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Dual-Branched Spatio-Temporal Fusion Network for
Multihorizon Tropical Cyclone Track Forecast

Zili Liu , Kun Hao, Xiaoyi Geng, Zhengxia Zou , and Zhenwei Shi , Member, IEEE

Abstract—A tropical cyclone (TC) is a typical extreme tropical
weather system, which could cause serious disasters in transit areas.
Accurate TC track forecasting is the key to reducing casualties and
damages, however, long-term forecasting of TCs is a challenging
problem due to their extremely high dynamics and uncertainty.
Existing TC track forecasting methods mainly focus on utilizing a
single modality of source data, meanwhile, suffer from limited long-
term forecasting capability and high computational complexity. In
this article, we propose to address the abovementioned challenges
from a new perspective—by utilizing large-scale spatio-temporal
multimodal historical data and advanced deep learning techniques.
A novel multihorizon TC track forecasting model named dual-
branched spatio-temporal fusion network (DBF-Net) is proposed
and evaluated. DBF-Net contains a TC features branch that ex-
tracts temporal features from 2-D state vectors and a pressure
field branch that extracts spatio-temporal features from reanalysis
3-D pressure field. We show that with the abovementioned design,
DBF-Net can fully exploit the implicit associations of multimodal
data, achieving advantages that unimodal data-based method does
not have. Extensive experiments on 39 years of historical TCs track
data in the Northwest Pacific show that our DBF-Net achieves
significant accuracy improvement compared with previous TCs
track forecast methods.

Index Terms—Multimodal data fusion, spatio-temporal data,
tracking forecast, tropical cyclones (TCs).

I. INTRODUCTION

TROPICAL cyclones (TCs, a.k.a, typhoons or hurricanes)
are low-pressure vortexes occurring over the tropical or

subtropical oceans. TCs are one of the major meteorological
disasters facing mankind. Accurate forecasting for the TCs tra-
jectory can greatly reduce the casualties and property damages
caused.

The research on TCs track forecast has gone through four
stages since the 1960s—empirical methods, statistical meth-
ods, numerical methods, and deep learning methods. Early

Manuscript received March 14, 2022; revised April 21, 2022; accepted April
22, 2022. Date of publication April 26, 2022; date of current version May
20, 2022. This work was supported in part by the National Natural Science
Foundation of China under Grant 62125102. (Corresponding author: Zhenwei
Shi.)

Zili Liu, Kun Hao, Xiaoyi Geng, and Zhenwei Shi are with Image Processing
Center, School of Astronautics, Beihang University, Beijing 100191, China,
and with the Beijing Key Laboratory of Digital Media, Beihang University,
Beijing 100191, China, and also with the State Key Laboratory of Virtual
Reality Technology and Systems, School of Astronautics, Beihang University,
Beijing 100191, China (e-mail: liuzili@buaa.edu.cn; haokun@buaa.edu.cn;
gxy0809@buaa.edu.cn; shizhenwei@buaa.edu.cn).

Zhengxia Zou is with the Department of Guidance, Navigation and Control,
School of Astronautics, Beihang University, Beijing 100191, China (e-mail:
zhengxiazou@buaa.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2022.3170299

methods of TCs track forecast were limited by observation
techniques and computational devices and could rely only on
the subjective experience for achieving forecast. Thus, some
traditional methods, such as extrapolation and similar path
methods were developed [1]. From the 1980s, with the rapid
development of statistical models, forecasting models based
on statistical regression methods, such as climatology and per-
sistence (CLIPER) [2] were proposed. However, limited rep-
resentation capabilities of manual feature selection make it
difficult to produce accurate forecast results. Since the 1990s,
with the improvement of observation techniques and computer
performance, numerical weather prediction (NWP) systems
(e.g., American National Hurricane Center Track and Intensity
Model) gradually become the mainstream choice for official
meteorological forecasting agencies. NWP achieves forecasting
by solving complex PDEs of weather dynamics. However, NWP
is very computationally expensive and requires the support of
supercomputer platforms. In recent years, machine learning
especially deep learning has developed rapidly. Various deep
neural networks (DNNs) based on deep learning have revolu-
tionized real-world applications such as computer vision [3],
natural language processing [4], and time series forecasting [5].
Since the computational complexity of DNNs is much smaller
than that of traditional NWP models, many DNN variants
have been proposed recently to predict TCs track [6]–[14]. In
this article, we also focus on deep learning-based TC track
forecasting.

