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Abstract—This article proposes an efficient and high-fidelity
panchromatic (PAN) spectral decomposition method based on
smoothing filtering for multispectral (MS) and hyperspectral (HS)
image pansharpening. The proposed method assumes that the
high-frequency spatial details at the same scale are the same for
different spectral images captured by the satellite at the same time.
When the PAN image is prefiltered and down-sampled to the MS
scale, it will have the same high-frequency spatial detail as the MS
image, with only low-frequency spectral differences. Prefiltering for
antialiasing when downsampling. Then, the spectral decomposition
coefficients from down-sampled PAN image to MS image can be
calculated on MS scale. The low-frequency spectral information of
an image at different scales is the same, the spectral decomposition
coefficients on the MS scale can be up-sampled to the PAN scale,
and the original PAN image can be spectrally decomposed to obtain
the sharpened image. The proposed method only decomposes the
low-frequency spectrum, and the high-frequency spatial details
are the same as the original PAN image, the spatial detail is well
preserved. This article verifies the effect of the proposed method on
MS and HS image sharpening through experiments, and the results
show that the proposed method is better than the comparison
method. This article also controls other variables to compare with
the HPM method. The results show that the hybrid quality with no
reference and spatial distortion index (Ds) of the proposed method
are better than the HPM method.

Index Terms—Hyperspectral (HS), multispectral (MS), pan-
sharpening, spectral decomposition.
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I. INTRODUCTION

PANSHARPENING fuses multispectral (MS) and panchro-
matic (PAN) images, which has been an active research

field for the last decades [1]–[3]. In recent years, with the fast de-
velopment of hyperspectral (HS) satellites, HS pansharpening,
which pansharpens HS images, also attracts great attention [4]–
[6]. Both MS and HS pansharpening1 by taking advantages
from high-spectral- but low-spatial-resolution MS/HS images
and high-spatial-resolution PAN images aim at achieving images
with both high spatial and spectral resolutions to meet the
demands of applications, such as classification, target detection,
scene interpretation, and spectral unmixing [7], [8].

Classical pansharpening methods can be roughly grouped
into two categories: based on component substitution (CS)
and multiresolution analysis (MRA) [1], [3], [7]. On the one
hand, CS-based methods substitute the components of a high-
spectral-resolution image by those of a PAN image, such as
methods based on principal component analysis (PCA) [9]–[11],
Brovey transform (BT) [12], [13], and Gram–Schmidt (GS)
transform [14], [15], and these methods transform a low-spatial-
resolution image into another domain and then replace the main
component by the spatial details from the PAN image. On the
other hand, MRA-based approaches, such as approaches based
on decimated wavelet transform [16], smoothing-filter-based in-
tensity modulation (SFIM) [17], high-pass filtering (HPF) [18],
morphological filtering [19], [20], and Laplacian pyramid [21],
[22], involve multiresolution decomposition to extract the spatial
details from a PAN image [7].

Recently, deep learning (DL) technology predominates image
sharpening, and it can be mainly divided into two categories:
One is to fit the sharpened image model by minimizing the cost
function [23]–[25], and the other is to simulate the sharpened
image through the generative adversarial network (GAN) [26]–
[28]. However, these two methods will face the same problem,
i.e., there are no real training data. Only simulated data can be
used for training, and when they are used in real scenes, the effect
and versatility are not particularly good. Moreover, the amount
of real remote sensing image data is extremely large, and it is
difficult for DL methods to achieve the efficiency of traditional
methods. The current mainstream DL methods are processed

1For simplicity, we use pansharpening for both MS and HS pansharpening.
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in blocks in pansharpening, such as 256× 256. In a published
paper [29], the processing time for a single block was about 1 s.
For submeter high-resolution optical satellites, the number of
pixels in a single scene can reach about 60000× 60000. Even if
the overlap between blocks was not considered, the number of
blocks to be calculated was about 55 000, i.e., 55 000 s or about
15 h; obviously, such a large computing time does not meet
the needs of engineering operation. However, the DL method is
very promising and can overcome the problems of poor effect,
efficiency, and versatility in real scenarios in the future.

