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SEFEPNet: Scale Expansion and Feature
Enhancement Pyramid Network for SAR Aircraft

Detection With Small Sample Dataset
Peng Zhang , Hao Xu , Tian Tian , Peng Gao , Linfeng Li, Tianming Zhao , Nan Zhang, and Jinwen Tian

Abstract—Aircraft detection in synthetic aperture radar (SAR)
images is still a challenging research task because of the insufficient
public data, the difficulty of multiscale target detection, and the
complexity of background interference. In this article, we construct
a public SAR aircraft detection dataset (SADD) with complex back-
ground and interference objects to facilitate the research in SAR
aircraft detection. Then, we propose the scale expansion and feature
enhancement pyramid network as the SADD baseline. It uses a
four-scale fusion method to combine the shallow position informa-
tion with the deep semantic information, effectively adapting to the
multiscale target detection in SAR images, significantly improving
the detection effect of small targets. The feature enhancement pyra-
mid structure is connected behind the backbone network to weaken
the background texture and highlight the target to achieve feature
enhancement, improving the ability to extract target features in
complex backgrounds. Finally, to further improve the detection
performance of the small-scale SAR aircraft dataset, we propose a
domain adaptive transfer learning method. Experiments on SADD
show that this method can significantly improve the recall rate and
F1 score. At the same time, we find that the transfer effect of using
homologous but different types of targets as the source domain is
better than those of heterologous but same types of targets in SAR
aircraft detection, which is instructive for future research.

Index Terms—Feature enhancement pyramid (FEP), synthetic
aperture radar (SAR) aircraft detection, transfer learning.

I. INTRODUCTION

COMPARED with passive sensors, such as optics and
infrared, synthetic aperture radar (SAR) has the unique

advantages of all-weather and day and night. It has outstanding
strategic significance in military fields, such as battlefield situa-
tional awareness [1], typical target recognition [2], and precision
guidance [3]. Aircraft is an essential target in the civil field. The
detection of it contributes to the effective management of air-
ports. In the military field, the efficient and accurate acquisition
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of aircraft targets in the airport and airspace is of great impor-
tance, which can help to acquire battlefield military information
and make battle plans in real time. Therefore, detecting aircraft
targets based on SAR images is a significant research direction.

Unlike optical images, SAR imaging has a longer wavelength,
a more complex imaging mechanism, and a more difficult visual
interpretation of the imaging results. Therefore, SAR aircraft
target detection faces some challenges. First, the target in the
SAR image is discontinuous, which is composed of multiple
discrete irregular scattering centre bright spots. However, the key
semantic information for object recognition is hidden between
these scattering centres. It is not easy to detect the complete
aircraft target in this case. In addition, there are significant
differences in target scales and many weak and small targets
in SAR images, which makes detection difficult. Moreover, the
interference of complex background also brings difficulties to
SAR aircraft target detection. A large number of background
highlight scattering points are distributed around the aircraft
target, which will be confused with aircraft target components
to a certain extent, making it challenging to locate and identify
the aircraft accurately.

In the previous work, the traditional SAR aircraft target
detection algorithms are roughly divided into three stages: 1)
detection, 2) identification, and 3) recognition. First, suspicious
targets, including targets and false alarms, are detected by de-
tection algorithms, such as constant false alarm rate (CFAR)
[4] and its derivative and improved algorithms [5], [6]. In the
identification stage, targets and false alarms can be distinguished
by other aircraft features, such as contour, shape, texture, and
scattering centre. As Chen et al. [7] analyzed the scattering
features of civil aircraft in high-resolution TerraSAR-X images.
On this basis, the Harris–Laplace corner detector was used to
extract the strong scattering points and proposed to describe
them by using the convex dot vector to realize the extraction
and description of the scattering features of aircraft targets.
In the final recognition stage, the template matching method,
model-based method, and machine learning method [8] are
often used to realize the fine-grained division of aircraft types.
However, traditional SAR aircraft detection algorithms often
rely on hand-designed features, and the implementation process
is complex. It is difficult to achieve good detection results in
complex scenes, and its generalization ability is poor.

