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Using Super-Resolution Algorithms for Small
Satellite Imagery: A Systematic Review

Kinga Karwowska and Damian Wierzbicki

Abstract—In recent years, we have witnessed significant
development in the space sector, in particular regarding Earth
imaging. Small satellites, whose size and construction make their
production much cheaper, are becoming increasingly popular. As
a result, a larger number of satellites may be placed in space, and
thus, they may perform more frequent observations of selected
spots on Earth. Unfortunately, the construction of these satellites
also affects their observation capacity as they have a weaker
spatial resolution. Scientists have been dealing with the problem of
improving the spatial resolution of satellite imaging for many years.
Numerous methods were developed that allow for the best possible
representation of high-resolution images based on low-resolution
images. However, the application of traditional solutions to
improve the resolution of digital images requires an additional
high-resolution image. As far as images obtained by small satellites
(e.g., nano, micro, or mini) are concerned, the difference between
the spatial resolution of panchromatic and multispectral images
is small (e.g., for SkySat-3 – SkySat-15 satellites, it is only 0.16
m). The need to increase the spatial resolution of an image that
does not have a corresponding higher resolution image (e.g., a
panchromatic image or a sequence of images) causes additional
problems. This article presents a review of the methods to improve
the spatial resolution of small-satellite imaging. The authors
analyze the interpolation, pansharpening, and digital image
processing methods. Additionally, the article focuses on presenting
solutions based on deep learning that enables the enhancement of
the spatial resolution of images obtained from small satellites. The
methodology of creating databases used for network training is
described. Finally, the authors present the main limitations of the
analyzed solutions and future development trends that will enable
to improve the spatial resolution with the use of a single image.

Index Terms—Convolutional neural networks, deep learning,
neural networks, single image super-resolution (SISR), super-
resolution.

I. INTRODUCTION

IN RECENT years, we have witnessed dynamic progress in
technology, which, in turn, has contributed to a significant

development of the space sector. According to the data provided
by the Union of Concerned Scientists, as of the 1st of January
2021, over 3000 operational satellites were orbiting the Earth.
Every sixth of them performs operational tasks [1]. Over the past
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five years, over 380 new imaging satellites have been placed in
orbit (of which approx. 300 weighed less than 500 kg). This
number is more than 4.5× higher than in 2011–2015. High-
resolution (HR) satellite imaging may be applied in numerous
fields of research, such as land-use and landcover mapping [2],
[3], urban mapping [4], detection and tracking of objects [5], [6],
maritime monitoring [7], and automatic building classification
[8], [9].

Contemporary satellites of very HR can record images with a
spatial resolution that may reach, in nadir, even 0.30 m. However,
nano-, micro-, and minisatellite systems are becoming increas-
ingly popular [10]. Although they are both easier to manufacture
and cheaper than large satellites, they have one major disadvan-
tage (as far as the possibility of Earth observation is concerned):
their resolution is significantly lower due to their construction.
Their small size and weight (nanosatellites: 1–10 kg, microsatel-
lites: 10–100 kg, and minisatellites: 100–500 kg) result in equip-
ment limitations. The main element of an imaging satellite is its
optic system, which, in the case of nano- or microsatellites, dif-
fers significantly from those installed in large observation satel-
lites, such as WorldView-3 or QuickBird. Nano- and microsatel-
lites are equipped with small matrices, e.g., complementary
metal–oxide–semiconductor [11] or CMOSIS CMV [12], which
are characterized by low quantum efficiency. Another limitation
of small satellites is the inadequacy of the telescope caused by
the much smaller number of applied lenses, which leads to a de-
teriorated quality of the obtained images, e.g., through blurring.
The resolution obtained with the use of low-efficiency matrices
and imperfect telescopes is significantly lower, even if low earth
orbit satellites are employed. An example may be nSight-1,
a nanosatellite designed and manufactured by the privately
owned South African company SCS Space. The nanosatellite
was placed in a 400 km orbit in 2017. It is equipped with the
SCS Gecko imager that consists of the sensor unit (SU), control
unit, optics, and mechanical support structure. The 2-Mega Pixel
SU and Bayer filter allow it to take RGB images of a bandwidth
of 64 km and a spatial resolution of 32 m [13] (see Fig. 1).

Scientists have been attempting to improve the spatial reso-
lution of satellite imaging for many years. Numerous methods
were developed that allow for the best possible representation
of HR images based on low-resolution (LR) images. These
methods may be divided into groups based on the number of
images necessary to estimate an HR image. This allows us to
distinguish between methods that use information obtained from
several images and those that require only one image. Another
classification is based on the operation of algorithms. These
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Fig. 1. Sample photo taken by nSight-1, GSD= 32 m [13].

TABLE I
SUMMARY OF THE NUMBER OF PUBLICATIONS ON THE ISSUE OF IMPROVING

THE RESOLUTION OF DIGITAL IMAGES (INCLUDING SATELLITE IMAGERY) WITH

THE USE OF SELECTED INTERPOLATION, PANSHARPENING, AND DEEP

LEARNING ALGORITHMS

methods are based on interpolation, pansharpening, and deep
learning algorithms. The problem of the breadth of increasing
digital image resolution has often been discussed in the litera-
ture. The most popular and oldest ones are the image interpo-
lation methods (see Table I). Additionally, attention should be
paid to the methods based on deep learning algorithms, which
were described in a greater number of publications than the

most popular and most frequently used (in the case of satellite
imagery) pansharpening methods.

The least demanding group of solutions are interpolation
methods. They only require one image and employ simple
mathematical operations to calculate a new pixel value. Un-
fortunately, the simplicity of calculations significantly affects
the interpretation possibilities of the generated images. Despite
the increased spatial resolution, the improvement in interpola-
tion possibilities is low. In the 1970s, space imagery became
more common, which led to the necessity to improve satellite
imagery resolution. Scientists saw the possibility of combining
HR panchromatic (PAN) images with spectral information of
multispectral images (MS) with a lower resolution very quickly.
This method was called pansharpening. Over the years, many
solutions based on this dependence have been developed. The
great possibilities of these methods are best evidenced by the
fact that they are widely used today. On the other hand, their
main limitation is the need to have both HR images and the
corresponding LR images.

However, as far as images obtained by small satellites (e.g.,
nano, micro, or mini) are concerned, the difference between
the spatial resolution of PAN and multispectral images is small
(e.g., for SkySat-3 – SkySat-15 satellites, it is only 0.16 m).
The need to increase the spatial resolution of an image when a
corresponding higher resolution image (e.g., a PAN image or a
sequence of images) is unavailable causes additional problems.
Research on improving spatial resolution based on a single
image has been conducted for many years, initially without
any noteworthy effects. Finally, a breakthrough was driven by
the increased computing power of workstations that enabled
deep neural networks to process digital images. They allowed
for automatic classification of images [14]–[16], detection and
tracking of objects [17]–[20], detection of changes [21]–[23],
and segmentation [24]–[28]. They were also used to create
algorithms to increase the resolution, e.g., SRCNN [29]. Taking
the values of the peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) metrics into consideration, it
may be concluded that the use of convolutional neural networks
may help improve the resolution of digital images significantly.
Another milestone in processing digital images was generative
adversarial nets (GAN) [30]—as described in the presentation
by Goodfellow. The characteristic feature of this solution is
network training. During this training, the generator’s results
(convolutional network) are assessed by another convolutional
network (discriminator). This solution provides many possibil-
ities, including generating new (false images) [30] or perform-
ing image translation [32]–[34]. Having these results in mind,
scientists used GAN to develop new methods to improve the
resolution of digital images based on a single LR image. At
the same time, considering the construction of satellite images,
which may be treated as classic digital images, all solutions using
GAN may improve the spatial resolution of satellite images
because it is the structure of the image that is important, not
what is shown in it. In 2016, the team led by Ledig et al. [35]
in the publication photorealistic single image super-resolution
(SISR) using a generative adversarial network presented the
super-resolution generative adversarial networks (SRGAN)
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model—the super-resolution using a generative adversarial net-
work that improves the spatial resolution of images, which
received great acclaim. Several other authors introduced vari-
ous modifications to this solution, including enhanced super-
resolution generative adversarial networks (ESRGAN) [36].
However, they do not fully solve the problem of improving the
resolution of satellite imaging.