Although the aforementioned methods are basically for MS
image sharpening, some of them can be directly introduced into
HS image sharpening, such as SFIM, GS, and PCA. There are
also some methods for HS image sharpening, such as Bayesian
fusion [30] and HySure fusion [31], [32]. These methods have
also achieved good results, but their versatility is relatively weak.

In summary, the CS method cannot handle a single band,
the calculation efficiency is low, and the color cast is seri-
ous. Also, the MRA method has low image clarity, and the
modulation transfer function (MTF) calculation of the MTF
method is difficult. Moreover, the DL method is currently poor
in practicability. Therefore, this article proposes a smoothing-
filter-based panchromatic spectral decomposition (SFPSD) for
MS and HS image pansharpening. This method has a wide range
of applications, high calculation efficiency, and easy engineering
and is suitable for sharpening MS and HS images.

II. METHODOLOGY

Let P ∈ RH×W denote an observed PAN image with size
H ×W , let M ∈ Rh×w×Nb denote an observed MHS image
(with Nb being the number of bands), let M̃ ∈ RH×W×Nb be a
preinterpolated LRMHS, which has been interpolated spatially
to the scale of the PAN image, and let M̂ be the pansharpened
HRMHS image. Mb, M̂b, and M̃b are the bth bands of M, M̂,
and M̃, respectively. PL is the preinterpolated LRPAN image,
which has been low-pass filtered and interpolated spatially to
the scale of the MHS image.

A. Theory

Proposed method has two following assumptions.
1) There are only low-frequency spectral differences but no

high-frequency spatial differences between the same scale
images, which be taken by satellite at the same time and
area.

2) There are only high-frequency spatial differences at dif-
ferent scales of an image, but no low-frequency spectral
differences.

The PAN and the MHS images can be considered as taken
at the same time and area. According to assumption 1, when
the original PAN images are prefiltered and down-sampled to
the MHS scale, the high-frequency spatial details of the down-
sampled PAN images can be considered to be the same as the
MHS images. There are only low-frequency spectral differences
between them. Prefiltering is for antialiasing in downsampling.
At this scale, the formula for the MHS bth band image and the

Algorithm 1: SFPSD.
INPUT: Registered P and M.
OUTPUT: M̂.

[H , W , Nb] = size(M);
For b in range(Nb):

Step 1: Enhance P, make P distribution consistent
with Mb in bth bands: P(b)

E ;
Step 2: Low-pass filter P and downsample fuzzy P to
MHS image scale: P(b)

EL;
Step 3: Calculate the panchromatic decomposition
coefficients: ρ(b)L = Mb/P

(b)
EL;

Step 4: Upsampled panchromatic decomposition
coefficients to PAN image resolution: ρ(b);

Step 5: Calculate the decomposition value of the bth
band: M̂b = P

(b)
E ∗ ρ(b);

End for;
Output M̂.

PAN image can be defined as follows:

Mb = f
(b)
L (PL) (1)

The f (b)
L (·) is the spectral decomposition function on the MHS

scale. Define this function as a linear function

Mb = PL • ρ(b)L (2)

In the above formula, ρ(b)L is defined as the spectral decom-
position coefficients of PL to Mb.

The spectral decomposition coefficients ρ(b)L of the PL can be
calculated as follows:

ρ
(b)
L =

Mb

PL
(3)

The spectral decomposition coefficients on the MHS scale can
be used to decompose the original image on the PAN scale to
obtain a sharpened image according to Assumption 2.

Therefore, the decomposition coefficients of the PAN spec-
trum can be interpolated by ρ

(b)
L , which will be defined as ρ(b).

The sharpened MHS bth band image can be defined as follows:

M̂b = f (b)(P) = P • ρ(b). (4)

B. Method

Based on the aforementioned theory, this article proposes
the SFPSD algorithm to pansharpen the MHS images. The
algorithm is described in Algorithm 1.

Step 1 in Algorithm 1 enhances the PAN image to make
the distribution of PAN and MHS images consistent, which is
particularly critical when the initial distributions of the two differ
greatly. It is not a necessary step when the two distributions are
basically the same. This step is calculated as follows:

P
(b)
E = (P− mean (P))

std(Mb)

std(P)
+ mean(Mb) (5)
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In (5), P(b)
E is the corresponding enhanced PAN image of the

bth band of the MHS image, mean(P) is the mean value of the
PAN image, std(P) is the standard deviation value of the PAN
image,mean(Mb) is the mean value of the bth band of the MHS
image, and std(Mb) is the standard deviation value of the bth
band of the MHS image.