Target detection algorithm based on deep learning does not
need manual design features, and has the characteristics of a
simple implementation process and high detection accuracy, so
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it has been widely used in the field of SAR images. Target
detection algorithms based on deep learning can be divided
into two categories: 1) two-stage detection algorithms, such as
R-CNN series [9]–[11], which have high detection accuracy;
and 2) one-stage detection algorithms, such as SSD series
[12]–[14] and YOLO Series [15]–[17], which have very fast
detection speed. In the task of SAR aircraft target detection,
according to actual requirements, scholars usually improve the
model based on the above algorithms to obtain good detection
results. Just as He et al. [18] improved the algorithm based on
YOLO [15] and combined the target component information
to achieve satisfactory results in Terra SAR-X data. However,
when the sizes of targets in SAR images are very different
and there are many small targets, the existing algorithms are
difficult to achieve satisfactory results. Moreover, in the case of
complex background interference, the extracted target features
are insufficient, resulting in poor detection accuracy. In addition,
methods based on deep learning require a large number of
samples for supervised training. Insufficient samples can easily
lead to overfitting and affect the detection effect.

Most of the datasets used in SAR aircraft detection research
are not publicly available, so it is impossible to train a robust
model using large amounts of SAR aircraft data. In this case,
using a small amount of SAR aircraft image data to improve
the detection performance of the model is a significant research
direction. A suitable solution to the small sample problem is to
use transfer learning methods. The main idea of transfer learning
is to use the existing knowledge (source domain) to learn new
knowledge (target domain), find the similarity between them,
and use the data in the source domain to transfer the knowledge
to the target domain to establish the model. According to the
learning method [19], transfer learning methods can be divided
into four categories: 1) instance-based transfer learning, 2)
feature-based transfer learning, 3) model-based transfer learn-
ing, and 4) relation-based transfer learning. The model-based
transfer learning method has been widely used in convolutional
neural networks, adopting parameter sharing. At present, a
well-established paradigm is to use large-scale data to pretrain
the model (e.g., ImageNet [20]) and then use the model-based
transfer learning method to fine-tune the model on target tasks,
which usually have less training data. In the field of natural
image processing, model-based transfer learning methods have
achieved state-of-the-art results on many tasks, including object
detection [11], [12], [17], image segmentation [21], [22], and
action recognition [23], [24]. In the SAR aircraft detection
mission, due to the lack of public data, Li et al. [25] tried to
use public SAR ship data for pretraining, which improved the
detection performance of the model to a certain extent. However,
due to the different categories of source domain data and target
domain data, the similarity between domains is not obvious
enough, so it is not easy to achieve better detection results only by
using the model-based transfer method. Therefore, designing a
feature-level transfer learning method for SAR aircraft detection
with small sample datasets is necessary.

Despite the rapid development of SAR aircraft detection
methods, there are still some obstacles to further development
of the field, especially the lack of a common benchmark dataset
for algorithm evaluation. Therefore, the motivation of this article

Fig. 1. Schematic diagram of the feature adaptive transfer learning method. It
first aligns the shallow features of the source domain data with the target domain
data, and then uses the target domain data to fine-tune the model.

can be summarized as follows. First, we aim to establish a public
SAR aircraft detection dataset (SADD) to provide a benchmark
for evaluating different algorithms and facilitate other scholars’
research. Second, for the challenges of complex background
interference and target size diversity in SADD, we plan to design
a scale expansion and feature enhancement pyramid network
(SEFEPNet) as the baseline of SADD. Third, although we
provide the first public dataset in the related field, our SADD
scale is relatively small due to the limitations of data sources
and difficulties in labeling. Therefore, we plan to use the transfer
learning method to improve detection performance. We believe
that the selection of source domain data is as important as
the design of the method, so we also intend to explore the
impact of source domain data types on SAR aircraft detection
performance, which can guide scholars on how to select source
domain data to effectively improve the performance of SAR
aircraft detection and has practical application value in real
scenes.

In this article, we propose the SEFEPNet architecture. Our
SEFEPNet adopts a four-scale feature fusion method to combine
semantic features of different depths, effectively alleviating
the problem of difficult detection of small and weak targets
and adapting to multiscale target detection. In addition, our
SEFEPNet adopts the feature enhanced spatial pyramid pooling
structure, which can strengthen the target feature and weaken the
background texture information, helping to improve the ability
to extract target features in complex backgrounds. Moreover,
the structure can fully extract local features through the pooling
layer of various sizes and greatly enrich the information of
the receiver field in combination with global features, which is
conducive to the integrity detection of SAR aircraft targets and
can also adapt to the problem of the large difference in target
size. Experimental results show that our SEFEPNet is superior
to the general algorithms in SAR target detection.