This article reviews the methods to improve spatial resolution,
starting from commonly used solutions based on interpolation.
Then, the pansharpening methods are discussed, which are some
of the most widely used solutions. The subsequent sections
discuss digital image processing methods that are used, among
others, in the SPOT and Pleiades satellites. Finally, the authors
focus on solutions based on deep learning, which, as research
has demonstrated, offers a variety of new possibilities. They will
improve the spatial resolution of images obtained from nano- and
microsatellite systems.

The article provides the answers to the following research
questions.

1) What are the main problems related to improving the
resolution of satellite imaging?

2) How are resolution improvement algorithms developed?
3) What is the difference between resolution improvement

methods of small-satellite imaging?
4) What methodology should be applied to build training and

validation data to improve the resolution of imaging from
mini and nanosatellites using deep learning algorithms?

5) What methods should be utilized to assess the correctness
of the operation of the algorithms that are responsible for
the enhancement of spatial resolution?

To evaluate individual methods, quantitative analyses were
performed in terms of spectral and spatial quality using tradi-
tional quality assessment metrics and visual analysis.

The rest of this article is organized as follows. Section II con-
tains a review of the methods to improve the spatial resolution of
satellite imaging and a description of the metrics used to assess
the correctness of the operation of the analyzed algorithms.
Section III includes results and discussion. Finally, Section IV
concludes this article.

II. RELATED WORKS

The issue of improving the resolution of images has been
known for many years, and the dynamic development of the
space sector revealed the urgency of this problem in the context
of improving the resolution of satellite imaging. This section
presents a review of the methods to improve spatial resolution,
starting from the most traditional ones, i.e., those based on
interpolation, to the dynamically developing SISR methods that
employ deep learning.

A. Interpolation

The most popular methods that enable to assign values to
newly created elements of the image matrix are image interpola-
tion algorithms. Thanks to its simplicity and computation speed,
interpolation is often used to solve the problem of improving
image resolution. It is applied in the SISR methods that use only
a single LR image to render a super-resolution image (SR). There

TABLE II
COMPARISON OF SAMPLE INTERPOLATION METHODS THAT ARE USED TO

ENHANCE THE SPATIAL RESOLUTION OF SATELLITE IMAGES

are numerous methods of interpolation that allow for creating
a new super-resolution image with a higher resolution. Table II
presents examples of some popular methods along with their
advantages and disadvantages.

The objective of linear interpolation methods is to find u
function that will meet the condition specified in the following
and will then be used for sampling the input image ILR

n,m of the
dimensions n × m, being integers [37]

ILR
n,m = u(m,n) ∧m,n ∈ Z (1)

where ILR
n,m is the input image with n × m size and u denotes the

image resampling function.
The main methods include, among others, the nearest neigh-

bor, bilinear, and bicubic interpolation. The most used one is the
nearest neighbor method (also called pixel duplication), where
the pixel of the resulting image takes the value of the pixel of
the original image that is situated nearest to the analyzed point.
The u function is presented in (2), and the kernel of the nearest
neighbor interpolation is shown as follows:

u (x, y) = ILR
[x],[y] (2)

K (x, y) = K1 (x)K1 (y) ,K1 (t)

=

{
1 for − 0, 5 ≤ t < 0, 5

0 for others
(3)
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where ILR
n,m is the input image with n × m size, u denotes the

image resampling function, K(x,y) is the kernel, K1(x)K1(y)
denotes the tensor product kernel K(x,y), and t is the processed
pixel.

A slightly more elaborate method is the bilinear interpolation,
where the pixel of the resulting image takes the average value
of four neighboring pixels of the original image. Formula (4)
presents u function of the bilinear method, where 〈x〉 means the
fraction part equal to x− [x], while [�] implies the function of
rounding real numbers down to integers. Finally, (5) presents
the interpolation kernel, where (�)+ means the positive part

u (x, y) = (1− 〈x〉) (1− 〈y〉) ILR
[x],[y]

+ x− (1− 〈y〉) ILR
[x]+1,[y]

+ y (1− 〈x〉) ILR
[x],[y]+1 + 〈x〉 〈y〉 ILR

[x]+1,[y]+1

(4)

K (x, y) = K1 (x)K1 (y) , K1 (t) = (1− |t|)+ (5)

where u (x,y) denotes the image resampling function, 〈x〉denotes
the fractional part equal to x− [x], [x] and [y] denote the real
numbers that were rounded down to integers function, K (x,y)
denotes the kernel, K1(x)K1(y) denotes the tensor product
kernel K(x,y), t denotes the processed pixel, and (.)+ denotes
the positive part of a real or extended real-valued function.

Bilinear Interpolation creates affine functions, and it is the
simplest method that delivers a continuous function. Thanks to
its efficiency and simplicity, it is commonly used in numerous
algorithms.

Another method is a bicubic interpolation, where the value is
calculated based on the values of all pixels that are adjacent to
the analyzed pixel. The interpolation kernel formula (6) contains
an additional parameter α, which generates an additional degree
of freedom of the system

K1 (t) =

⎧⎨
⎩

(α+ 2) |t|3 − (α+ 3) |t|2 + 1 if ≤ 1
α|t|3 − 5α|t|2 + 8α|t| − 4α if 1 < |t| < 2

0 dla pozostałych wartości
(6)

where α denotes the parameter creating an additional degree of
freedom of the system, K (x,y) is the kernel, and t denotes the
processed pixel.

The methods presented above enable to assign a brightness
value to the newly emerging pixels, but this increases only the
size of the image instead of the amount of information that may
be read. Interpolation methods are used by numerous algorithms
that improve the spatial resolution of images. Apart from the
interpolation stage, these algorithms also remove blurring and
minimize noise, which allows changing the size of the matrix
that represents the output image and improves its quality.

One of such methods is partial volume diffusion, developed
by Salvado et al. [38]. It enables image interpolation while at the
same time recovering the blurred edges. Another solution is the
curvature-based technique that is based on bilinear interpolation
[39], [40] or the new edge detection interpolation algorithm
that uses the concept of self-similarity and provides satisfactory
super-resolution quality. Still another solution is the projection
onto convex sets (POCS) [41] that is used for interpolation in

the fusion process. In this method, pixel values of the SR image
are determined as the points of intersection of closed convex
sets. The most crucial property of POCS consists in the fact that
the values of the newly generated image may be included in
the model to enable finding the searched point. Another popular
method is iteration backprojection (IBP). In this approach, the
SR image is estimated by representing the difference between
simulated LR images and observed LR images by blurring
the image. The literature on remote sensing features the IBP
algorithm, modified by Li et al. [42], where different blur kernels
are applied for each sensor. Additional elements that allow
enhancing the resolution of the estimated image with the use of
the discussed methods are blurring and noise reduction. Gilman
et al. [43] found that optimal kernels are similar for different
images, so it is possible to use one kernel for multiple images,
and the obtained results are satisfactory. The authors developed
two image models that enable capturing the important properties
of the image and using them to develop the optimum kernels. The
introduction of optimal interpolators allowed combining linear
and cubic interpolation. Certain other methods use more than one
image to enhance resolution. An example of such a solution is the
combination of interpolation and gradient methods. It consists in
combining LR images with the target HR image. In this solution,
the gradient method iterations are performed in a HR grid of
spectral and spatial coordinates [44].