The purpose of Step 2 in Algorithm 1 is to obtain P
(b)
EL whose

definition and resolution are consistent with those of the bth
MHS images. It low-pass filters the bth enhanced PAN image and
downsamples the fuzzy image into an MHS image resolution.
This step will filter out the high-frequency part of the enhanced
PAN image and only keep its low-frequency part. It can be
performed in the frequency domain by wavelet transform or in
the spatial domain by Gaussian pyramids.

Step 3 in Algorithm 1 calculated the PAN decomposition
coefficients, as in the following:

ρ
(b)
L =

Mb

P
(b)
EL

(6)

Step 4 in Algorithm 1 upsamples the PAN decomposition
coefficients ρ(b)L into a PAN image resolution: ρ(b).

Step 5 in Algorithm 1 decomposes the enhanced PAN image
to obtain the bth sharpened MHS image

M̂b = P
(b)
E ∗ ρ(b) (7)

It can be seen from the calculation steps that the algorithm in
this article is not limited by the number of MHS image bands,
and even single-band sharpening can also be supported.

C. Quality Indices

To objectively evaluate the performance of this algorithm, this
study evaluates the effect of pansharpening from the following
indicators. These indicators will objectively evaluate the results
from the spectral, spatial, and global perspectives. In addition,
the accuracy evaluation will be carried out from two aspects:
reduced-resolution assessment and full-resolution assessment.

1) Reduced-Resolution Assessment With Reference:
Reduced-resolution assessment synthetically generates
simulated observed images from a reference MHS image
and then evaluates the result of the method against that
reference image. The indicators are as follows.

(1) Cross correlation
Cross correlation (CC) characterizes the geometric distor-

tion, which is defined as

CC
(
M̂,M

)
=

1

Nb

Nb∑
b=1

CCS(M̂b,Mb) (8)

where CCS is the cross correlation for a single-band image,
which is defined as

CCS(A,B) =

∑n
j=1 (Aj − μA)(Bj − μB)√∑n

j=1 (Aj − μA)
2 ∑n

j=1 (Bj − μB)
2

(9)

where n = H ∗W and μA = ( 1n )
∑n

j=1 Aj is the sample mean
of A. The ideal value of CC is one.

(2) Spectral angle mapper
The spectral angle mapper (SAM ) is a spectral measure,

which is defined as

SAM
(
M̂,M

)
=

1

n

n∑
j=1

arccos(

(
M̂,M

)
||M̂j || • ||Mj ||

) (10)

where (M̂,M) = M̂j

T
Mj is the inner product between M̂j and

Mj at the jth pixel and ||.|| is the L2 norm. SAM is a measure
of spectral shape preservation, and its ideal value is zero.

(3) Root-mean-square error
The root-mean-square error (RMSE) measures the L2 error

between the two matrices M̂ and M

RMSE
(
M̂,M

)
=

||M̂ −M ||F√
n ∗Nb

(11)

where ||.||F is the Frobenius norm. The ideal value of RMSE is
zero.

(4) Erreur relative globale adimensionnelle de synthese
The erreur relative globale adimensionnelle de synthese

(ERGAS) offers a global indication of the quality of a fused
image. It is defined as

ERGAS
(
M̂,M

)
= 100d

√√√√ 1

Nb

Nb∑
b=1

(
RMSEb

μb

)2

(12)

where d is the ratio between the linear resolutions of the PAN
and MHS images. The ideal value of ERGAS is zero.

2) Full-Resolution Assessment With No Reference: Full-
resolution assessment infers the quality of the pansharpened
image at the resolution of the PAN image without resorting to
a single reference image. It will be evaluated by true observed
images.

(1) Spectral distortion index
The spectral distortion index Dλ from the Khan protocol [33]

is defined as

Dλ = 1−Q2n(M̂, M̃) (13)

Because the MTF is generally not public and will also change
with time, the filter uses a Gaussian pyramid, which is different
from [2].
Q2n is the multiband extension of the universal image quality

index and was introduced for quality assessment of the pansharp-
ened MS image, first for four bands and later extended to 2n

bands [34]–[36]. Each pixel of an image with N spectral bands
is accommodated into a hypercomplex (HC) number with one
real part and N − 1 imaginary parts.