To solve the problem of insufficient samples of SAR air-
craft, we propose a feature-adaptive transfer learning method, as
shown in Fig. 1. This method consists of two stages: first, train
the network with the source domain data and align the distribu-
tion of shallow features with the target domain; then, freeze the
shallow network and fine-tune the model using only the target
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domain data to get the final output. In this method, an adaptive
layer is added to the network, and the distance between the
extracted source domain features and the target domain features
is measured by maximum mean discrepancy (MMD), so that the
knowledge learned from the source domain data is more con-
sistent with the target domain feature distribution. Since there
is no open-source SAR aircraft dataset, we, respectively, use
open optical aircraft images [26] and SAR ship images [27] as
a source domain for transfer learning, which has some intuitive
similarities with SAR aircraft targets. Experiments show that
this domain-adaptive transfer learning method can significantly
improve detection performance. Moreover, we found that in the
field of SAR aircraft detection, using homologous but different
types of targets as the source domain is better than those of
heterologous but same types of targets, which is instructive for
future research.

The main contributions of this article are as follows.
1) First, for the lack of SAR aircraft detection data, we

construct a public dataset (SADD), which provides a
benchmark for comparing different algorithms to facilitate
the research of other scholars.

2) Second, for the complex background interference and
target multiscale problems in SAR aircraft detection, we
propose SEFEPNet as the baseline of SADD, which can
effectively improve the detection accuracy and is superior
to the mainstream object detection algorithms.

3) Third, to further improve the detection performance of the
small-scale SADD, we propose a domain adaptive trans-
fer learning method. Moreover, for SAR aircraft target
detection, we find that using homologous but different
types of targets as the source domain is better than those
of heterologous but same types of targets, which has
guiding significance and practical application value for
future research.

The rest of this article is organized as follows. Section II intro-
duces the related work of SAR aircraft target detection and the
related work of transfer learning in SAR. Section III introduces
the SAR aircraft dataset and production details. Section IV ex-
plains the SEFEPNet and the feature-adaptive transfer learning
method. Section V provides ablation experiments of SEFEPNet
structure, as well as rich comparison experiments with other
general detection algorithms. Section VI further discusses and
analyzes the results of transfer learning. Finally, Section VII
concludes this article.

II. RELATED WORK

A. SAR Aircraft Detection With Deep Learning

The general process of aircraft target detection and recog-
nition system in SAR image can be roughly divided into five
steps: 1) image preprocessing, 2) airport detection, 3) aircraft
target rough detection, 4) false alarm elimination, and 5) aircraft
target recognition. Since there are many methods to eliminate
false alarm targets, rough detection of aircraft targets is the most
important part that affects the performance of SAR aircraft target
detection performance. In the rough detection of SAR aircraft
targets, the aim is to detect the real aircraft targets as much as
possible. Readers can see recent surveys [28], [29], and [30] for

more details in the SAR aircraft detection. Here, we only review
several milestone works.

The traditional SAR target detection algorithms need to de-
sign the features manually, the steps are complex, and the
generalization performance is poor. To solve the shortcomings of
traditional algorithms, Wang Siyu et al. [31] proposed an aircraft
target detection algorithm in SAR images based on data enhance-
ment and the convolutional neural network. First, candidate
slices are selected by a sliding window, and then the candidate
slices are identified by a convolutional neural network. However,
the network structure of this algorithm is relatively simple, and
there are many missing detections. To improve the detection
accuracy of the algorithm, Zhao Danxin et al. [32] proposed a
new method of aircraft target detection based on RESNET [33].
The method first constructs the graph and template pyramid for
multiscale detection. It then uses the fully convolutional network
to extract the context information of different layers to achieve
high-precision detection of aircraft targets. Later, Guo Qian
et al. [34] proposed an algorithm based on FPN to detect aircraft
in high-resolution images. This structure combines the high-
resolution information of basic features with the high semantic
information of depth features, contributing to the accuracy of
detection results. However, there are many small targets in SAR
images, and the detection effect of the existing algorithms is
poor. To solve the problem that small targets are challenging to
detect, An et al. [35] adopted a feature pyramid network based
on rotating minimum adjacency rectangular frame to improve
the detection effect of small targets to a certain extent.