Long-term forecasting of TCs is a challenging problem due
to their extremely high dynamics and uncertainty. The trajectory
of a TC could be affected by various physical quantities in the
atmosphere and ocean, such as pressure field, wind field, and
sea surface temperature. Existing deep learning-based TC track
forecasting methods mainly focus on utilizing a single modality
of source data [7]–[11], [14], meanwhile, suffer from limited
long-term forecasting capability and high computational com-
plexity. In this article, we propose to address the abovementioned
challenges from a new perspective—by utilizing large-scale
spatio-temporal multimodal historical data and advanced deep
learning techniques. We define the source data into the following
three categories: inherent features of TCs, remote sensing im-
ages, and meteorological fields. The key to deep learning-based
forecasting methods is the full exploitation of different types of
data.

The inherent features of TCs at a particular time are always
represented by a column vector or tensor, which contains in-
formation, such as the latitude, longitude, and intensity of the
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center of TCs at that time. Infantile deep learning-based TCs
track forecast model mainly utilizes historical inherent features
of TCs to predict the future locations of the TCs. The classical
multilayer perceptions [7], [8] and various time series prediction
models, such as recurrent neural networks (RNNs) [9], [10],
long short-term memory (LSTM) model [11], and bidirection
gate recurrent unit model [14], are used to learn the time-series
pattern of the data. However, the time series models based only
on inherent features of TCs usually have limited accuracy of
track forecast due to the lack of consideration of factors affecting
TCs’ trajectory.

Compared with the two-dimensional (2-D) inherent features
of TCs vector, the 3-D remote sensing images, and meteorologi-
cal fields can describe the relevant information around the TCs.
As for the TCs track forecasting using remote sensing images,
it can be treated as a special kind of video frame prediction task.
Rüttgers et al. [15] used a generative adversarial network (GAN)
to predict the TCs track images and the corresponding location
of TCs center. Wu et al. [16] proposed a multitask machine
learning framework based on an improved GAN to predict the
track and intensity of TCs simultaneously. The track forecast
methods mentioned above take full advantage of the powerful
performance of GANs in the field of computer vision. However,
the remote sensing images used in such methods need to be
acquired from geostationary satellites to ensure high temporal
resolution, and the images cannot represent the physical factors
affecting the TCs trajectory.

Meteorological fields, such as pressure fields and wind fields,
are the main factors affecting the trajectory of TCs. In 2017,
Mudigonda et al. [17] proposed the CNN-LSTM model for
segmenting and tracking TCs and verified the direct high corre-
lation of TC tracks in meteorological fields. Kim [12] proposed a
convolutional LSTM-based spatio-temporal model that predicts
the trajectory map based on the density map sequence generated
from the wind velocity and precipitation fields. But the predicted
trajectory map cannot reflect the exact location of the TCs
precisely. Therefore, how to efficiently fuse the meteorological
fields data into the TCs track forecast model to improve the
forecast accuracy has gradually become the mainstream research
direction in recent years [13], [18]. Due to the large variation in
the distribution of different meteorological fields, Giffard-Roisin
et al. [13] used different CNN models to encode the reanalysis
data of wind and pressure field, respectively, and fuse them
with past track data of TCs. However, multiple CNN models
increase the number of parameters and computational complex-
ity of the forecast model, and the model is difficult to train. In
addition, the inclusion of excessive use of meteorological field
data weakens the role of the inherent features data of TCs and
does not adequately learn the time-series features of the data.
Therefore, how to efficiently utilize the meteorological field
data and fully exploit the intrinsic time-series information of
the inherent features of TCs still needs further research.

To solve the problems mentioned above, this article tries to
exploit the temporal information in the inherent features data of
TCs and the spatio-temporal information in reanalysis 3-D pres-
sure field data, and proposes a dual-branched spatio-temporal
fusion network (DBF-Net) for multihorizon TC track forecast

Fig. 1. Overview of the proposed DBF-Net for multihorizon TC track forecast.

(i.e., predicting the TCs’ track at multiple future time steps [19]).
Specifically, as shown in Fig. 1, the time-series features of the
input TC features are extract by an LSTM-based [20] network
in the TC features branch efficiently. Meanwhile, the spatio-
temporal features of the geopotential height (GPH) around TCs
are encoded by the 3D-CNN-based [21] network in the pressure
field branch, and fused into the first branch to complement the
track forecasting information by predicting the GPH at multiple
future time steps, and provide the multihorizon TCs trajectory
forecasting outputs.

Through efficient spatio-temporal feature extraction and fu-
sion of the two types of data, the 24 h forecast accuracy of DBF-
Net on historical TC tracks data in the Northwest Pacific (WNP)
is 119 km, which is much better compared with other deep
learning-based methods [13], [14]. Besides, we also compare our
method with other traditional methods, such as extrapolation [1],
CLIPER model [2], and NWP methods [22]–[25]. Finally, we
exhibit the forecast results for several individual cases of TC
events for further analysis and verification.

