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Analysis of Deep Learning Techniques for Maasai
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Abstract—Underdeveloped countries in sub-Saharan Africa of-
ten contain cultural subpopulations that are underserved in regard
to health and education. This perpetuates the health challenges of
the country as a whole, and it is therefore of interest to be able
to automatically map the subpopulation for the health services
delivery. International nonprofit health organizations have often
taken the lead in these efforts, providing humanitarian aid (e.g.,
clean water and food) as well as health care. This is necessary, as the
ethnic subpopulations are not well integrated into the society and
the existing health care systems. In this study, we explicitly explore
the Maasailand of Tanzania, to evaluate the use of deep neural
networks (DNN) to aid in the automatic visual analysis of remote
sensing data to geolocate Maasai boma structures. We investigate
the performance of four state-of-the-art DNN as classifiers of boma
presence within high-resolution imagery; all showing over 95%
F1 score performance. Additionally, we scan over 3900 km2 of
high-resolution imagery, combining a ProxylessNAS with broad
area aggregation and mapping techniques and demonstrate the
discovery of hundreds of boma, many that were not discovered by
human analysts performing visual scans. The trained Proxyless-
NAS model generates a classified vector response field (CVRF). The
CVRF is aggregated by a mode-seeking algorithm to detect poten-
tial locations of boma structures within the study area. The model
detected numerous human false negatives (HFNs) and achieved
94.022% TPR and 95.395% F1 score using an aggregation aperture
of 250 m within a 76.620 square kilometers area of interest.

Index Terms—Boma, broad area search (BAS), deep learning.

I. INTRODUCTION

SUB-SAHARAN Africa includes a diverse set of underde-
veloped countries that struggle with health matters related to

basic human needs. Women and children are especially vulner-
able in light of the potential health complications from unclean
water and insufficient medical care, where access to modern
health care and sanitation technologies are not readily available.
“Globally, 50% of children under five who die of pneumonia,
diarrhea, measles, HIV, tuberculosis, and malaria are in Africa,
according to the World Health Organisation (WHO).” [1] Nu-
merous international nonprofit groups provide targeted support
for these populations through a variety of food aid and health
clinic services efforts. Medical services, food distribution, and
clean water initiatives are critical to reducing the mortality of

Manuscript received December 31, 2021; revised March 10, 2022; accepted
March 30, 2022. Date of publication April 13, 2022; date of current version May
25, 2022. (Corresponding author: Grant J. Scott.)

The authors are with the University of Missouri, Columbia, MO
65211 USA (e-mail: kchkr@mail.missouri.edu; ipopescu@stanford.edu;
sheetslr@health.missouri.edu; GrantScott@missouri.edu).

Digital Object Identifier 10.1109/JSTARS.2022.3167373

children and women in sub-Saharan Africa, and Humanity for
Children (HFC) is one such international, nonprofit organization
that seeks to address the health needs for the Maasailand in
northern Tanzania. HFC has initiated a program to map the
remote villages in Maasailand of Tanzania for the purpose of
providing mobile health care clinics, called Community Health
Assessment Mapping Project (CHAMP).

The Maasai people is an ethnic population in Tanzania that
are not well integrated into the country’s existing public health
services. The Maasai villages, called bomas, have populations
ranging from ten to over 200 inhabitants. HFC is developing
mobile health clinics to serve the needs of expectant mothers
and children throughout the distributed bomas of Maasailand.
Since the location of bomas are not documented within existing
geographic information systems (GIS), it is time consuming but
necessary to physically travel and map bomas using ground-
based vehicles (e.g., motorcycles). These ground surveys map
the locations and paths to bomas by GPS tagging from mo-
torcycles, which is an expensive and time-consuming process.
Computational methods, especially contemporary deep learning
computer vision models, can be leveraged to aid the task of
boma location discovery and mapping. Deep neural networks
(DNN) can be applied across a broad swath of area, scanning
satellite imagery to provide a very cost-effective and time-saving
approach for boma mapping. In [2], it was demonstrated that
numerous DNN could achieve high F1 scores, over 95%, in
cross-validation experiments of boma recognition. However, it
is also necessary to evaluate the use of DNN in real-world appli-
cations, outside of the close-world cross-validation paradigm.
In this case, we seek to quantify how well DNN can discover
unknown boma within the Maasailand.