However, for the small and weak aircraft targets in SAR
images, the existing algorithms are still challenging to achieve
satisfactory results. In addition, an SAR image is prone to a
significant difference in the size distribution of aircraft targets,
which increases the difficulty of SAR aircraft detection. There-
fore, it is an urgent problem to improve the detection accuracy
of small and weak targets and fully extract target features of dif-
ferent sizes in SAR images, which is also one of the motivations
of this article.

B. Transfer Learning of SAR Images

Transfer learning is a method of transferring knowledge
from one domain (source domain) to another domain (target
domain) to obtain better learning results. The model-based
transfer method is commonly used in deep convolutional neural
networks. It initializes the model by using the parameters learned
from the large source domain dataset, and then fine-tunes [36] the
initialized model with a small number of labeled target domain
samples, which can prevent model overfitting and effectively
improve the test performance of the target domain dataset. The
following are the milestone works of transfer learning in SAR
image target recognition and detection.

In the field of target detection and recognition in SAR images,
to solve the problem of poor model generalization performance
caused by insufficient target domain data, Shengna Wu et al.
[37] proposed a convolutional neural network algorithm based
on model transfer. In this method, source domain data were
obtained from ESA ENVISAT/ASAR, and target domain data
were obtained from ESA ERS-2/SAR. With the adoption of
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Fig. 2. Distributions of bounding boxes’ sizes and aspect ratios of the SADD.

model transfer, the test performance of the target field has been
greatly improved. Just as Shengna Wu et al. [37] did, in the field
of SAR image transfer learning, researchers usually use SAR
image datasets as the source domain data, which are homologous
to the target domain and of the same type. However, in some
specific SAR target detection and recognition tasks, it is difficult
to find enough homology and the same category data as the
source domain. Pan and Yang [19] showed that even if the
training and future data are not in the same feature space or
even the distribution is different, knowledge transfer can also
improve the performance of machine learning. Inspired by [19],
Yong Li et al. [38] adopted the optical dataset Pascal VOC 2007
as source domain data for model transfer and achieved a certain
performance improvement in the SAR ship detection task.

In the field of SAR image detection and recognition, previous
scholars have proved that using homologous or heterogeneous
data as the source domain can improve the performance of the
model. However, there is almost no research to guide us on how
to choose source domain data. We need to know whether to use
homologous data or heterologous data as the source domain to
improve model performance, which will be of great inspiration
for future research. This is one of the motivations of this article.

III. DATASET AND PRODUCTION DETAILS

Since there is no publicly available aircraft detection dataset in
SAR images, we collect and construct an aircraft slice dataset to
investigate the detection performance of our method. We name
the SAR aircraft detection dataset SADD and make it public to
facilitate the research of other scholars. The SADD is available
at1

The SADD is collected from the German TerraSAR-X satel-
lite, which works in x-band and HH polarization mode with
image resolutions ranging from 0.5 to 3 m. The ground truth of
aircraft are manually annotated by SAR ATR experts according
to the prior knowledge and corresponding optical images. After
cropping the large images, 2966 nonoverlapped 224×224 slices
are collected with 7835 aircraft targets, of which structures,
outlines, and main components are clear. The distributions of
bounding boxes’ sizes in pixels and aspect ratios are shown in
Fig. 2(a) and (b), respectively. Aircraft targets in SADD have
various sizes, and there are a large number of small-size targets.

The target background of SADD is relatively complex, includ-
ing various scenes, such as airport runway, airport apron, and
civil aviation airport. The negative samples are mainly around
the airport, including open space and forest. Fig. 3 shows the
sample images in SADD.

1[Online]. Available: https://github.com/hust-rslab/SAR-aircraft-data

Fig. 3. Examples in SADD. Above are real SAR aircrafts, below are jamming
targets.

TABLE I
DIVISION OF THE DATASET

TABLE II
STATISTICS OF AIRCRAFT TARGET SIZE IN TRAINING SET AND TEST SET

In this article, to verify our method, we randomly divide the
images in SADD into the training set and test set according to
the ratio of 5:1. The training set includes 796 positive samples
and 1666 negative samples, and the number of aircraft boxes is
6948. The test set includes 88 positive samples and 416 negative
samples, and the number of aircraft boxes is 887, as shown in
Table I. The aircraft target size distribution in the training set
and test set is shown in Table II, where < 20 means that both
the width and height of the bounding box are less than 20.