Authors of numerous studies have attempted to use these
relations to enhance the spatial resolution of satellite imaging.
An example is an approach that uses a series of LR images to
generate a single HR image by using the information from mov-
ing pixels representing the same object [45]. Another solution
consists in integrating the bilinear and the bicubic interpolation
methods, where the results of the application of interpolation are
combined, being assigned the relevant weights [46]. On the other
hand, Malpica [47] presents splines interpolation. This method
enhances the radiometric resolution of satellite images using less
computational power than classic interpolation methods, such
as the nearest neighbor, linear, and cubic interpolation, which
makes this method faster, and its results are comparable to those
of linear interpolation (see Fig. 2).

B. Pansharpening

The optic systems installed on Earth-imaging satellites en-
able them to take photographs of various spatial and spectral
resolutions. PAN images are characterized by very HR that may
reach even up to 0.31 m (civilian satellites). In contrast, multi-
spectral images provide plenty of valuable information, thanks
to imaging in multiple spectral bands, but their spatial resolution
is approximately four times lower. Fortunately, a method exists
that enables to combine HR PAN images with the HR of a
multispectral (or hyperspectral) image [48]–[51]. It is referred
to as pansharpening. This operation results in generating an HR
multispectral image. The main pansharpening methods include
intensity-hue-saturation (IHS) [52], [53], principal component
analysis (PCA), Brovey color standardization, Ehlers fusion,
image multiplication, and Gram–Schmidt orthogonalization, but
there are also numerous algorithms [54]–[56] (see Table III).
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Fig. 2. Detail of Ikonos image scene from Alcala University Campus. From
top left, in clockwise direction, Pan image (GSD = 1 m), nearest-neighbour,
splines, linear interpolation [47].

The IHS method uses three selected LR spectral bands to
generate a color composition. It consists of four stages: The
first one is the transformation of the selected MS bands (Mi) to
the IHS space [(7) and (8)], where N is the number of selected
bands [57]–[59]. Then the color composite image is sampled
to the resolution of the PAN image. At this stage, each image
band is also normalized to the [0, 1] range, and the histogram
of the HR image is adjusted. The correctness of this operation
is verified by observation of the mean and standard deviation
values of the PAN image and the multispectral image (9). In the
third phase, the intensity component is replaced with the PAN
image (10). The final fourth stage is returning to the RGB color
scheme [60]

I =

N∑
i = 1

αiMi (7)

αi =
1

N
(8)

P =
σI

σP
(P − μP ) + μI (9)

Fi = Mi + (P − I) (10)

where N represents the number of channels, Mi represents
the selected multispectral Image channels, Fi represents pan-
sharpened image, PH represents the histogram-matched high-
spatial-resolution PAN data,P represents PAN data, I represents
up-sampled intensity component, σ represents deviation, and μ
represents mean.

However, some authors noticed that the resulting image con-
tains several spectral distortions despite excellent efficiency
and high spatial resolution [61]–[63]. These findings inspired
numerous modifications to the algorithm. One of them is the
adaptive IHS method. Rehmani et al. [64] noted that spectral
distortions were smaller and the intensity component was more
similar to the PAN image. Another solution to the problem of

TABLE III
COMPARISON OF SAMPLE INTERPOLATION METHODS THAT ARE USED TO

ENHANCE THE SPATIAL RESOLUTION OF SATELLITE IMAGES

spectral distortions was the edge-adaptive IHS. In this method,
first, the edges are detected in the PAN image, and then the IHS
method is applied to the location of the edges. The other pixels
of the newly generated image (F) (those that do not belong to
edges) are represented by the multispectral image (formula 11),
where h(x) is the edge detection function that takes the value of
1 if an edge occurs, and 0 in other cases

Fi = Mi + h (x) (P − I) (11)

where Fi denotes the pan-sharpened image, PH denotes the
histogram-matched high-spatial-resolution PAN data, Mi de-
notes the selected multispectral image channels, and h(x) de-
notes the edge detection function.
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Another method that enables the reduction of spectral dis-
tortions is the use of discrete ripple transform and compressed
sensing [65]. In this solution, the transform is implemented for
the intensity component and the PAN image to obtain large-scale
subimages. The resulting HR subimages are subjected to local
variance, and compressed sensing is applied to LR subimages
to reconstruct the intensity component. This enables the integra-
tion of local information from the intensity component and the
PAN image. The final stage consists in applying inverse ripplet
transform and reverse IHS transform.

A similar principle is employed in the Brovey color standard-
ization method that uses any three MS bands. In this method,
the selected bands are normalized by dividing these values
by the sum of the triplet of bands. The next stage consists in
multiplying the obtained results by the PAN image containing
spatial information, which may be presented in the form of the
following equation, where i denotes the three selected bands
[66]–[68]:

DN (i) =

[
DN (i)∑

DN (i)

]
·DNpan (12)

where DN(i) represents the digital number, I–3 are the selected
channels, and DNpan is the digital number of PAN images.

This method may also be modified in certain ways. One of
them is the combination of the Brovey method with high-pass
filters, such as the Laplacian filter [68], [69]. This operation
enhances the contract between the edges that are present in the
image and the background, which significantly improves the
visibility of details.

Another solution is the PCA pansharpening method. It uses
any number of spectral ranges, transforming generally corre-
lated bands into a new set of noncorrelated image data. The
transformation matrix (V) (13) consists of the eigenvectors of the
matrix of covariance or the matrix of correlation of the dataset
for the nonstandardized PCA and normalized PCA, respectively.
The new HR image is generated with the use of the three first
spectral ranges of the PCA, and the PC1 component (which
mainly contains spatial information) is replaced with the PAN
image (PANs) after the histogram is adjusted to PC1. The final
stage consists in performing a reverse transformation of the PCA,
which creates a new HR multispectral image (F) [70]
⎡
⎢⎢⎣
F 1

F 2

. . .
Fn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
v11 v12 . . . v1n

v21 v22 . . . v2n

. . . . . . . . . . . .
vn1 vn2 . . . vnn

⎤
⎥⎥⎦
⎡
⎢⎢⎣

PANs

PC2

. . .
PCn

⎤
⎥⎥⎦ = V

⎡
⎢⎢⎣

PANs

PC2

. . .
PCn

⎤
⎥⎥⎦

(13)
where PAN denotes the panchromatic image, PCn denotes the
principal component, Fn denotes n component of the F image,
where F = [F 1, F 2, . . . , Fn]T , and V denotes the transfor-
mation matrix.