Let z = z(c, r) and ẑ = ẑ(c, r) denote the HC representa-
tions of the reference and test spectral vectors at pixel (c, r),
respectively. Q2n is defined as

Q2n =
|σzẑ|
σzσẑ

• 2σzσẑ

σz
2 + σẑ

2
• 2 |z̄| ∣∣¯̂z∣∣
|z̄|2 + ∣∣¯̂z∣∣2′ . (14)

(2) Spatial distortion index
The spatial distortion index is defined as

Ds =
q

√∣∣Q (
I
̂M
,P

)−Q (IM ,PL)
∣∣q (15)
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TABLE I
INTRODUCTION OF DATA

where Q = Q20 and I
̂M

and IM are the intensities of M̂ and
M , respectively, which are defined as

I
̂M

=
1

Nb

Nb∑
b=1

M̂b, IM =
1

Nb

Nb∑
b=1

Mb (16)

(3) Hybrid quality with no reference
The hybrid quality with no reference [37] (HQNR) borrows

the spatial distortion index Ds from QNR and the spectral
distortion index Dλ from the Khan protocol. It is defined as

HQNR = (1−Dλ)
α(1−Ds)

β (17)

where usually α = β = 1.

III. DATA INTRODUCTION

The data used in this study include those of the GaoFen-7
(GF-7) satellite in the series of high-resolution Earth observation
satellites planned by China’s “China High-resolution Earth Ob-
servation System” and those of the ZiYuan-1E (ZY-1E) satellite
of the National Land Satellite Remote Sensing Application Cen-
ter of the Ministry of Natural Resources. The selected images
include various topography and landforms such as mountains,
plains, and coastal areas. The detailed data usage is shown in
Table I.

IV. RESULTS AND DISCUSSION

To verify the effect of the proposed algorithm, the perfor-
mance with reference for the HS image and the performance
without reference for the MS image were tested. The comparison
method in this article refers to the MATLAB ToolBox [2], [38]–
[40], and the comparative methods are described as follows.

1) GT: Ground real images, only in the reduced resolution
assessment with reference mode.

2) EXP: MHS image interpolation, using the built-in inter-
polation function of MATLAB [41].

3) SFIM: Smoothing filter-based intensity modulation
(SFIM) [17].

4) Brovey: BT for image fusion [12], [13].
5) HPF: High-pass filtering for image fusion [18].
6) MTF-GLP: Generalized laplacian pyramid (GLP) [42]

with MTF-matched filter [19] with unitary injection
model.

7) MTF-GLP-FS: GLP with MTF-matched filter and a new
full resolution regression-based injection model [43].

8) MTF-GLP-HPM: GLP with MTF-matched filter and
multiplicative injection model [44].

9) MTF-GLP-HPM-Haze-min: Gaussian Laplacian pyra-
mid with high pass modulation injection model haze
corrected [45].

10) MTF-GLP-HPM-R: A regression-based high-pass mod-
ulation pansharpening approach [46].

11) MF_HG_Pansharpen: Morphological pyramid decom-
position using half-gradient [20].

12) BDSD-PC: Band-dependent spatial-detail (BDSD)
model solving an optimization constrained problem [47].

13) GS: Gram Schmidt [14].
14) GSA: Gram Schmidt Adaptive [48].
15) GS_Segm_GSA: Segmentation-based version of the GS

Adaptive algorithm [49].
16) GS_Segm_GS2GLP: Segmentation-based version of the

GS algorithm with GLP [49].
17) Bayesian_Naive: Bayesian fusion of HS images [30].
18) HySure: Fuse HS remote sensing images with either MS

or PAN ones [31], [32].
The low-pass filter of the proposed method (Step 4 in Al-

gorithm 1) in this experiment used a Gaussian pyramid. The
registration accuracy of the PAN and MHS images has a great
influence on the fusion effect [50], [51], so this study chose the
method [52] to preprocess the image registration. The experi-
ments were implemented in MATLAB R2020b on a server with
an Intel I7-6700 K CPU at 4.0 GHz and a 64-GB RAM.