IV. METHODS

Our SAR aircraft detection algorithm is mainly composed
of a transfer learning module and detection module. First, the
detection network is used to train the source domain data (such
as SAR ships), and the feature transfer learning method is used to
align the source domain data with the target domain data (SAR
aircraft) in the shallow position of the network. Then a small
sample of the SAR aircraft dataset (SADD) is used to fine-tune
the detection network. The idea diagram of our algorithm is
shown in Fig 1. The following is a detailed introduction of the
detection network and the feature transfer learning method.

A. Detection Network

Our SEFEPNet consists of feature extraction, feature en-
hancement pyramid, feature fusion, and feature decoding mod-
ules. Inspired by YOLOV3 [17], our feature extraction module
uses Darknet-53 as the backbone, which can achieve better
results in terms of speed and accuracy. An overview of our
network is shown in Fig. 4.

https://github.com/hust-rslab/SAR-aircraft-data
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Fig. 4. Overview of the SEFEPNet.

Algorithm 1: Improved K Clustering Algorithm for Gener-
ating Anchor Boxes.

Input: X: The set of the length and width of ground truth
in the dataset;

Output: M: Anchor box set obtained after clustering of
sample set X;

1: Initial t = 0, and randomly select k boxes from X as
the initial clustering centers;

2: repeat:
3: Clustering the sample X. For a fixed class center

mt
(w,h) = (mt

1, . . . ,m
t
l , . . . ,m

t
k), calculate the

distance from each sample in X to the class center,
and assign each sample to the class closest to it to
form the clustering result Ct

(w,h);
4: Calculate new class centers. For the clustering result

Ct
(w,h), calculate the median value of the length and

width of the current samples in each class as the new
class center
mt+1(w, h) = (mt+1

1 , . . . ,mt+1
l , . . . ,mt+1

k );
5: Set t = t+ 1, M = mt

(w,h);
6: until: The class center does not change and the iteration

converges.

1) Anchor Box: For anchor-based algorithms, the setting of
anchors will affect the final detection performance. This article
uses an improved k-clustering algorithm to allocate reasonably
sized anchors for different scale detection feature maps. Our
SEFEPNet adopts detection feature maps at four scales (4↓, 8↓,
16↓, 32↓, where ↓ means downsampling), each containing three
anchor boxes with different aspect ratios.

The distance measurement formula of the improved K-cluster
is as follows:

D(b, c) = 1− IOU(b, c) (1)

IOU (bp, bg) =
bp ∩ bg
bp ∪ bg

(2)

where D(b, c) is the distance between predict box b and cluster
center c, bp is the predict box, and bg is the ground truth. The
steps of the improved k-means algorithm are as Algorithm 1.

Fig. 5. Visualization of the initial anchor boxes obtained by clustering on the
SADD. (a) Hand-designed anchors. (b) Improved anchors.

Fig. 6. Structure diagram of scale expansion.

According to the shape characteristics of aircraft targets in
SAR images, the clustering center is set as 12. After 10 times
of clustering analysis, the average clustering results are as
follows:(14, 14), (14, 21), (20, 18), (21, 25), (26, 21), (29, 31),
(49, 36), (39, 47), (59, 45), (45, 60), (80, 78), (137, 143).
Compared with the hand-designed anchor boxes, such as faster
R-CNN [11], anchor boxes obtained by this advanced clustering
algorithm can better adapt to the size of the aircraft target. Fig. 5
is a visualization of the anchor boxes.

2) Scale Expansion: From Fig. 2, we can find that the scales
of aircraft targets in SAR images are very different, and there
are weak targets less than 10× 10 pixels. Our SEFEPNet adopts
a four-scale feature fusion detection method, adapting to mul-
tiscale target detection. By fusing four times down-sampled
shallow position information with deep semantic features, the
detection performance of weak targets can be effectively im-
proved. The implementation of scale expansion is shown in
Fig. 6.
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Fig. 7. Structure diagram of FEP.

3) Enhancement Pyramid (FEP): Since it is challenging to
extract target features in a complex background, we propose
the feature-enhanced pyramid structure (FEP), which can effec-
tively improve the detection performance, as shown in Fig. 7.
First, the FEP module up-samples the feature map output by
the feature extraction backbone, strengthening the target feature
and preventing the loss of the feature information of the weak
target due to the subsequent spatial pyramid pool structure.
Second, it uses three maximum pooling layers of different
sizes (3× 3, 5× 5, 7× 7) for subsampling, which can weaken
the background texture information and fully extract the local
features of the target. Third, it joins the pooled feature maps
and the original feature map along the channel direction to
obtain an enhanced feature map. FEP realizes the fusion of
local features and global features, thus enriching the expressive
ability of feature maps and improving the extraction ability of
target features in complex backgrounds. In addition, the pooling
pyramid improves the receptive field of the feature map and
solves the problem of excessive target scale differences.