II. METHODOLOGY

In this section, we will introduce the proposed DBF-Net in
detail. The overall architecture of the DBF-Net is shown in Fig. 1.
The two branches contained in DBF-Net are split into three
submodules and will be introduced separately. Before that, the
basic LSTM and 3D-CNN modules used in DBF-Net will be
briefly introduced.

A. Preliminaries

We formally introduce symbols and notations in this section.
In DBF-Net, there are two types of data as the input, where
Xt = {Xj ∈ Rp | j ∈ [t−m, t], j ∈ Z} represents the input
historical inherent features sequence of TC andGt = {GPHj ∈
Rq×q | j ∈ [t−m, t], j ∈ Z} represents the input historical
reanalysis 3-D GPH data. Given the initial forecast time t and
the corresponding input data Xt and Gt, the output multihorizon
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Fig. 2. Structure of LSTM module.

TC track prediction can be computed by

Yτ = M(Xt,Gt) (1)

where Yτ = {Yj = (Latt+j − Latt,Lont+j − Lont) | j ∈
[1, τ ], j ∈ Z}, Latt and Lont are the latitude and longitude of
TC center at time t. M(·) represents the end-to-end DBF-Net.
It should be noted that, we use the relative change in latitude
and longitude Yj as the output of DBF-Net instead of the direct
location. The reason for this is that the pressure field data is
cropped from the center of TCs and the local information is
more suitable for digging the relative changes in TCs motion.

B. Long Short-Term Memory

RNNs [26] are one of the popular models for capturing the
temporal features of sequence data. RNNs consist of multiple
neural networks stacked in the time dimension, and the temporal
features could be extracted by utilizing both input dataxt at time
t and the extracted latent features ht−1at time t− 1. However,
vanilla RNNs suffer from gradient disappearance and gradient
explosion when using long term sequence data for training [27].
Therefore, numerous variants have been proposed to solve the
problems mentioned above [20], [28], including the well-known
LSTM model [20].

As shown in Fig. 2, the LSTM improves the vanilla RNNs by
replacing the traditional ANN module in RNNs with a complex
LSTM module. In order to maintain the latent information for
both long and short term, namely cell state, the following three
different gates in LSTM module are proposed for different
motivations: forget gate, input gate, and output gate.

Among them, the forget gate controls the remaining informa-
tion proportion of the cell state ct−1 and the proportion can be
computed by

ft = σ(Wf · [xt,ht−1] + bf ) (2)

where Wf and bf are the weight and bias value in a fully
connected layer. σ represents the Sigmoid function.

As for the input gate, it determines the amount of the can-
didate information feeding into the cell state by controlling the
proportion index. The candidate information gt and proportion

Fig. 3. Difference between (a) 2-D convolution and (b) 3-D convolution. The
black boxes represent the convolution kernel and the lines with same color
represent the same kernel weight value.

index it can be computed by

it = σ(Wi · [xt,ht−1] + bi)

gt = tanh(Wg · [xt,ht−1] + bg). (3)

Then, the cell state can be updated from time t− 1 to time t
by

ct = ft × ct−1 + it × gt. (4)

Lastly, the output gate updates the latent variable by control-
ling the proportion index of cell state at time t, that is

ot = σ(Wo · [xt,ht−1] + bo)

ht = ot × tanh(ct). (5)

Through the operations mentioned above, LSTM could effi-
ciently extract the temporal features by controlling the propor-
tions of different information flow and the cell state to ensure
the gradient is always within a proper range, which avoids the
gradient disappearance and gradient explosion to some extent.

C. 3D-CNN

Convolutional neural networks (CNNs) have achieved re-
markable progress in extracting spatial features from image-like
2-D data. The local receptive field and shared weights make it
possible for CNNs to learn the local spatial relevance of the 2-D
data with fewer parameters compared with the traditional fully
connected layer. However, for video-like 3-D data, the tradi-
tional 2-D convolution can not capture the relevance of the 2-D
images at different time steps. Therefore, Ji et al. [21] proposed
the 3D-CNN for human action recognition and 3D-CNN has
become a popular model for extracting spatio-temporal features
from video-like 3-D data.

Fig. 3 illustrates the difference between 2-D and 3-D convo-
lutions. As can be seen in 3(b), the convolution kernel matrix in
3D-CNN not only slides on a single 2-D feature map but also
moves in the temporal dimension (same color lines in different
feature maps in temporal dimension), thus, both spatial and tem-
poral features could be extracted from 3-D data simultaneously.
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Fig. 4. LSTM-encoder module in TC features branch.

