00%, kappa coefficient was 0.93, and the accuracy
of testing samples was 87.50%, kappa coefficient was 0.83.
The confusion matrix of lodging extents classification is in
Table XI. According to the confusion matrix, one of the SL
testing samples were mistakenly classified as ML, and one of
the ML maize crop testing samples was mistakenly classified
as SL. The three samples of NL were mistakenly divided into
LL. The maize crop status of NL, LL, ML, and SL is similar.
They have more complex lodging at the junction, resulting in
incorrect division. Through the classification of lodging extents,
we could quickly judge the scope and extents of lodging and
master the lodging situation of the whole region. This can help
agricultural departments perform policy adjustments and with

Fig. 10. Classification of lodging extents.

related agricultural insurance compensation. The results of the
lodging extents classification are shown in Fig. 10.

The SL was mostly concentrated in the central and eastern
of Lishu County, accounting for a large proportion of the total
lodging. In Quanyanling Town, Wanfa Town, Donghe Town,
Caijia Town, the east of Lishu Town, and the south of Yushutai
Town, the area of SL was larger than the other three lodging
extents. LL was mainly distributed in the north of Lishu County,
covering only a small area. The statistical results of the lodging
extents of maize crop in the towns are shown in Fig. 11. A large
proportion of SL and ML was in the central and eastern parts of
Lishu County. Most of LL was in the north of Lishu County.

When the typhoon passed, there was heavy rain and strong
winds in Lishu County in Table I. The lodging of maize crop
in Lishu County was caused by Typhoons Bavi and Maysak.
The paths of the typhoons are illustrated in Fig. 2. When Bavi
approached from the south of Jilin, the Changbai Mountains
served as a barrier between Lishu and the typhoon, weakening
the impact of strong winds. After entering Jilin, the winds
gradually weakened, so Bavi only had a slight impact on Lishu.
Bavi had a greater effect on the maize crop in the southeast
than in the northwest of Lishu. Maysak approached from the
southeast of Jilin. The winds were strong and long-lasting. The



3810 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE X
POST-HOC GAMES–HOWELL P-VALUE STATISTICS OF DIFFERENT LODGING EXTENTS FOR DIFFERENCE OF TEXTURE

∗, ∗∗, and ∗∗∗ indicate 0.05, 0.01, and 0.001 levels of significance.

TABLE XI
CONFUSION MATRIX OF LODGING EXTENTS CLASSIFICATION

Total accuracy: TA, Kappa Coefficient: K.
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Fig. 11. Proportion of the lodging extents of maize in various towns.

rain was heavy and continuous. Maysak strongly affected maize
crop in the central and southern parts of Lishu. The lodging of
maize crop was more severe in the southeast and middle of Lishu
than in the north and northwest. This is consistent with the result
of lodging classification.

V. DISCUSSION

Lodging is one of the common phenomena in maize produc-
tion, which is mainly caused by strong wind and rainstorms. Re-
mote sensing technology has been widely used in maize lodging
monitoring, including optical remote sensing [36], [44], radar
remote sensing [29], [35], and UAV remote sensing [6], [15].
Previous researches mainly focused on monitoring the range of
maize lodging [36], [37]. How to monitor the lodging extents is
of great significance for accurate settlement of insurance claims.
In the article, a method for monitoring the lodging extents using
remote sensing images before and after lodging was developed.
Through the method of RFE, nine sensitive features of lodging
extents were screened from the differences of spectrum, texture,
and vegetation indices before and after lodging were developed.
Through the method of RFE, nine sensitive features of lodging
extents were screened from the differences of spectrum, texture
and vegetation indices before and after lodging. The results
indicated that the method of screening sensitive feature com-
binations for classification can effectively monitor the lodging
extents of maize crop at a large scale. Our accuracy was improved
compared with other studies [44], [69].

County-scale lodging monitoring is difficult because of wide
range and complex lodging situations. It will take a lot of time
and resources to monitor lodging at county scale, either manually
or by UAV [11]. The GF-1 image with medium resolution
combines the advantages of temporal and spatial resolution.
The article proved the feasibility of multitemporal image with
medium resolution for monitoring maize lodging at the country
scale. The method of monitoring maize lodging proposed in
the study is suitable for other satellite images with similar
parameters to GF-1 images. After lodging, the weather was many
cloudy and rainy. The SAR images are not affected by clouds
and fog and are suitable for monitoring crop lodging in extreme
weather. In the next step, we will try to combine multispectral
images with SAR images to monitor maize lodging.

We used RFECV and MI to select the most sensitive feature
combination for monitoring maize crop lodging. RFECV se-
lected 9 features, MI selected 33 features, and the accuracy of
CV was less than RFECV. The reason for this phenomenon may
be that the correlation between features is high and the selected
features are redundant. And RFECV is a kind of embedded
method, which associates feature selection with classifier to
select the feature combination that is more suitable for the RF
classifier [61].

In this article, the resolution of the remote sensing images
was 16 m with many mixed pixels between lodging and NL
maize, maize crop, and other ground features. One pixel was
the combined reflectance of all features within 256 m2. The
higher the resolution of remote sensing image is, the better the
classification effect is. The more complex the ground object, the
worse the classification result. There were many mixed pixels at
the junction of maize crop and other ground objects, which led to
low classification accuracy. We will decompose the mixed pixels
using adaptive coherence estimator and orthogonal subspace
projection to achieve more accurate monitoring of maize lodging
extents in the future.

In the testing samples, only two samples were LL. According
to the guidance of local agronomic experts, we have conducted
full research on the whole study area. The collected samples
including maize crop samples and nonmaize samples were
distributed throughout the study area, as shown in Fig. 1. In
the actual sampling, we found that ML and SL accounted for
a larger proportion. LL is too rare to obtain enough samples.
We will pay attention to the reasonable sample size in the future
lodging monitoring by remote sensing.

VI. CONCLUSION

In this article, the changes of spectrum, vegetation index, and
texture features of maize crop were analyzed before and after
lodging. The optimal feature combination sensitive to lodging
extents was obtained, and the monitoring of maize crop lodging
at county scale was realized. The results are as follows:

1) After feature analysis, the sensitive features with lodging
extents on maize crop were ΔRblue, ΔRgreen, ΔRred,
ΔNDVI, ΔRVI, ΔEVI, ΔB_MEA, ΔG_MEA, and
ΔR_MEA.

2) RFECV selected nine features and achieved higher ac-
curacy than MI. And the results were consistent with
feature analysis. The optimal feature combination in-
cluded ΔRblue, ΔRgreen, ΔRred, ΔNDVI, ΔRVI, ΔEVI,
ΔB_MEA, ΔG_MEA, and ΔR_MEA.

3) The RF classifier was used to classify the optimal feature
combination. The classification accuracy was 87.50%, and
the kappa coefficient was 0.83 for testing samples.
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