4) Loss Function: The loss function in one-stage target de-
tection comprises three parts: 1) box position loss, 2) target loss,
and 3) classification loss. Since the single-class aircraft target
detection task of SAR image does not need to be classified, the
loss function should be composed of the first two. The final
detection loss function can be expressed as

L = w × (Lxy + Lwh) + Lo b j (3)

where Lxy represents the loss of the coordinate position of the
prediction box, Lwh represents the regression loss of the width
and height of the prediction box, and Lo b j represents the loss
caused by the target confidence. w is the weighting coefficient.
The specific implementation details of the loss function are
shown in [17].

B. Method of Transfer Learning

With the popularity of deep learning methods, more and
more researchers use deep neural networks for transfer learning.
Compared with traditional nondeep transfer learning methods,
deep transfer learning directly improves the learning effect on
different tasks. In optical image target detection, Fine-tune is
a simple and popular deep network transfer method. Finetune
uses source domain data to train the model and adjusts the model
according to the specific task of the target domain, which can
achieve a good detection effect. Yosinski et al. [39] proved that

Finetune could better overcome the differences between domain
data, and the effect would be significantly improved if fine-tune
was added to the deep transfer network.

Therefore, for the SAR aircraft target detection task, we can
consider using the Finetune transfer method. Due to the shortage
of SAR aircraft datasets, we can use optical aircraft images or
SAR ship images as the source domain. However, the imaging
mechanism between optical aircraft images and SAR aircraft
images is very different, and SAR ships and SAR aircraft belong
to different types, so no matter which type of dataset we choose
as the source domain, there will be a large data distribution
difference and feature difference with SAR aircraft targets, so
only use finetune transfer method cannot have a satisfying effect.
Inspired by Tzeng et al. [40], we designed an adaptive transfer
network, as shown in Fig. 8.

We add the MMD adaptation layer behind the third residual
group of the Darknet-53 feature extraction network to calculate
the distance between the features of the source domain and
the target domain and added it to the loss of SEFEPNet for
training, which can effectively solve the problem of the large
difference between the data of the source domain and the target
domain. Krizhevsky et al. [41] revealed that the shallow layer
of the neural network learns the general features, while the deep
layer learns the specific features that are more focused on the
learning task. For the transfer learning of SAR aircraft images,
the common features of the source domain data and the target
domain data are beneficial. Finally, through experiments, we
chose the 8x downsampling output of the Darknet-53 network
as the position of the adaptation layer. The loss function of the
adaptive transfer network is expressed as

� = �d (Ds, ys) + λ�A (Ds, Dt) (4)

whereDS represents the source domain,Dt represents the target
domain, and ys represents the detection result of the network. �
represents the final loss of the network, �d(Ds, ys) represents
the regular detection loss of the network on labeled source
domain data (which is the same as the ordinary deep network),
�A(DS , Dt) represents the adaptive loss of the network and λ is
the weight parameter weighing the two parts of the loss function.
In this article, we adopt the MMD measurement criterion as
adaptive loss, which is expressed as

�A (Ds, Dt) = M M D2 (Ds, Dt) (5)

M M D2 (Ds, Dt) =

∥∥∥∥∥∥

n1∑

i=1

φ (xi)−
n2∑

j=1

φ (yj)

∥∥∥∥∥∥

2

H

(6)

where xi represents the ith sample in the source domain, yj
represents the jth sample in the target domain, and φ(·) is the
mapping that maps the original variable to the reproducing
kernel Hilbert space (RKHS) [42].

The specific steps of the transfer learning method in this article
are as follows.

1) Feature alignment: Use the adaptive transfer network to
train the source domain data and make the trained model
more in line with the target feature distribution of the SAR
aircraft through the adaptive layer.

2) Model fine-tuning: Freeze the network layer before the
adaptive layer and fine-tune the trained network using a
small sample SAR aircraft image dataset (target domain).
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Fig. 8. Domain adaptive transfer learning method in SEFEPNet.