D. TC Features Encoder Module

The TC features encoder module in the first branch of DBF-
Net plays the role of encoding the inherent features of TCs
Xt = (x1, x2, x3, x4, x5, x6) at multiple historical times. Each
xj in Xt represents the latitude at time t, longitude at time t,
maximum wind speed near the center at the bottom at time t, lat-
itude difference between time t and t− 1, longitude difference
between time t and t− 1, and wind speed difference between
time t and t− 4, respectively. The features mentioned above
are also the classical persistence factors in statistical forecasting
methods. As a result, the purpose of the TC features encoder
module is to encode time series features of the persistence
factors.

As shown in Fig. 4, the TC features encoder module consists
of a two-layer stacked LSTM encoder. EachXt in sequenceXt is
passed sequentially into the two-layer LSTM encoding module
and produces the latent variable ht. The output of each LSTM
encoding layer is fed into the corresponding layer at next time
step. The specific operation procedure in each LSTM encoding
layer is as follows:

it = σ(WiiXt + bii +Whiht−1 + bhi) (6)

ft = σ(WifXt + bif +Whfht−1 + bhf ) (7)

gt = tanh(WigXt + big +Whght−1 + bhg) (8)

ct = ft × ct−1 + it × gt (9)

ot = σ(WioXt + bio +Whoht−1 + bho) (10)

ht = ot × tanh(ct) (11)

where the it, ft, and ot represent the output of the input
gate, forget gate, and output gate in LSTM model. Wii(Whi),
Wif (Whf ), andWio(Who) are the corresponding weight matrix
related to the Xt(ht−1). ct is the cell state fed into the next time
step together with the latent variable ht. σ(·) is the Sigmoid
function.

Given the input sequence Xt of length m+ 1 and the corre-
sponding latent variable sequence {ht−m,ht−m+1, . . . ,ht}, t
is the initial forecast time, we can compute the final time series

Fig. 5. Pressure field branch architecture.

TABLE I
3D-CNN-BASED ENCODER ARCHITECTURE OF THE PRESSURE FIELD BRANCH

code of the TC features by

ETC =
1

m+ 1

m∑
i=0

ht−i. (12)

E. Pressure Field Branch

To efficiently use the meteorological fields in the vicinity
of TCs and improve the forecast accuracy, a 3D-CNN-based
encoder–decoder networks are utilized to generate high-level
spatio-temporal features from the reanalysis 3-D GPH data at
multiple time steps (as shown in Fig. 5).

As shown in Table I, the encoder of the pressure field branch
contains three-convolutional layers, the first two of which are
3D-CNN with kernel size 3× 3× 3. To ensure that the GPH
field data cover the full spatial extent that may affect the TC
tracks, the window size at each historical time stepGPHt of in-
put 3-D field Gt is set to 51× 51 values, which is approximately
a radius of 1400 km (the resolution of the reanalysis GPH data
is 0.5◦). We choose LeakyReLU as the activation function of the
encoder to enhance the nonlinear representation of the model.
The output high-level spatio-temporal features can be computed
by

EGPH = FC(flatten(FGPH))

= FC(flatten(Encoder(Gt))) (13)

where FC(·) is a fully connected layer. flatten(·) is the flatten
operation that flattening output feature map of the 3D-CNN
encoder.

As for the decoder in the pressure field branch, its structure
is symmetrical with the 3D-CNN encoder and the transpose
convolution is used to recover the spatio-temporal information
from high-level features. It predicts the future m+ 1 time steps
of the GPH, which is same length of time as the input Gt.
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The loss function of the pressure field branch is computed by

LGPH =
t+m+1∑
i=t+1

||Decoder(FGPH)−TGPHi||1

=

t+m+1∑
i=t+1

||GPHi −TGPHi||1 (14)

where TGPHi is the target value of the future GPH data. || · ||1
is the l1-norm function.

F. Dual-Branched Features Fusion Decoder Module

Based on the LSTM-based encoder in TC features branch and
the pressure field branch mentioned above, there are three types
of intermediate variables from two branches that fed into the
LSTM-based decoder module that is the final time series code of
the TC features ETC, the high-level spatio-temporal reanalysis
3-D GPH features EGPH and the output features from LSTM
encoder layersE1 andE2 (as shown in Fig. 6). In this section, we
will introduce the LSTM-based decoder module for efficiently
fusing the dual-branched multimodal features and generating
multihorizon TC track forecasting results.