The PCA pansharpening method may be modified in several
ways [71]–[73]. One of them is the additive wavelet principal
component (AWPC). In this method, the PAN image’s histogram
is adjusted to the histogram of the first principal component PC1,
and then the “à trous” algorithm is applied to distinguish wavelet
planes. The last stage before applying the reverse transformation

Fig. 3. Subsets from the study area in true color combination of (a) LMS
image (GSDMS= 1.24 m), (b) PAN image (GSDPAN= 0.31 m), (c) PCA fused
image, (d) AWPC fused image, (e) IPCA fused image (one iteration), and (f)
IPCA fused image (four iterations) [75].

of the PCA consists in adding wavelet planes to the principal
component [74]. This method was improved by Ghadjati et al.
In their publication; these authors presented an approach where
the spatial information content obtained from the PAN image
is automatically adjusted until the highest quality is obtained.
This dependence is presented in the following equation, where
the HPF is the high-pass filtration of the PAN image (see Fig. 3)
[75]: ⎡

⎢⎢⎣
F 1
0

F 2
0

. . .
Fn
0

⎤
⎥⎥⎦ = V

⎡
⎢⎢⎣

PC1
0 +HPF [PAN]

PC2
0

. . .
PCn

0

⎤
⎥⎥⎦ (14)

where Fn
0 represents the n component of the F image, where

F = [F 1
0 , F

2
0 , . . . , F

n
0 ]

T , V is the transformation matrix, PCn

is the principal component, PAN is the panchromatic image, and
HPF is the high-pass filtering of a PAN image.

Another method that uses the selected bands and the trans-
formation to the IHS color space is the Ehler method. In this
solution, the PAN image and the intensity component (I) are
transformed to the frequency level with the fast Fourier trans-
form. After that, details of the image are separated from the PAN
image with the use of high-pass filtering, and component I is
subjected to low-pass filtering in order to blur the image. Images
prepared in this way are adjusted to the original histogram based
on intensity and transformed into an HR RGB image with the
use of the reverse Fourier transform. This method utilizes several
iterations for the combinations of all available bands [76], [77].
The application of this method was discussed in numerous
publications on the enhancement of the spatial resolution of
multispectral satellite images [78], [79], hyperspectral images
(HSI) [80], and radar images [81].

The method with the smallest degree of color distortion,
as a result of the presence of the intensity component, is the
multiplicative method. The new pixel value is the product of
the multiplication of the DN value of the PAN image pixel and
the pixel of each of the multispectral image bands [82]. This
solution is frequently used [78], [83]–[86].



3298 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE IV
QUANTITATIVE EVALUATION WITH REFERENCE IMAGES: QUALITY METRICS RESULTS FOR DIFFERENT PANSHARPENING METHODS USING DIFFERENT SATELLITE

IMAGES (MEAN VALUES)

The best values of the analyzed metrics are highlighted in green and the worst ones in red [61].

Gram–Schmidt orthogonalization is another method that re-
places the intensity component with the PAN band. In this
solution, the algorithm takes nonorthogonal vectors and then
rotates them so that they become orthogonal. For images, each
band is treated like a multidimensional vector [77], [87]. This
method is very popular and brings very good results, which was
proven by a number of publications that emphasized the high
quality of the obtained images [63], [88]–[91].

Table IV presents an example of testing the correctness of the
method proposed by the authors, and Fig. 4 shows a visual com-
parison of the application of several methods to an exemplary
image. Based on the metrics, it can be concluded that the method
proposed by the Wada team [61] gives the best results, which is
confirmed by visual assessment [see Fig. 4(i)]. For this method,
the relative dimensionless global error in synthesis (ERGAS),
relative average spectral error (RASE), and root-mean-squared
error (RMSE) metrics take the lowest values among the com-
pared methods, while universal image quality index (UIQI) and
SSIM take the highest values (close to +1). The AWLP method
[92] presents slightly weaker values of the assessment metrics,
although they do not differ significantly from the winners of this
comparison in the visual assessment. The values of the examined
metrics confirm the small differences: ERGAS, RASE, and
RMSE are much lower than other compared methods, whereas

the value of spectral angle mapper (SAM) takes a value close to
zero, which means the high quality of mapping of the spectral
components. Due to the highest spectral distortions, the worst
results were achieved by the PCA method, which is confirmed by
the tested metrics, e.g., very high RMSE value (for WV-2 images
RMSE = 97.1180) or low SSIM value (for WV-3 images SSIM
= 0.44) [93]. In Table IV, the best values of the analyzed metrics
are highlighted in green, while the worst ones are in red.

C. Other Digital Image Processing Methods to Improve Image
Resolution

Other solutions are methods that utilize numerous LR images
in order to estimate an HR image. One of them is the algo-
rithm that enhances the resolution of the PAN SPOT5 scene, a
quincunx sampling mode named Très Haute Résolution (THR),
proposed by the CNES company. This innovative model of
acquiring and processing images allows obtaining PAN images
with a resolution of approx. 2.5 m is based on two images of the
resolution of 5 m that are taken simultaneously. This is enabled
by the fact that the images are obtained with the use of two CCD
detector matrices that are shifted in the focal plane so that they
meet the Shannon requirement at first order [96] (see Fig. 5). This
means that the acquisition system is well optimized, thanks to
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Fig. 4. Fusion results of the second Deimos-2 image. (a) PAN image
(GSDPAN= 1 m). (b) Up-sampled MS image (GSDMS= 4 m). (c) GIHS.
(d) AIHS. (e) AWLP. (f) PCA. (g) PRACS. (h) FPSQ. (i) Wady et al. Method [61].

Fig. 5. SPOT5 THR quincunx sampling grid. A double CCD linear array
generates two classical square sampling grids, shifted by half a sampling interval
in both row and column directions. Interleaving the two shifted grids yields a
quincunx sampling [98].

the correct match of the sampling and the modulation transfer
function (MTF).

The THR process consists of three stages: interpolation, de-
convolution, and noise reduction. In the first stage, the obtained
LR images are interleaved, creating an image of a radiometric
resolution of 2.5 m. However, only half of the pixels originate
from the images obtained by the sensor ( 2·x·y

2·x·2·y = 1
2 , where x

and y denote the number of rows and columns of the image,
respectively). As a result, the values of the newly created pixels
are interpolated based on the values of the adjacent pixels. A
characteristic blur is visible in the generated image, which is
caused by low MTF values for high frequencies. Due to that, the
second stage involves removing the blur by applying a filter that

represents the instrument’s inverse transfer function. This oper-
ation results not only in removing the blur but also in enhancing
high-frequency noise, which is then removed at the last stage of
the algorithm’s operation. This phase utilizes the fixed chosen
noise restoration algorithm [97], whose task is to remove noise
in a controlled way in the most sensitive places. This is enabled
by a nonlinear reduction of the wavelet packet coefficients,
employing joint-adaptive space and frequency wavelet packet
decomposition. This means that the noise removal process con-
sists of thresholding noisy wavelet coefficients in the image at
different image restoration levels [98], [99]. The application
of this algorithm enables to enhance the spatial resolution of
the image, which, in turn, improves the level of detail, and, as
a consequence, the interpretation ability of the image, which
was ultimately reflected in numerous studies on monitoring the
environment [100]–[102], detecting changes [103]–[105], and
mapping [106]–[108].

Another solution to estimate the value of pixels of HR images
based on LR ones is the super-resolution variable-pixel linear
reconstruction (SRVPLR) algorithm. It is based on the VPLR
algorithm (also referred to as the Drizzle algorithm) [109], which
combines astronomical dithered undersampled images. In this
algorithm, pixels in LR images are represented in the newly
created HR image, taking into account the shift, rotation, and
distortion of the imaging sensor. At the same time, the transferred
pixel’s size is decreased to limit the number of artifacts in the
image. Such decreased pixel ixy of the weight wxy is then added
to the pixel of image Ixy with the weight Wxy and a fraction,
overlaying pixel 0 < axy < 1. As a result, the new values of the
image I ′xy and weight W ′

xy equal

W ′
xy = axywxy +Wxy (15)

I ′xy =
axyixywxy + IxyWxy

W ′
xy

(16)

where x, y denote pixel position, ixy denotes the DN value of the
reduced pixel, ixy denotes the reduced pixel weight value, W ′

xy

is the final pixel weight value, Ixy is the DN value of pixel before
modification, Ixy is the DN value of pixel after modification, axy
denotes the fractional pixel overlap parameter, where axy ϵ(0,
1), and DN(i) is the digital number.