TABLE III
HYPERPARAMETERS SETTINGS

V. EXPERIMENTS AND RESULTS

In this section, we first introduce the experimental parameter
settings and evaluation metrics. Then, we conduct ablation stud-
ies to investigate our network. Finally, we compare SEFEPNet
with several state-of-the-art object detection methods.

A. Experimental Setup

For our SEFEPNet, we use SAR images with a resolution
of 224× 224 as input and resize the images to a resolution of
416× 416. Models are trained on 2080Ti with a batch size of
16 scenes per each. We use stochastic gradient descent with an
initial 0.01 and drop the learning rate at the 80% and 90% of
the total number of iterations by the factors of [0.1,0.01]. We set
the weight decay to 5× 10−4 and stop training when the loss
plateaus. Hyperparameter settings are shown in Table III.

B. Evaluation Metrics

Precision and recall are often used as evaluation criteria. How-
ever, the precision rate and recall rate are usually contradictory,
that is, when the precision rate is high, the recall rate is usually
low, and when the recall rate is high, the precision rate is usually

low. Therefore, we added F1-score, which is a comprehensive
indicator between precision and recall. The calculation method
is shown as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1− Score = 2× Recall × Precision
Recall + Precision

(9)

where true positive (TP) means that the aircraft is correctly
predicted, false positive (FP) means that the actual category is
a false alarm but the predicted class is the aircraft, and false
negative (FN) means that the actual category is the aircraft, but
the predicted category is a false alarm. Since there are many
methods to eliminate false alarm targets, rough detection of
aircraft targets is the most important part that affects the per-
formance of SAR aircraft target detection. Therefore, the recall
rate is more important than the precision rate in the evaluation
criteria of this article.

C. Ablation Study

In this subsection, we compare the performance of our
SEFEPNet with different architectures and types of transfer
learning to investigate the potential benefits of different design
choices.

1) Multiscale Information: We investigate the benefit of the
number of layers to be fused by removing the FEP module
in our SEFEPNet. That is, we only use the method of scale
expansion and explore the impact of different scale feature
fusion layers on the model performance. As shown in Table IV,
increasing the number of fusion layers can effectively improve
detection performance of small-size targets. NoFEP-3L means
that SEFEPNet removes the FEP module and uses three scales
for feature fusion. Fig 9 is a visualization of the detection results
using different scale features for fusion.
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TABLE IV
EFFECT OF DIFFERENT MODULES ON SEFEPNET

The significance of bold entities indicate best values.

Fig. 9. Comparison of multiscale fusion detection results of SEFEPNet.
(a) SEFEPNet-NoFEP-3L. (b) SEFEPNet-NoFEP-4L.

TABLE V
COMPARISONS OF DIFFERENT TYPES OF TRANSFER LEARNING

The significance of bold entities indicate best values.

2) Feature Enhancement Pyramid: We investigate the ben-
efits introduced by our FEP module. As shown in Table IV, it
demonstrates the effectiveness of our feature-enhanced pyramid
structure. FEP-4L means that SEFEPNet adopts the FEP module
and uses four scales for feature fusion.

3) Types of Transfer Learning: We investigate the benefit of
transfer learning on aircraft target detection in SAR images. In
addition, we explore the impact of different types of transfer
learning on our SEFEPNet. That is, we selected optical aircraft
images from [26] and found the publicly available SAR ship
images dataset [27]. Table V shows the results of transfer learn-
ing with different source domain data. We can find that when
the SAR aircraft dataset is insufficient, using the same source
but different object images is better than the different source but
same object images for transfer learning.

D. Comparison to the State of the Arts

We compare our method to two two-stage methods, faster
R-CNN [11], cascade R-CNN [43] and three one-Stage methods,
SSD [12], Yolov3 [17], and YOLOX [44]. Our SEFEPNet uses

TABLE VI
COMPARISONS TO THE STATE-OF-THE-ARTS

The significance of bold entities indicate best values.

the domain adaptive transfer learning method. To ensure the
fairness of the comparison experiment, we use the weights ob-
tained from SAR ship data training to initialize other comparison
algorithms to improve the detection performance of SAR aircraft
targets. Table VI and Fig. 10 show the comparison results of
the methods. It clearly shows that our method is better than
mainstream algorithms for the large difference in the target scale
of SADD.