The proposed LSTM-based decoder module contains a two-
layers stacked LSTM decoder and the subsequent two fully
connected layers. The detailed decoding and feature fusion
process is defined as follows:

it = σ(WTiETC +WGiEGPH +WY iYt−1

+Whiht−1 + bi) (15)

ft = σ(WTfETC +WGfEGPH +WY fYt−1

+Whfht−1 + bf ) (16)

gt = (WTgETC +WGgEGPH +WY gYt−1

+Whght−1 + bg) (17)

ct = ft × ct−1 + it × gt (18)

ot = σ(WToETC +WGoEGPH +WY oYt−1

+Whoht−1 + bo) (19)

ht = ot × tanh(ct) (20)

Yt = FC2(ReLU(FC1(ht))) (21)

where the initial state ht and ct are the elements of E1 and E2,
which are the final state of the LSTM encoder layers. The initial
input of the LSTM decoder Yt is set to zero. The loss function
of the LSTM-based decoder is also l1-norm function, which is
defined as follows:

Lloc =

t+τ∑
i=t+1

||Decoder(ETC,EGPH,E1,E2,Yt)−Yi||1

=

t+τ∑
i=t+1

||Ti −Yi||1 (22)

where Ti is the ground-truth changes of latitude and longitude.
With the operation mentioned above, the features from both

TABLE II
EXAMPLES OF CMA-BST DATA

I stands for the intensity level of TCs. LAT and LON are the latitude and longitude of
TCs’ centers (unit: ×0.1◦). PRES stands for the central minimum pressure (unit: hPa).
WND and OWD stand for the 2-min maximum and average near-center wind speed,
respectively (unit: m/s).

inherent TC features and reanalysis 3-D pressure field can be
fused effectively and we can achieve the multihorizon TC track
forecasting results Yt based on the fused multimodal features.

G. Loss Functions and Multistages Training

We trained our proposed DBF-Net in a three stages manner.
First, we only train the TC features encoder module by adding
a fully connected layer to directly predict the target value of the
TC track and get the pretrained LSTM encoder in the TC features
branch. Then, we utilize the reanalysis 3-D pressure fields GPH
data to train the pressure field branch of the DBF-Net and learn
the temporal dynamic changing of GPH data. Finally, we add
the LSTM decoder module into the training pipeline and train
the DBF-Net in an end-to-end manner. The loss function at the
final step is as follows:

Lfinal = Lloc + αLGPH + βL2 (23)

where the L2 is the regularization term with l2 penalty. α
and β are hyperparameter. The training schedule detail will be
discussed in Section III-C.

III. EXPERIMENT

In this section, we evaluate our proposed DBF-Net on the
historical TC tracks data in WNP. The forecasting performance
of DBF-Net is verified by the comparison with other deep
learning-based and traditional TC track forecast methods. We
also analyze the forecast results for several individual cases
of TC events and the specific forecasting characteristics of the
DBF-Net.

A. Dataset

Best track dataset (CMA-BST). The inherent features data of
TCs are extracted from the best track (BST) data released by
China Meteorological Administration (CMA) [29]. It includes
the location and intensity of TCs in the WNP Ocean (0◦N–50◦N,
100◦E–210◦E) at six-hour intervals from 1949 to 2018. Exam-
ples of the CMA-BST data are shown in Table II.

GPH dataset (CFSR-GPH). The reanalysis 3-D GPH data in
pressure field branch is collected from climate forecast system
reanalysis (CFSR) dataset released by The National Centers for
Environmental Prediction [30]. CFSR-GPH is grid data with a
spatial resolution of 0.5◦ and the temporal resolution is aligned
with CMA-BST Since 1979. TCs in WNP are mostly generated
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Fig. 6. LSTM-based decoder module in TC features branch with dual-
branched features fusion.

TABLE III
DATASET-SPLITTING-BASED ON CMA-BST AND CFSR-GPH

at the southern edge of the subtropical high pressure and move
along its periphery. Therefore, the 500 hPa geopotential height
data is chosen as the background pressure field to describe the
activity of TCs.

Data preprocessing: For both input data from CMA-BST
and CFSR-GPH, we use the maximum–minimum normalization
for data preprocessing and feed them into the TC features and
pressure field branch, respectively.

Dataset split: Based on the CMA-BST and CFSR-GPH
dataset mentioned above. We choose overlap of the two datasets,
i.e., TCs from 1979 to 2018. And we only keep the TCs with a
life cycle greater than four days to ensure the persistence. There
are 940 TCs left in this dataset. We make 17 000+ samples for
model training, validating, and testing based on a sliding window
of length input sequence length + prediction length (as shown
in Fig. 7 and Table III).