However, satellite images, as opposed to astronomical images
that present stars, asteroids, nebulae, or galaxies, contain multi-
ple elements that differ in terms of shape, structure, or texture.
Due to that, the SRVPLR algorithms adjust the histogram of
LR images, taking into account the selected values of pixels
of the original LR image as reference values (i.e., their value
should remain unchanged after changing the resolution) and
using tools to mask the areas that are not subject to the resolution
enhancement process.

Other authors have also used the multiframe super-resolution
technique to enhance the resolution of electro-optic images [110]
and radar images. Ito [111] proposed an algorithm to enhance
the resolution of SAR images by performing local arithmetic
operations [112] that take into account the orbit deviations of a
satellite and temporal changes. The presented solution enables
us to estimate a HR image based on n-frames of LR images.
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TABLE V
COMPARISON OF SAMPLE DEEP LEARNING METHODS

As far as HSI are concerned, tensor-based methods are be-
coming increasingly popular. An example of the application of
such a method is the coupled tensor factorization approach [113],
which utilizes the multidimensional structure of the HSI and a
multispectral image (MSI) based on the coupled tensor factoriza-
tion framework. This solution enables solving the problem of the
loss of structural information of the HSI and MSI data “cubes,”
and allows the identifiability of the super-resolution image (SRI)
under realistic assumptions. Another solution combines the LR
HSI with an HR multispectral image to obtain an HR HSI [114].
This method utilizes nonlocal similar patches to form a nonlocal
patch tensor, which is modeled with the use of the method based
on the tensor-tensor product (t-product). Another approach to
solving this problem exploits ideas from the field of tensor
completion to directly impose a low-rank property spatially and
spectrally while avoiding the computationally complex patch
clustering and dictionary learning common to competing for
fusion techniques [115].

D. Deep Learning

Apart from the interpolation methods that utilize HR PAN
images or digital image processing, there is also a group of
methods that employ deep learning algorithms. These solutions
recreate a HR image based on the knowledge about the links
between LR images and the corresponding HR ones, which were
obtained during model learning. Over the last decade, we have
been witnessing a significant improvement in the efficiency of
deep learning algorithms that enhance spatial resolution. Even
more, they now enable a much more accurate recreation of HR

images based on LR ones. Another advantage of this group of
solutions over the pansharpening methods, which are a very
popular means of enhancing satellite images’ spatial resolution,
is the fact that deep learning solutions do not require another
corresponding HR image. As a result, the interpretation ability
of digital images is improved, provided that the neural network
has been prepared correctly.

The methods presented in the literature may be divided into
two groups: solutions that utilize convolutional neural networks
[116]–[121] and methods based on generative adversarial net-
works [122]–[128]. However, these solutions are used in a
slightly different way than those presented above. It may be
divided into two stages: training of the network on which the
algorithm is based and using the algorithm (see Table V). At
the same time, one should bear in mind that the method’s
capability depends on the training stage. Apart from the ad-
equate architecture and network parameters, network training
requires a database. The most common method of creating
databases dedicated to improving spatial resolution is reduc-
ing the resolution of an HR image to the resolution of the
LR image and then conducting training based on LR images
that are compared to the actual HR images. As a result, any
digital image or any database of digital images (e.g., ImageNet
[129], LSUN [130], MC COCO [131]) may be used to train the
network. Still, a database dedicated to the issue of improving
resolution exists. It contains LR images and the correspond-
ing HR images [132]. However, to use an existing database
for network training, it should be selected so that the image
parameters are similar to those the algorithm will work on in the
future.
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TABLE VI
COMPARISON OF THE PSNR [DB]/SSIM METRICS OF THE MOST POPULAR MODELS OF ENHANCING THE RESOLUTION OF DIGITAL IMAGES BASED ON DATABASES:

SET5-4X, SET14-4X, BSD100- 4X, URBAN100- 4X, FFHQ 256X256- 4X, FFHQ 512X512- 4X, AND FFHQ 1024X1024- 4X

For several years now, participants in many image processing
and machine learning competitions have attempted to solve
the problem of improving the resolution of digital images.
One of them is the NTIRE Challenge organized as part of the
Conference on Computer Vision and Pattern Recognition. The
NTIRE Challenge deals with numerous issues related to digital
image processing, including the improvement of digital image
resolution [133]–[136] and video [137].

Most of the research on improving resolution is based
on classic digital images (Set5-4x, Set14-4x, BSD100- 4x,
URBAN100- 4x, FFHQ 256x256- 4x, FFHQ 512x512- 4x,
FFHQ 1024x1024- 4x). These images are characterized by HR
and, thus, a great level of detail. In the case of improving the
resolution of vertical images acquired from the aerial level,
especially for satellite images, the same objects are character-
ized by different features, and the image resolution is much
lower. Therefore, to use the solutions proposed by scientists
to improve the resolution of digital images (obtained mainly
from the Earth’s ceiling), it is necessary to train models whose
weights have been estimated based on the images mentioned
above (or conduct training from the beginning—which is more
time-consuming and requires Big Data).

The application of deep learning neural networks to enhance
the spatial resolution of satellite images was inspired by the
results of works on improving the resolution of digital images.
The authors used the PSNR and the SSIM to assess the correct
operation of the applied algorithms (see Table VI). The first indi-
cator carries information about the ratio between the maximum
signal strength and the power of noise interfering with the signal,
while the other one takes into account distortions of luminance,
contrast, and structure. One of the most popular solutions is

the SRCNN, which consists of three parts: patch extraction
and representation, nonlinear mapping, and reconstruction. Its
modification that enables slightly improve the PSNR coefficient
(by 0.21 dB for the Set5-4x dataset) is the FSRCNN, where the
deconvolution layer was introduced at the end of the network,
so the mapping is learned directly from the original LR image
(without interpolation) to the HR one, and the mapping layer
was modified by changing the dimensions of the element before
and after mapping. Additionally, the size of filters was reduced
while at the same time increasing the number of mapping layers
(see Fig. 6).

Another solution is the ESPCNN, which is a convolutional
neural network that allows playing a video recording in real-
time, at the resolution of 1080 p, with the use of the K2 graphic
processor. The property maps are separated in the LR space in the
proposed model architecture. Additionally, the subpixel convo-
lution layer was introduced to enable improved reconstruction of
the HR image. An example of a solution that employs generative
adversarial networks is WSRGAN, which was created based on
the analysis of MSE and VGG losses of the SRGAN model.
The authors modified the range of weight values from 0 to 1
and the sampling interval to 0.1, which improved the PSNR
and SSIM values of the generated images. However, numerous
solutions present higher values of the coefficients. An example is
the EDSR model, where the redundant modules of convolutional
neural networks (Conv+ReLU+Conv) were removed, and the
model’s size was increased (32 residual blocks for EDSR and 80
residual blocks for MDSR). Another solution is a second-order
attention network (SAN) that focuses on improved learning
of correlations between properties, which, as a consequence,
results in a better representation of the image. The authors
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Fig. 6. Comparison of the structures of SRCNN and FSRCNN [138].