A. Reduced Resolution Assessment With Reference

Reduced-resolution assessment with reference takes the ac-
tual observed HS image as the pansharpened image and simu-
lates the corresponding PAN and HS image fusion to evaluate
its effect. The protocol consists of the following steps.

1) Given an HS image as a ground true fused image GT,
a simulated observed low-spatial-resolution HS image M
is obtained by applying Gaussian blurring and downsam-
pling to the ground true fused image by ratio R.

2) A simulated PAN image PAN is obtained by multiplying
the reference HS image without the true PAN image by
a suitably chosen spectral response vector, i.e., PAN =
rTGT.

3) The pansharpening method to be evaluated is applied to
the simulated observations mhs and pan, which yields an
estimated super-resolution HS image M̂.

4) Finally, the estimated super-resolution HS image and the
reference image are compared to obtain quantitative qual-
ity measures.

In this section, the ZY-1E 166-band HS data with the spatial
size of 1024× 1024 from the data introduced in section III are
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Fig. 1. ZY-1E color image with bands 25, 16, and 8 as RGB in ratio R = 16 for different methods.

selected to verify the performance of the algorithm in this article
on HS images with the ratio R = 16. This study compared the
proposed algorithm with 18 common image fusion algorithms.
Fig. 1 shows the comparison between the fusion images of the
different methods and the ground true image. Each image is
displayed as a color image with bands 25, 16, and 8 as RGB,
because of ZY-1E’s spectral range. It can be seen from the
figure that the result of the proposed method is closest to the
visual effect of the ground true image. Some methods also have
good visual effects, such as Brovey, PCA, and the GS series
methods. However, there are some methods that have serious
loss of information, such as SFIM, HPF, and BT-H. The proposed
method can retain not only the spatial information, but also the
color information.

The evaluation indices used are CC, RMSE, SAM , and
ERGAS, which are introduced in Section II. The quantitative
evaluation results are shown in Table II. As can be seen from
the table, the proposed method has obvious advantages over the
other methods for RMSE, which is the most important evalua-
tion index in the reduced-resolution assessment with reference.
This shows that the difference between the fusion results of the
proposed method and the ground true image is the smallest,
which is obviously better than the other methods. For the other
evaluation indicators, although the proposed method did not
achieve the best results, the gap compared with the best results
is not particularly obvious. In addition, the proposed method
consumes less time in all methods, indicating that it has higher
computational efficiency and is suitable for business operation.

B. Full-Resolution Assessment With No Reference

In this section, the real PAN MS data are mainly used to verify
the performance of the algorithm in the MS image sharpening

TABLE II
EVALUATION INDEX IN RATIO R = 16 FOR ZY-1E IMAGE SHARPENING

without reference. The test data used are from the GF-7 data
with the spatial size of 4096× 4096 introduced in Section III.
Fig. 2 shows the comparison of the fusion results of the different
methods. It can be seen from the figure that, except for some
methods that have serious color casts, most of the methods can
maintain good fusion colors. Also, it can be clearly seen that the
color of the proposed algorithm is maintained well.

To compare the advantages and disadvantages of the proposed
method and the other methods in more detail, this article enlarges
some of the details in Fig. 2, as shown in Fig. 3. It can be
seen from the enlarged detail view that the spatial and spectral
information of the proposed method can be maintained well. It
can improve the clarity while retaining the spectrum information
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Fig. 2. GF-7 color image with bands 3, 2, and 1 as RGB of different methods.

TABLE III
EVALUATION INDEX FOR GF-7 IMAGE SHARPENING OF DIFFERENT METHODS

to the greatest extent. The proposed method performs most
prominently among all the comparison algorithms.

This study used the evaluation index without reference to
objectively evaluate the aforementioned fusion results. The eval-
uation indices without reference areDλ,Ds, andHQNR, which
are introduced in Section II. Table III shows the detailed results
of the no-reference evaluation indices of the different methods.
It can be seen from the table that the proposed method achieves
the best results for the HQNR comprehensive index and the
spectral distortion index Dλ. Also, the gap between the spatial
distortion index Ds and the optimal result is not very obvious.
However, the operating efficiency is higher than those of the
mainstream fusion methods, and the difference in the fusion
effect of some of the best fusion methods on the GF-7 PAN and
MS images is not particularly obvious, which can also be seen
in Figs. 2 and 3.