B. Metrics

We use the mean distance error (MDE) to evaluate the TCs
track forecast results. The MDE is a commonly used metric to
measure the average distance error between model prediction
and ground truth. The MDE can be computed by

MDE = 2×R× arcsin√
sin2

(
ϕpre − ϕgt

2

)
+ cosϕpre cosϕgt sin

2

(
λpre − λgt

2

)

≈
√
ΔLat2 +ΔLon2 × 110 (24)

where R ≈ 6371˜km represents the radius of earth. ϕpre and ϕgt

stand for the latitude value of prediction and ground truth. λpre

and λgt stand for the longitude value of prediction and ground
truth.

Besides, the skill score is also the index to evaluate the
practical availability of the methods, as follows:

skill score =
eA − eB

eA
× 100% (25)

where eA is the prediction error of CLIPER method and eB is
the error of proposed method.

C. Implementation Details

We train our proposed DBF-Net in a three stages manner with
the Pytorch framework, which has been discussed in Section II-
E. We use the RMSProp optimizer and set the initial learning
rate to 0.001. The batch size of training set is set to 64. The hyper
parameter α and β in (19) is set to 1.2 and 0.00001, respectively.

For multihorizon forecasting (i.e., predicting the TCs track
at multiple future time steps), the output prediction sequence
length of the DBF-Net is 4 and the input sequence length is
5. That is we predict the 6 h, 12 h, 18 h, and 24 h TCs tracks
based on the historical data from time t− 5 (30 h prior) to time
t (the current time). We train our DBF-Net on a single NVIDIA
GeForce GTX 3090 GPU.

D. Comparison With Statistical/Deep Learning
Forecast Methods

We first compare our proposed DBF-Net with other statistical
and deep learning based TCs track forecast methods, including
the extrapolation method [1], CLIPER method [2], feature fusion
network [13], and recent BiGRU-attn [14]. The extrapolation is
a simple traditional TCs track forecast method. It assumes that
the direction and speed of TCs movement do not change much,
and predicts based on the movement direction and velocity at
previous times. CLIPER can be treated as the benchmark of other
track forecast methods. It uses correlation analysis to screen
climate persistence factors and constructed multivariate linear
regression models. In this article, we replace the multivariate lin-
ear model with a back propagation (BP) neural network model,
which enhancing the nonlinear representation of the CLIPER
model. We selected 20 factors with strong correlation from 46
climate persistence factors by Pearson correlation analysis and
feed them into the BP neural network.

As shown in Table IV, our proposed DBF-Net outperforms
previous works. Specifically, compared with the benchmark
forecast method CLIPER, DBF-Net achieves better MDEs for
all forecast time steps. That is the skill score with respect
to the CLIPER is positive, which demonstrates the practical
availability of our method. In addition, our DBF-Net also ourper-
forms previous deep learning based methods. Compared with
FFN [13] that utilizes the wind, pressure fields simultaneously,
our DBF-Net achieves better results only based on pressure field.
This also shows that our method can better encode the effective
features of the input data.
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Fig. 7. All TCs track data used in the experiment. The line in red, blue, and green represent the TCs for training, validating, and testing. The scatters in different
color represent the first locations of TCs.

TABLE IV
COMPARISON OF THE TCS TRACK FORECASTING RESULTS OF STATISTICAL AND

DEEP LEARNING METHODS

The significance of bold entities indicate best values.

E. Comparison With NWP Forecast Methods

We further compare our DBF-Net with the NWP system that
commonly used in operational forecasting. The global pattern
T213/T639 released by CMA and Shanghai typhoon region
pattern (SHTP) released by Shanghai Typhoon Institute of the
CMA [22]–[25] are chosen for comparison. Compared with our
deep-learning-based method, the NWP methods always need a
great number of computation resources and the inference time
increases rapidly as input data resolution increases. However,
NWP methods still can achieve better forecast accuracy com-
pared with deep learning based methods. As shown in Table V,
DBF-Net could achieve the comparable performance compared
with global pattern T213/T639, especially in year 2014 and
2015, the 24 h MDE of DBF-Net is much better than T213/T639.
However, compared with the region pattern SHTP, the forecast
of the DBF-Net still has a certain gap. The great performance
of the SHTP may due to the high-resolution multilayer nested
grid input data and huge computational resource consumption.

TABLE V
COMPARISON OF THE TCS TRACK FORECASTING RESULTS OF NWP METHODS

The results of NWP methods is released by [22]–[25].
The significance of bold entities indicate best values.

In contrast, our proposed DBF-Net achieves relatively high
prediction accuracy under the premise of low-resolution input
(1◦ spatio resolution for GPH data) and small computational
resource consumption. The inference time of our DBF-Net for
multihorizon forecast is only 2.03 s, which is about three to four
orders of magnitude faster compared with the NWP methods.
Besides, we believe that by using higher resolution data for
model training, our DBF-Net could further improve the forecast
accuracy, which can be further studied in the future works.