have developed an innovative second-order channel attention
module to adaptively rescale the channelwise features by using
second-order feature statistics for more discriminative represen-
tations. The super-resolution feedback network (SRFBN) that
utilizes feedback also brings very good results. On the other
hand, the authors of the EnhanceNet model focused on the
correct representation of the textures of generated images. They
proposed the application of automated texture synthesis in com-
bination with perceptual loss. The application of feed-forward
fully convolutional neural networks in the discriminator model
resulted in an improved quality of the generated SR images.
The model that presents the best PSNR and SSIM results for
the Set5-4x dataset is the holistic attention network (HAN+)
which consists of a layer attention module and a channel-spatial
attention module that enables holistic modeling of the correla-
tions between layers, channels, and positions. The comparison
of the PSNR and SSIM metrics of the most commonly used
resolution enhancement methods revealed that the ESRGAN
method [36] brought the best results for the Set-4x database,
whereas the best solution for the Set14-4x, BSD100- 4x, and
URBAN100-4x was SAN, developed by Dai et al. [145]. On
the other hand, the worst results were obtained with the use of
the ESPCNN algorithm [149]. What is interesting, this solution
was characterized by poorer metrics than bicubic interpolation
for the Set5-4x and Set14-4x databases (no data were available
for the other analyzed databases).

1) Solutions Based on Classic Deep Neural Networks: An
example of the application of deep neural networks is the VDSR
network [153] which enables the enhancement of the spatial
resolution of multispectral images. This solution utilizes blocks
that consist of the convolutional layer and an activation unit
(ReLU). At the last stage of operation of this model, the input
image is added to the obtained results. This combination results
in an SR image [154]. Several solutions that also use residual
connections have been introduced in recent years.

An example is an algorithm used to enhance the resolution
of space photographs presented by Feng et al. [155], whose
task is to remove noise from the image and then enhance its

resolution. The proposed network architecture consists of nine
residual blocks containing two convolutional layers separated
by the activation unit.

Some of the other solutions presented in the literature are
methods that utilize multicolumn networks. In these solutions,
each branch is dedicated to one of the resolutions of the input
image [156], [157]. As a result of the use of many branches, input
data may take different dimensions, which allows adjusting the
size of the image to the dimensions of the object whose resolu-
tion is to be enhanced. The authors of these publications assume
that observing the given object in various spatial resolutions
allows us to see more. This translates into practical applications,
as is shown in Fig. 7. New SR images are characterized by a much
better representation of the shape of the contours of objects in the
image, which is additionally confirmed by the PSNR coefficient.

The methods presented in the previous sections allow for
enhancing the resolution of images that consist of several bands.
However, deep learning solutions also enable enhancing the res-
olution of HSI. This task is much more difficult than improving
the resolution of multispectral images. The reason is the problem
with obtaining HR images that are necessary at the training stage
of convolutional neural networks.

However, numerous teams have attempted to solve this issue
[158]–[163]. One of them was Li et al. [164]. The authors
presented a new network consisting of two streams: spatial and
spectral. The 1-D spectral convolution encodes minor changes
in the spectrum, while the 2-D convolution, combined with the
attention mechanism, encodes spatial information. Additionally,
hierarchical lateral connections are used to enable combining
spectral and spatial information. Moreover, attention blocks
have been applied. They are implemented between blocks in the
spatial network and enable considering the relations between
nonlocal regions.

2) GAN-Based Solutions: The second group of solutions
that utilize deep learning methods is those based on generative
adversarial networks. The original GAN model consists of the
generator G and discriminator D. The task of the G generator
is to accept a random vector on the input and decode it in
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Fig. 7. Comparison of the results of the operation of the multicolumn network
MRNN with Bicubic, SelfExSR, SRCNN, LapSRN, VISR, SRResnet, and the
original image [157].

order to generate a synthetic image, while the discriminator
is responsible for distinguishing between actual and decoded
data. The generator network is trained so as to enable it to
“cheat” discriminator D. Thus, with the progress in training,
it will generate more and more realistic images, which enables,
among others, to enhance their resolution. The original GAN
model may be expressed as [165]

min
G

max
D

V (D, G) = Ex∼pdata(x) [logD (x)]

+ Ez∼pdata(z) [log (1−D (G (z)))]
(17)

where x denotes the input image x ∼ pdata(x), z represents the
random noise from a probability distribution of the a priori
distribution z∼pz(z), and E is the empirical approximation of the
expected probability. The above formula means that the process
is iterative in a way that allows it to maximize the probability
that the discriminator will correctly distinguish between real and
synthetic images. At the same time, the generator learns how to
minimize the probability of detection.

Based on this dependence, Ledig et al. [35] proposed the
SRGAN algorithm (see Fig. 8). In this solution, LR images are
generated based on HR ones. This is achieved by blurring the
image with the use of the Gaussian filter, followed by decimation
of the image at the sampling coefficient r. The training of the
generator network is conducted in the form of feedback, while
the weights and bias of the l-layer deep neural network may be
calculated as

θG = {W1:L; b1:L}

= argmin
1

N

N∑
n=1

lSR
(
GθG

(
ILR
n

)
, IHR

n

)
(18)

where θG = {W1:L; b1:L} denotes the weights and biases of
an L layer deep network and is obtained by optimizing an SR
specific loss function lSR, N denotes the number of HR images
in the database IHR and the corresponding LR images ILR, and
GθG is the generator model (feed-forward CNN).

The network training takes place with the use of the method of
maximizing the minimum gain, which is based on a theoretical
game scenario, where images estimated by the generator com-
pete with original HR images in the discriminator model. The
training of generative adversarial networks utilizes a zero-sum
game, where the reward of the generating network is determined
(19). This solution motivates the discriminator to classify the
received images (samples) correctly as true or false. At the same
time, the generator is trying to cheat the adversary by saying that
the provided samples are true

min
θG

max
θD

EIHR∼ptrain(IHR)

[
logDθD

(
IHR
)]

+ EILR∼pG(ILR)

[
log
(
1−DθD

(
GθG

(
IHR
)))]

(19)

where E is the empirical approximation of the expected proba-
bility, DθD is the discriminator network, IHR is the HR image,
GθG is the generator network, and ILR is the LR image.

The authors of SRGAN noted that for images with high PSNR,
calculating the content loss based on the MSE of pixels results
in the emergence of smooth textures (which is caused by the
absence of high frequencies). As a result, VGG loss was applied
based on the ReLU activation layers of the pretrained VGG19
network

lSR
VGG/ i,j =

1

Wi, jHi,j

×
Wi,j∑
x = 1

Hi,j∑
y = 1

(
φi,j

(
IHR
)
x,y

− φi,j

(
GθG

(
ILR
))

x,y

)2
.

(20)

In this formula, φi,j denotes a map of properties of the
dimensions Wi,j and Hi,j , obtained by the jth convolution
(after activation) before the ith max-pooling layer of the VGG19
network. Then, the VGG loss is defined as the Euclidean distance
between the representations of properties of the recreated image
GθG(I

LR) and the reference image IHR.
The SRGAN model inspired numerous modifications [166],

[167], including HSI [168]. However, the most popular modifi-
cation of this model is ESRGAN [36]. The batch normalization
(BN) layers were removed from its generator (BN), and the
basic block was replaced with a residual-in-residual dense block
(RRDB), being a combination of a multilevel residual block and
dense connections.