In summary, the proposed method can have a better effect
on both spatial information and spectral information, which is
compared with the current mainstream PAN and MS fusion
methods.

C. Discussion

The proposed method belongs to the MRA method, but it
has certain characteristics compared with a traditional fusion
method. First, the PAN decomposition coefficients of the pro-
posed method is continuous. Second, it has better robustness
to the correlation between PAN and MHS images. Finally, it
has good performance under large resolution differences. This
section will discuss these three aspects as follows.

1) Continuity of PAN Decomposition Coefficients: The clas-
sical SFIM technique [17] is defined as follows:

DN(λ)sim =
DN(λ)lowDN(λ)high

DN(λ)mean
(18)

where DN(λ)sim is the simulated higher resolution pixel corre-
sponding to DN(λ)low and DN(λ)mean is the local mean of
DN(λ)high over a neighborhood, which is equivalent to the
resolution of DN(λ)low. DN(λ)low is the DN value of the MHS
image upsampled to the simulated higher resolution, whereas
DN(λ)high is the DN value of the PAN image. It can be seen
from (20) that low-resolution MHS images need to be upsampled
to simulated higher resolution. Because the image is generally
discrete, part of the information will be lost when upsampling,
especially when the ratio of PAN to MHS image is large.

The proposed method defines the PAN decomposition co-
efficients ρ

(b)
L , which are calculated on the MHS resolution.

Fig. 4 shows an example of the decomposition coefficients.
Then, the PAN decomposition coefficients ρ

(b)
L are upsampled

to a PAN image resolution: ρ(b). The decomposition coefficients
can maintain continuity while upsampling. Even if the ratio of
PAN and MHS images is larger, less information will be lost
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Fig. 3. Details of GF-7 color image with bands 3, 2, and 1 as RGB of different methods.

Fig. 4. PAN decomposition coefficients on MHS resolution.

during upsampling. This is an important factor for the proposed
algorithm to still obtain better results when the ratio of PAN and
MHS images is large.

2) Reduced-Resolution Assessment With Reference: This
study assumes that the PAN image has the intensity of the
MHS image. However, in fact, it is valid that the spectral range
of PAN images does not include the spectral range of MHS
images because this method can also regard PAN images as
spatial information and the decomposition coefficients as color
information. It is just that the color information is compressed by
downsampling. Therefore, the algorithm in this article has good
robustness to the correlation between PAN and MHS images.
Even if the correlation between PAN and MHS images is low, it
still has a good effect.

This study took the PAN image and midwave infrared (MIR)
image of GF-4 as examples for testing. The spectral range of
the PAN image is 0.45− 0.90 μm, whereas the spectral range
of the MIR image is 3.5− 4.1 μm. Fig. 5 shows the MIR image
sharpening result of GF-4. The correlation coefficients between
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Fig. 5. MIR image sharpening for GF-4.

the PAN and MIR images are 0.3187, which is much lower
than the correlation coefficients between general PN and MHS
images. However, the algorithm in this article can still obtain
better fusion results. Quantitative evaluation was performed by
calculating HQNR, where DS was 0.189, Dλ was 0.129, and
HQNR was 0.706, which indicated that both spatial infor-
mation and spectral information were effectively preserved. In
addition, unlike the CS method, the MRA method is generally
not limited by the number of bands, and the method in this article
also has such advantages. For the single-band fusion of the PAN
and MIR images of GF-4, the CS method cannot be completed.

The results in this section show that the method in this article
has a wide range of applications and a high computational
efficiency. The principle is simple and easy to engineer. Com-
bining with registration methods [52] can develop efficient and
high-quality engineering applications. Related applications can
be found at.2 This study uses this program to test the sharpening
of MSS images of different satellites and obtain good results,
such as GF-DM, GF-2, and GF-6. This study also tested the
sharpening of real HS images, sharpened the HS images of
ZY-1E with the GF-7 PAN images, and achieved good results.
The relevant results can be found in the Appendix.