F. Ablation Study

Verification of Model Structure: In order to verify the ef-
fectiveness of our proposed DBF-Net architecture, we exper-
imented with different branching structures. As can be seen in
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TABLE VI
IMPACT OF DIFFERENT BRANCHES IN DBF-NET

� Represents the model with 3D-CNN Decoder in pressure branch to enhance the
temporal dynamic changing of GPH data.
The significance of bold entities indicate best values.

Table VI, our proposed DBF-Net with two branches encoder–
decoder networks and feature fusion module, which is denoted
as “DBF-Net�,” achieves the best forecast MDE except with the
6 h forecast result in “DBF-Net” that verified the consistency
of our method. In addition, the relatively bad performance of
LSTM-based and 3D-CNN-based encoder–decoder architecture
alone, which is denoted as “TC-features-only” and “‘pressure-
fields-only,” demonstrate that it is hard to obtain good forecast
results for single inherent features or meteorological fields input.
It makes sense to fuse these two types of data for better forecast
accuracy. The results in Table VI also show the effectiveness
of the 3D-CNN decoder module for enhancing the temporal
dynamic changing of GPH data.

It should be noted that the 3D-CNN decoder module in
pressure fields branch only plays a role in model training. Once
the DBF-Net is trained, the inference is done by just passing
TC features branch and 3D-CNN encoder module. Therefore,
the 3D-CNN decoder module does not increase the memory and
computational cost of the DBF-Net inference.

Effectiveness of Multistages Training Method: As mentioned
in Section II-G, we train our DBF-Net in a multistages manner to
enhance the ability of feature extraction from different input data
of each module in DBF-Net. In order to verify the effectiveness
of the multistages training method, we also trained our DBF-Net
in an end-to-end manner and the 24 h track forecast accuracy is
128.61 km, which is 9.56 km worse compared with the one with
multistages training.

Forecast Accuracy for TCs of Different Intensity Levels: We
classify TCs according to the intensity level at the initial forecast
time. That is tropical depression, tropical storm (TS), severe
tropical storm (STS), typhoon (TY), severe typhoon (STY), and
super severe typhoon (SuperTY). Fig. 8 reports the track forecast
error of various TCs’ intensity. It shows that, the forecast error
decrease consistently as the intensity of TCs increase. It means
that the performance of DBF-Net for forecasting TCs’ track
with low intensity is relatively poor. The same conclusion is
also reported in previous works [13].

G. Case Study

In this section, we select the following three individual cases
of TC events, namely Typhoon Trami 1824, Typhoon Hagibis
1919, and Typhoon Fengshen 1925 (the four digits after the

Fig. 8. TCs track forecast result of our proposed DBF-Net of various intensity.

Fig. 9. TCs track forecast results for typhoon Trami 1824. The blue line
represents the ground truth track. The red line represents the forecast results.

typhoon name represent the typhoon number, for example, the
typhoon 1919 represents the nineteenth typhoon of year 2019).
According to the forecast results, the validity of the DBF-Net is
further verified, and the forecast characteristics of DBF-Net are
analyzed.

Figs. 9–11 and Tables VII–IX show the TCs track forecast
results for the three cases. In the figures, the blue line represents
the ground truth track of TCs and the red line is the forecast
results of the proposed DBF-Net. The intersection of the blue
and red lines is the location of initial forecast time. The four
points extending from the red line represent the forecast path in
the next 24 h (6-h interval) from the initial forecast time.

For Typhoon Trami 1824, its path generally shows a trend
of first westward and then northward. As shown in Fig. 9,
the error between the forecast and the ground truth track is
relatively small at the inflection point from west to north. This
shows that the model itself has learned the potential features of
TCs track movement. For Typhoon Hagibis 1919, there also
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Fig. 10. TCs track forecast results for typhoon Hagibis 1919. The blue line
represents the ground truth track. The red line represents the forecast results.

Fig. 11. TCs track forecast results for typhoon Fengshen 1925. The blue line
represents the ground truth track. The red line represents the forecast results.

TABLE VII
TRACK FORECAST RESULT OF DBF-NET FOR TYPHOON TRAMI 1824

INT stands for the intensity level of the TC. AVG stands for the average prediction
MDE.

TABLE VIII
TRACK FORECAST RESULT OF DBF-NET FOR TYPHOON HAGIBIS 1919

INT stands for the intensity level of the TC. AVG stands for the average prediction
MDE.