The removal of the BN layers resulted in stable training
and improved network capacity (the time required for training
became significantly shorter), which resulted from reduced com-
putational complexity. The authors of ESRGAN also modified
the discriminator by replacing it with a relativistic discriminator.
As opposed to the standard discriminator used in SRGAN (21),
which estimates the probability of whether the assessed image
belongs to the set of HR images, the relativistic discriminator
attempts to predict the probability that the real image IHR is
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Fig. 8. Architecture of the SRGAN network [35].

relatively more realistic than the fake image ISR (22)

D (x) = σ (C (x)) (21)

DRa

(
IHR, ISR

)
= σ
(
C
(
IHR
)− Exf

[
C
(
ISR
)] )

(22)

where σ denotes the sigmoid function, C(x) represents the
output data of the generator before the application of the final
activation function, and E[·] is the average of all fake data in
the minibatch.

Another modification of the SRGAN model is the fact that
perceptual loss is applied before the activation layers (not after
them). This allows for increasing the number of features taken
for calculating lSR

VGG/ i,j , which improves network efficiency.
Additionally, it enables significantly better reconstruction of the
brightness of the SR images. The ESRGAN network is trained
based on network interpolation, which removes the noise on
the estimated SR images. It consists in training the network
GPSNR focused on PSNR, and then the network is adjusted to
obtain the GGAN network. As it was in the previous case, this
solution is also used to enhance the resolution of satellite images
[169]–[171]. Two datasets, a satellite video sequence, were used
to verify the possibilities and differences between the methods
mentioned above. The first set of data contains video sequences
collected by SkySat-1 on March 25, 2014 from Las Vegas in
the USA, on April 9, 2014 from Burj Khalifa in Dubai, and on
February 1, 2019 from Burj al-Arab in Dubai. The resolution
was approximately 1.5 m, and the frame size was 1280 × 720
pixels at 30 frames per second [172].

The second dataset included video sequences from the Jilin-1
mission video collected on October 6, 2017 from Beirut in
Lebanon and on September 10, 2018 from Florence in Italy.
For the Beirut (Lebanon) set, the resolution was approximately
1.3 (or 1.12 m), and the frame size was 1920 × 1080 pixels
at 25 frames per second with a video duration of 32 s. For

the Florence (Italy) set, the resolution was approximately 0.9
m, and the frame size was 3840 × 2160 pixels at ten frames
per second with a video duration of 31 s [Chang Guang Satel-
lite Technology, Company, Ltd.]. First, the authors used the
pretrained generator G of ESRGAN, originally referenced on
ImageNet and distributed as RRDB_ESRGAN_x4.pth. Then
the networks (SRGAN and ESRGAN) were trained based on
the above-described datasets, where the LR image was obtained
by downsampling the HR image. Fig. 11 shows examples of
improvement of spatial resolution of video frame fragments
obtained by Jilin-1 Smart Video Satellite using SRGAN and
ESRGAN.

Based on the visual analysis, it may be noticed that the
introduced modification, i.e., the ESRGAN network, reproduces
the structure and texture of the image much better. Moreover, by
sharpening small objects, the image interpretation possibilities
increase.

The application of residual connections allowed for a signif-
icant improvement of results while at the same time shortening
the time required for network training [156], [157], [164], [169],
[173]–[176] (see Figs. 9 and 10). This solution is used in numer-
ous algorithms. One of them is the solution proposed by Courtrai
et al. [177], who developed a method to improve the spatial
resolution of small objects in both aerial and satellite images
(see Fig. 11). The generator model utilizes residual connections
and integration with the cycle model. Additionally, the authors
used the Wasserstein GAN version [178] with the addition of a
gradient penalty, which is the last component of the following
loss function of the discriminator (or critic). Such a structure of
the model resulted in significant improvement.

The possibilities and reliability of images recreated using
deep learning methods are proven by the fact that they are uti-
lized for the improvement of the resolution of medical imaging
[179]–[181]. An example is a solution proposed by Zamzmi
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Fig. 9. Visual effects of the application of residual connections on the improved interpretation ability of PAN satellite images (PROBA-V, GSD= 1 km) [174].

Fig. 10. Possibilities of enhancing the resolution of small objects. (a) Super-
resolved images compared to LR (GSD = 1 m) and HR images (GSD = 12.5
cm). (b) Zoom on two vehicles [177].

et al. [182] that enables to enhance the resolution of X-ray
images. The first stage of this algorithm consists in performing
bicubic interpolation. Then the image is sent to the BN layer.
The subsequent element of the architecture is a system of blocks
consisting of three layers each (convolutional, zero padding, and
activation (ReLU) layers). These blocks differ in terms of the
number of convolutional layer filters. The image after bicubic
interpolation is added to the resulting image at the last stage.
The network analyses conducted by the authors demonstrated
that it is characterized by much fewer training parameters than
the VDSR [153] so that the training duration is significantly
shortened with a simultaneous improvement of results.

As the above examples demonstrate, methods of enhancing
the resolution of digital images with the use of deep neural
networks are widely applied in issues related to the enhancement
of satellite imaging resolution and for all digital images from
space photography to medical imaging.

E. Evaluation Metrics

In order to assess the correctness of the operation of the
methods, several metrics are used. One of them is the very
popular RMSE, defined as

RMSE =

√√√√ 1

m · n
m∑
i=1

n∑
j=1

|MS (i, j)− PS (i, j)|2 (23)

where MS and PS are original multispectral images and fused
multispectral images, and m x n represents the size of the image.

RMSE error is the basis of RASE [183], which is used to
evaluate the average performance of image fusion methods for
each spectral band and is calculated using

RASE =
100

μ

√√√√ 1

N

N∑
i =1

RMSE2 (Bi) (24)

where μ is the mean, N is the number of bands, and Bi represents
an ith band of the input MS image [184]. Also, ERGAS [185]
determines the number of spectral distortions of the image

ERGAS = 100 · h
l

√√√√ 1

N

N∑
i = 1

(
RMSE (i)

μ (i)

)2

(25)

where h
l is the ratio of pixel sizes of the input PAN and MS

images, μ(i) is the mean of the ith band, while N is the number
of bands [184].

Another solution for assessing the correctness of the method
is the correlation coefficient (CC) [186], which determines the
correlation measure between the PAN and multispectral (MS)
images determined according to (26) shown at the bottom of
this page. Additionally, modification of the spatial correlation
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Fig. 11. Comparison of the results of spatial resolution enhancement with the use of SRGAN and ESRGAN on fragments of a video frame captured by
microsatellite (95 kg) Jilin-1 Smart Video Satellite. (a) ESRGAN. (b) SRGAN. (c) HR (GSD = 1.3 m). (d) LR (GSD = 5.2 m).

coefficient (SCC) metric [187] can be used, (26) shown at the
bottom of this page where PAN represents the panchromatic
image, MS the multispectral image, MS the mean value of the
MS images, PAN the mean value of the PAN images, and n,m
the image dimension [184].

Another example of a metric is the SAM [188], which defines
the average change of all angles in the spectral component

SAM (v, w) = cos−1

⎛
⎝

∑L
i=1 viwi√∑L

i=1 v
2
i

√∑L
i=1 w

2
i

⎞
⎠ (27)

where L represents the number of layers and υ, w the test
spectrum and reference spectrum (each has L components).

The spectral information divergence (SID) [189] method com-
putes spectral similarity based on the divergence between the
probability distributions of the two spectra as

SID (x, y) =

L∑
i=1

pi log

(
pi
qi

)
+

L∑
i = 1

qi log

(
qi
pi

)
(28)

qi =
ri∑N
i=1 ri

(29)

pi =
ti∑N
i=1 ti

(30)

where r represents the reference spectrum, t the test spectrum,
and L the band number of multispectral images.