3) Performance At Different Resolutions: To verify the per-
formance under different resolutions, this study, respectively,
calculates the results of the ratioR ∈ 4, 8, 16, 32, 64 and chooses
the RMSE index that best reflects the accuracy of the fusion
method under the reference situation. Because theRMSE of the
fused image and the reference image is directly calculated, the
smaller the value, the closer the value of the ground true image.
It can be seen from Table IV that the RMSE of the proposed
method is slightly lower than that of the GS_Segm_GSA method
for ratios of 4 and 8, and the proposed method has obvious
advantages over the other methods for the other ratios. Compared
with the HS image fusion methods Bayesian_Naive and HySure,
it can establish a clear lead in different proportions.

TheRMSE of the proposed method gradually increases with
the increase of the ratio, which indicates that it will lose part

2[Online]. Available: https://github.com/whuxiegq/rsoneFusion

TABLE IV
RMSE INDEX IN RATIO R ∈ 4, 8, 16, 32, 64 FOR ZY-1E IMAGE SHARPENING

of the information as the ratio increases. In Fig. 6, it can be
clearly seen that, as the proportion increases, although the spatial
information is still better preserved, the color information is
obviously lost. Because the method in this article was based on
the decomposition of PAN images, it retained better spatial infor-
mation. However, for the color information part, the algorithm in
this article can only rely on the observed spectral information for
interpolation. If the ratio is large, some color details will be lost.

To further illustrate the performance of the algorithm in this
article under a large ratio, this study takes the case where the ratio
is 64 as an example. In Fig. 7, the simulated observation PAN,
HS, and fusion results of the proposed method are compared. It
can be seen from the figure that most of the spatial information of
the fusion result is preserved. However, the spectral information
is considered to have a large difference in proportions, and part
of the details are lost. However, it can retain the overall spectral
effect. This shows that the algorithm in this article can perform
well even at a large ratio of PAN and HS images.

All in all, the algorithm in this article performs well in image
fusion, especially when the ratio of PAN and HS images is large,

https://github.com/whuxiegq/rsoneFusion
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Fig. 6. ZY-1E color image with bands 25, 16, and 8 as RGB for different ratio of HS and GT images.

Fig. 7. ZY-1E color image with bands 25, 16, and 8 as RGB for ratio R = 64 for proposed fusion method.

and it has obvious advantages over the existing mainstream
algorithms. Both subjective evaluation and objective evaluation
can achieve good results.

4) Comparison With HPM Framework: The well-known
high pass modulation (HPM) framework [53], [54] extracts
high-frequency information from PAN images and injects them
into MHS images. The high-frequency components of the PAN
image are filtered out, and then the high-frequency information
is extracted and injected into the low-resolution image by the

ratio of the original PAN image and the filtered PAN image. The
formula is expressed as follows:

M̂ = M̃ • P

P̃
. (19)

In the above formula, M̂ is the sharpened image, M̃ is the
MHS image upsampled to the PAN image scale, P is the PAN
image, and P̃ is the low-frequency component of the PAN image,
which is prefiltered, downsampled, and upsampled.
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TABLE V
COMPARISON BETWEEN HPM FRAMEWORK AND THE PROPOSED

METHOD

In this article, it is assumed that an image of differ-
ent scales has only high-frequency spatial differences and
no low-frequency spectral differences. Therefore, the spec-
tral decomposition coefficients on different scales are the
same.

The high frequency components of the PAN image were
filtered out and down-sampled to the MHS image scale, the
down-sampled PAN image was spectrally decomposed by ratio,
and then the decomposition coefficients were up-sampled to the
PAN image scale to decompose the original PAN image. Ideally,
the high frequency components of the sharpened image should
be consistent with the PAN image, and the formula can be written
as follows:

M̂ = P •
(
PL

M
↑
)
. (20)

In the above formula, M̂ is the sharpened image, P is
the PAN image, PL is a prefiltered and down-sampled PAN
image on MHS scale, M is the MHS image, and ↑ means
upsampling.

From the comparison of the formulas, it can be seen that
the main difference between the method in this paper and the
HPM framework is whether the ratio operation is performed
at the PAN scale or the MHS scale. This article assumes that
if all the redundant high-frequency information in the PAN
image was filtered out and down-sampled, the down-sampled
PAN image had the same spatial detail information as the
MHS image. At this time, the main difference in the image
was the spectral information, which can used ratio method
decomposes the spectrum without changing the spatial details.
This design preserves spatial details to the greatest extent
possible.