E. Experimental Analysis

Table VI shows that for the SADD dataset, our SEFEPNet
has a higher recall rate and F1 value than mainstream detection
algorithms. This is because there are a large number of small
targets in the SADD dataset, and the target sizes vary widely,
as shown in Table II. Our SEFEPNet adopts a four-scale feature
fusion method to effectively alleviate the problematic detection
of small targets and adapt to multiscale target detection, as shown
in Table IV. In addition, our SEFEPNet uses the FEP module,
which can strengthen the feature and weaken the texture, helping
to extract target features in complex backgrounds. The spatial
pyramid pooling structure in the FEP module can fully extract
the local features of targets. It can significantly enrich the
receptive field information after fusion with the global features,
conducive to the integrity detection of SAR aircraft targets.

Table V shows that for the SAR aircraft detection task with a
small sample dataset, when the same domain adaptive transfer
learning method is adopted, the detection effect using SAR
ship images as the source domain data is better than that using
optical aircraft images as the source domain data. Since the
imaging mechanism of SAR images and optical images are
different, using optical aircraft images as source data cannot
extract features similar to SAR aircraft well. Although SAR
ships and SAR aircraft belong to different types of targets,
their imaging mechanisms are similar, leading to more similar
common features of the two targets.

Fig. 11 shows the final detection results of our algorithm. It
can be seen that our algorithm can effectively adapt to multiscale
targets, and it can also locate the target in the case of complex
background interference.
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Fig. 10. Visualization of SAR aircraft detection results of different algorithms.

Fig. 11. SEFEP-Net detection results in several test samples of SADD. The
yellow boxes, red boxes, and green boxes represent false alarms, missing targets,
and correct detection, repectively.

VI. DISCUSSION

This section will further discuss and analyze the work of
transfer learning.

Source domain data should have similar characteristics to
SAR aircraft data. Therefore, in our work, we divide source
domain data into two categories: 1) heterogeneous but same
type data (such as optical aircraft) and 2) homologous but
different type data (such as SAR ships). We designed a domain

Fig. 12. Comparison visualization of the detection confidence maps. (a)
Ground truth in SAR images. (b) Using optical aircraft as the source domain
for transfer learning. (c) Using SAR ships as the source domain for transfer
learning.

adaptive transfer learning method for verification to compare
which type of source domain data are more effective for SAR
aircraft detection.

From Table V we can see that using domain adaptive transfer
learning method can effectively improve the detection perfor-
mance of the model, and the effect of using homologous but
different type data (SAR ships) as the source domain is better
than that of heterogeneous but same type data (optical aircraft).
The confidence maps of the detection results of transfer learning
are shown in Fig. 12. Compared with optical aircraft data, using
SAR ship image as source domain data has more accurate
positioning accuracy and higher confidence for SAR aircraft
targets. Due to the limitation of public dataset, except for SAR
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Fig. 13. Samples in MSTAR.

TABLE VII
COMPARISONS OF DIFFERENT TYPES OF TRANSFER LEARNING

The significance of bold entities indicate best values.

ship data, we can only collect SAR vehicle data called MSTAR.
Since MSTAR is a classified dataset, we manually labeled the
1000 ground truth, as shown in Fig. 13. The effect of using
SAR vehicle data as the source domain is shown in Table VII.
Ten thousand publicly available optical aircraft images and ten
thousand SAR ship images were used in the experiment. We can
see that in the field of SAR aircraft detection, the effect of using
homologous but different type data (SAR vehicle) as the source
domain is still better than that of heterogeneous but same type
data (optical aircraft).

VII. CONCLUSION

This article constructs a public SADD with complex back-
ground and interference objects, which can provide a benchmark
for the evaluation of different algorithms. Then we provide a
baseline SEFEPNet for SADD, which can effectively solve the
problem of detection difficulties caused by complex background
interference and target size diversity in SAR images, and is su-
perior to the mainstream object detection algorithms. To further
improve the detection performance of the small-scale dataset,
we design a domain adaptive transfer learning method. In the
field of SAR aircraft detection, we find that the transfer effect of
using homologous but different types of targets is better than that
of heterologous but same types of targets. The conclusion has
enlightening significance for future research and has practical
application value in real scenes.

In the future, we will enrich our SADD and implement fine-
grained aircraft type labeling. In addition, we will improve the
model detection performance based on the idea of associative
target recognition and improve our transfer learning method.
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