Another group of solutions for assessing the correctness of
the resolution improvement methods are metrics that take into
account three types of distortions: luminance, contrast, and im-
age structure after pansharpening (y) in relation to the reference
image (x): UIQI [190] (31) and SSIM (32). Their numerical
values are determined based on the following formulas:

UIQI (x, y) =
4μxμyμxy(

μ2
x + μ2

y

) (
σ2
x + σ2

y

) (31)

SSIM (x, y) =
(2μxμy + C1) (2σxy + C2)(

μ2
x + μ2

y + C1

) (
σ2
x + σ2

y + C2

) (32)

where μx, μy, σx, σy, σxy are the local means, standard devia-
tions, and cross covariance for images x and y, x is the reference
image, and y is the pansharpening image.

Another metric to evaluate the processed image is PSNR. It
defines the ratio of the maximum signal power (the maximum
image value) to the power disturbing this signal, i.e., mean square

CC (MS,PAN) = =

∑M
i = 1

∑N
j = 1

(
MSij − MS

) (
PANij − PAN

)
√(∑M

i=1

∑N
j = 1

(
MSij − MS

)2)(∑M
i = 1

∑N
j = 1

(
PANij − PAN

)2) (26)
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error (33). PSNR values are expressed in decibels

PSNR = 10 · log10
[max (HR (n,m))]2

MSE
(33)

where MSE represents the mean square error and max(HR(n,m))
represents the maximum reference image value with n x m size.

The evaluation metrics presented above are commonly used in
remote sensing tasks. The application of those metrics enables to
compare the correctness of the operation of various algorithms,
which is given in Tables IV and V. Tasks related to the enhance-
ment of the spatial resolution of digital images involve attempts
to achieve the lowest possible values of the CC, ERGAS, RASE,
RMSE, SAM, and SID errors and the highest possible values of
the PSNR, SCC, UIQI, and SSIM metrics. As far as the last
three methods of assessment are concerned, the values of errors
approach 1 if the SR images are represented with high quality.

III. DISCUSSION

A. Review of the Methods

This article presents a review of the methods to enhance the
spatial resolution of satellite images with the use of classic image
sharpening methods, i.e., interpolation and pansharpening, and
new solutions that employ deep learning: CNN and GAN. Until
now, no such detailed review of the solutions for sharpening
satellite images from the point of view of remote sensing has
been performed.

Tables II and III present the advantages and disadvantages of
classic solutions. The main limitation of the interpolation meth-
ods is the lack of a significant increase in interpretative abilities
despite reducing the pixel size or the visual improvement of the
image quality. At the same time, these solutions do not require
the high computing power of working units and use only one
image. On the other hand, the use of a PAN image to improve the
resolution of multispectral images (MS) with lower resolution
allows for a significant improvement in the interpretability of MS
images, which provides a significant advantage over solutions
that use interpolation. Unfortunately, this method does not prove
effective in enhancing the resolution of images that depict mov-
ing objects. In such cases, SR images contain artifacts, which
emerge as a consequence of the shift between the position of the
moving object in the HR PAN image and its position in the mul-
tispectral image. This is one of the reasons why these algorithms
cannot be applied to enhance the resolution of image sequences.
Additionally, considering the methodology of operation of these
solutions, they can only be used after improving the resolution
of multispectral images that have their HR counterpart.

Table VI presents a summary and comparison of various
neural network methods to enhance the resolution of digital
images based on the same datasets. The comparison was based
on the PSNR and SSIM quality indicators. The highest values
of these indicators were obtained for ESRGAN [36] and SR-
ResNet [35]. This method is characterized by significantly more
stable training, higher efficiency, and improved reconstruction
of details in the image. The obtained results confirm that this
architecture may be applied to enhance the resolution of images
from nanosatellite systems even up to four times. Besides, the

ESRGAN method offers an excellent ability to represent detail,
which is confirmed by a vast number of studies in the field of
computer vision [36], [191].

In comparison to other methods, architectures based on GANs
enable to obtain better results of resolution enhancement than
classic methods. Due to the great potential and wide scope of
applications of GAN, scientists are developing their applications
in remote sensing analysis. However, the problems related to the
application of GAN to sharpen whole satellite scenes, not only
their fragments, still remain valid. Some other issues connected
to the use of deep learning methods include the instability of
data training or the vanishing gradient issue. Moreover, the
conducted literature review allows us to state that GAN networks
have a problem with nonconvergence and with the sensitivity
to the selection of hyperparameters. Numerous methods, such
as SRCNN (presented in Table VI), cannot be employed to
enhance the spatial resolution of satellite images due to relatively
poor representation of the texture, which may lead to misin-
terpretation of the images. The best architecture models were
proposed by Wang [161] and Courtrai [177]. These methods
use residual blocks, which is particularly important in the event
of the application of generative adversarial networks, as they
stabilize and significantly accelerate network training. Other
important aspects that have been discussed in this literature
review are the PSNR, SSIM, and other quality indicators that
allow for an objective assessment of the usefulness of the given
method for the sharpening of satellite images.

B. Future Possibilities of SISR Architecture

Currently used resolution enhancement methods that em-
ploy deep neural networks, including GAN, require very large
datasets and high computational capacity of the equipment that
is used to train the networks. This is caused by a very high
number of layers, which, in turn, results in a large number of
parameters that have to be adjusted. They are still based on large
volumes of training data so that the trained models are universal.
However, the model may become overtrained if the database is
too small. In such an event, even if the model achieves good
results during network training, it does not function correctly
for other data. Although creating databases is not a problem
for tasks that enhance the resolution of LR images generated
based on HR images, it may become a major limitation in
the enhancement of images from nanosatellite systems, where
no corresponding HR images are available. Due to that, the
SISR methods require further improvement, particularly with
sharpening nanosatellite images. The success of deep neural
networks is attributed precisely to the vast databases that enable
training on powerful representations. Unfortunately, scientists
are still unable to recreate the learning process, so deep neural
networks are considered a “black box.” Another challenge in
the enhancement of the resolution of nanosatellite images is the
need to define unambiguous evaluation metrics. Currently, the
used MSE, SSIM, or PSNR metrics may often take excellent
values, although the interpretation ability of the SR image does
not improve, e.g., due to blurring. In addition, in publications,
the results of image resolution improvement algorithms using
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DL are presented in small images. Often, LR images consist
of less than 10 000 pixels (e.g., Set5-4x, Set14-4x, BSD100-
4x, URBAN100- 4x, FFHQ 256x256- 4x, FFHQ 512x512- 4x,
FFHQ 1024x1024- 4x). This results, to a large extent, from the
computational requirements of the algorithms that use GAN.

IV. CONCLUSION

This literature review presents state of the art. SISR has the
potential to be applied to small satellite images. Apart from
presenting the advantages and limitations of classic methods,
the authors conducted an extensive review of contemporary
super-resolution methods based on deep learning, particularly on
generative adversarial networks. Deep learning methods show
great potential in super-resolution satellite imagery. Despite their
advanced sophisticated structure, some types of architecture
based on convolutional networks cannot be successfully applied
in SISR satellite imaging because they do not improve the
interpretation abilities despite the enhanced resolution.

The authors have also demonstrated that numerous research
projects so far have focused on enhancing the resolution of small
images and the issues of applying SiSR methods in remote sens-
ing, particularly in satellite imagery, to whole satellite scenes,
whose dimensions are bigger than the dimension of images
presented in publications. Furthermore, the authors presented
future development directions with respect to sharpening whole
scenes, optimizing parameters, and improving the architecture
based on GAN to make them resistant to training instability.
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