In order to verify the effect of the method in this article,
this article controlled other variables to compare with the HPM
framework, and the difference was only whether the ratio cal-
culation was performed on PAN scale or MHS scale. As shown
in Table I, data from different satellites were selected for full-
resolution assessment with no reference. The data (including the
appendix) were used in this article.

As can be seen from Table V, the HQNR of the proposed
method is better than that of the HPM framework, and Ds is bet-
ter than HPM, butDλ is worse than HPM. As analyzed above, the
proposed method preserves the spatial details better because the
proposed method decomposes the PAN image spectrally without

changing the spatial detail information. While the HPM method
injects spatial detail information into the low-frequency spec-
trum, its spectral preservation ability is better than the proposed
method.

In the images with richer spatial details, the advantages of the
method in this article are more obvious, and fewer spatial details
are lost. For example, for the GF-7 and GF-2 data in Table I, the
image is located in an urban area with rich spatial details, and
the HQNR of the proposed method is significantly higher than
that of the HPM method.

V. CONCLUSION

This article proposes an MS and HS image pansharpening
method: SFPSD. The method has a wide range of applications
and a high computational efficiency and is suitable for the
sharpening of not only traditional MS images, but also HS
images and single-band MIR images. In addition, good results
have been obtained for the objective evaluation index with and
without reference.

The method in this article uses the decomposition coefficients
to decompose the PAN image into a high-spatial-resolution MHS
image. It can obtain a fused image with both high spatial and
spectral resolutions. The decomposition coefficients are calcu-
lated using the MHS image and the PAN blurred downsampled
image and is then upsampled to the resolution of the PAN image,
which decomposes the PAN image into a high-resolution MHS
image. This study separately evaluates the reduced-resolution
assessment of HS image sharpening with reference and the
full-resolution assessment of MS image sharpening without
reference. Based on the results, when compared with 18 common
methods, the method in this article obtains the best results regard-
less of subjective or objective evaluation. Moreover, when the
ratio of PAN and MHS images is larger, the effect is better than
the others. In the reduced-resolution assessment with reference,
the RMSE index of the method in this article can reach about
70, even when the ratio of PAN and MHS images is 64. In the
full-resolution assessment with no reference, the HQNR index
of this method is 0.949931, which is also better than those of
the other methods. In addition, the decomposition coefficients
of the method in this article are continuous and robust to PAN
and MHS images.

The principle of the method in this article is clear, the cal-
culation efficiency is high, and the engineering is easy. The
related MATLAB source code and engineering program can be
found at.3 The engineering procedure in this article has been
validated for MS image sharpening of multiple Chinese satellites
and achieved good results. This study also sharpened the ZY-1E
HS image with the GF-7 PAN image and obtained good results
too.

APPENDIX

See Appendix Figs. 8 to 11.

3[Online]. Available: https://github.com/whuxiegq/rsoneFusion

https://github.com/whuxiegq/rsoneFusion
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Fig. 8. Image sharpening for GF-DM. (a) GF-DM PAN. (b) GF-DM MS. (c) Proposed sharpening image. (d) Detail of GF-DM PAN. (e) Detail of GF-DM MS.
(f) Detail of proposed sharpening image.

Fig. 9. Image sharpening for GF-2. (a) GF-2 PAN. (b) GF-2 MS. (c) Proposed sharpening image. (d) Detail of GF-2 PAN. (e) Detail of GF-2 MS.
(f) Detail of proposed sharpening image.
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Fig. 10. Image sharpening for GF-6. (a) GF-6 PAN. (b) GF-6 MS. (c) Proposed sharpening image. (d) Detail of GF-6 PAN. (e) Detail of GF-6 MS.
(f) Detail of proposed sharpening image.

Fig. 11. Image sharpening for ZY-1E HS by GF-7 PAN. (a) GF-7 PAN. (b) ZY-1E HS. (c) Proposed sharpening image. (d) Detail of GF-7 PAN.
(e) Detail of ZY-1E HS. (f) Detail of proposed sharpening image.
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