TABLE IX
TRACK FORECAST RESULT OF DBF-NET FOR TYPHOON FENGSHEN 1925

INT stands for the intensity level of the TC. AVG stands for the average prediction
MDE.

a inflection point at time “100718” (as shown in Fig. 10).
Although the forecast result is relatively bad (177.07 km for
24 h forecasting), the DBF-Net also could fix the prediction by
bringing the observations from the next time step (24.93 km
for 12 h forecasting at time “100806”). This shows that the
historical information closest to the initial forecast time is more
important. For Typhoon Fengshen 1925, its trajectory presents
a 180◦ turning trend, which is unconventional. As shown in
Fig. 11, DBF-Net could correctly predict the turning trend of
the TC. However, the forecasting length of the track vector is
uniformly smaller than the ground truth and causes the average
MDE to be relatively large (see Fig. 11).

In Tables VII–IX, we also report the intensity level (INT) at
each time step. By comparing the results in Tables VII–IX, it can
be found that the DBF-Net has a relatively lower MDE when the
intensity level is larger. Especially for the TCs with the intensity
level of “SuperTC,” the predicted MDE is comparable to the
NWP model. This phenomenon also explains the relatively poor
forecast results of Typhoon Fengshen 1925.
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IV. DISCUSSION AND FUTURE WORK

The proposed DBF-Net provides a relatively efficient way to
fuse multimodal spatio-temporal data for TC track forecasting.
The extensive experiments further verify the importance of fus-
ing the two types of data for better forecast accuracy. However,
as shown in Table V, the forecast results of deep learning-based
DBF-Net still have a certain gap compared with the traditional
complex NWP methods, although DBF-Net has a greater advan-
tage in terms of computational consumption. Fortunately, recent
works on precipitation forecasting demonstrate the potential
of deep learning-based methods for weather/climate forecast-
ing [31], [32]. Therefore, there are still many aspects to be
studied for deep learning-based TC track forecast methods in
the future to improve the forecast accuracy. The following four
issues could be considered in the future.

1) Recent deep learning-based precipitation forecasting
methods mainly treat the forecast problem as a video frame
prediction task [31], [32]. The large-scale image-like data
with a high temporal resolution, such as radar map and
satellite image, is the primary input of the proposed meth-
ods. Although the similar idea also investigates in TCs
track forecast area recently [16], the model architecture
and scale of the training set are still limited compared with
the MetNet [31], and DGMR [32], which can be further
studied.

2) The experiment results in Table VI show the relatively bad
performance for forecasting only based on TC features,
especially for long-term forecast results (24 h). The reason
for this may be due to the inadequacy of the LSTM struc-
ture. The popular transformer-based model with attention
mechanism [4], [5] could be a great choice for capturing
the temporal features of sequence data more efficiently.

3) The assumption of regular mesh of the reanalysis 3-D
pressure data is adopted in this article for simplicity. And
the vanilla convolution operation in 3-D version is used
to extract the spatio-temporal features. However, there
exist irregular distribution of meteorology field across the
different spatial location. In order to solve this problem,
the graph convolution [33] and spherical CNNs [34] could
be used for further study.

4) Different from the data-driven deep learning-based fore-
cast methods, the NWP methods mainly follow the physics
laws by solving the PDEs with few boundary and initial
condition samples and achieving outstanding forecast re-
sults. These physics laws can be treated as prior infor-
mation for TCs track forecast, which is still ignored by
deep learning-based methods. Recently, many works try
to merge the physics information into the deep learning
framework for weather forecasting to maintain the advan-
tages of numerical and deep learning-based methods at the
same time [35]–[37], so as to improve the performance of
deep learning-based TCs track forecasting.

V. CONCLUSION

In this article, we study the TC track forecasting for multiple
future time steps by proposing a novel deep learning based

model, named DBF-Net, to make full use of both inherent
features of TCs and reanalysis 3-D pressure fields data and
fuse the multimodal features efficiently. DBF-Net contains two
branches with encoder-decoder architectures and can be split
into three part. The first part is the LSTM-based TC features
encoder module that captures the high-level temporal features
from historical inherent features of TCs. The second part is the
pressure field branch that extracts the spatio-temporal features
by learning the temporal dynamic changing of GPH data with
a 3D-CNN-based encoder–decoder network. The last part is
an LSTM-based decoder module that fuses the multimodal
high-level features from different branches and produces the
multihorizon prediction.

Experiments on 39 years of historical TCs track dataset in the
WNP Ocean show that the 24 h track forecast accuracy reaches
119.05 km, which outperforms previous statistical/deep learn-
ing forecast methods. Our DBF-Net also achieves comparable
performance compared with the global pattern T213/T639 with
orders of magnitude faster. The case study of three different
typhoon events further shows the ability of predicting the turning
trend of our proposed method.
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