The use of remote sensing imagery for mapping has tradi-
tionally focused on land cover [3], modern infrastructure [4],
land forms [5], and crop monitoring [6]. Recently, DNN such
as ProxylessNAS [7], Xception [8], Inception-ResNet-V2 [9],
and ResNet50 [10] have been applied in a variety of remote
sensing use-cases. For example, [11] and [12] have explored
scene classification of remote sensing imagery (RSI). Land cover
mapping with DNN has also been explored, e.g., [13] and [14].
DNNs have also been used for complex object analysis of RSI,
e.g., [15] and [16]. These are just a few of the litany of prior
research using DNN on RSI for computer vision and geo-spatial
analysis, and this is the inspiration to apply DNN, such as listed
above, to provide humanitarian mapping of Maasai bomas in
Tanzania.
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This article provides a recap from [2] for scene classifica-
tion performance of various DNN for identifying RSI chips
with boma. We then further develop the process to leverage
the top-performing DNN for real-world mapping over a large
swath of earth in Tanzania. We demonstrate a method that is
drastically more efficient than terrestrial visits for mapping with
GPS receivers, as is currently done; as well as less error-prone
(lower missed detections) than a human visual scan. The final
results of our detections are shared with our nonprofit partners
to aid their efforts in providing health services in Maasailand of
Tanzania.

Image chips covering the study area are acquired and in-
ferred through the trained DNN model to generate a binary
classification vector response field (CVRF). A response sur-
face is extracted from the CVRF and a mode-seeking cluster-
ing algorithm is applied to estimate the positions of bomas.
Furthermore, to provide a quantitative assessment of the suit-
ability of DNN for processing large portions of the earth to
triage detections, the scanning precision metric is presented
and contrasted with close-world metrics such as traditional
F1, precision, and recall. Our results highlight the challenges
associated with broad area analytics, as the trained mod-
els discover bomas that are missed by human scanning and
labeling.

The rest of this article is organized as follows. Section II
details our datasets, including imagery and human-mapped (par-
tial ground-truth) location data. Section III provides a summary
of the DNN applied for this research and how those DNN can
be leveraged in a real-world analytical workload. Experimental
methods and results are discussed in Section IV for cross-
validation and scanning precision. In Section V, we discuss the
key findings and insights. Finally, Section VI concludes this
article.

II. TANZANIA MAASAI BOMA DATASET

In [2], the manual curation of the boma dataset using Google
Earth and the Google Maps API is detailed. Fig. 1 is an example
from Google Earth, with three bomas marked by pushpins. The
distinctive visual elements include animal fencing (for herd
animals) and small structures for the boma population. As can be
observed, the majority of the boma is the same earthen material
as the surrounding context, with sporadic structural elements.
This is particularly challenging for current DNN techniques that
have been shown to be overly reliant on texture [17], where in
this case the boma is built in the environment with minimal
ground disturbance. Our study area is approximately 3906 km2.

Our data collection, as detailed in [2], is summarized as
follows. Google Earth Pro was used to manually scan the study
area, bounded by 3◦ 58’ 37” S, 36◦ 09’ 05” E to 4◦ 31’ 18” S,
36◦ 43’ 53” E, and bomas were marked with dropped pins in
the approximated center. The final count of human discovered
bomas was 635, afterwhich the coordinates were used to acquire
a nominal 0.6 m ground sample distance (GSD) image chips
from the Google Maps Static API. Negative examples, i.e.,
landscape nearby without boma content, were acquired by ran-
domly pulling down image chips in 1 km standoff from boma

Fig. 1. Maasai boma in Tanzania. Imagery copyright 2021, CNES/Airbus.

Fig. 2. Geospatial distribution of boma (green) and non-boma (black) within
the study area of Tanzania [2].

in various selections of the cardinal and intercardinal direc-
tions: North, South, East, West, Northeast, Northwest, South-
east, Southwest. These negative examples were then pruned
to remove chips from the negative chips with boma content,
resulting in 1726 non-boma training chips. Fig. 2 shows the
spatial distribution of the positive (green) and negative (black)
boma chips. Fig. 3 provides example of RSI training chips, both
boma and non-boma. Though the differences between boma and
non-boma image chips are significant, there still exist some
irregular circular structures, fencing, and trees in non-boma
examples that may mislead the machine during detection.
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Fig. 3. Example image chips, 512× 512 pixels. The left column contains
positive (boma) training samples, discernable by the circular fencing lines and
structures within. The right column are three negative (non-boma) training
samples. Imagery copyright 2020, CNES/Airbus.

III. AUTOMATED MAPPING WITH DNN

Automated mapping with DNN requires two key elements.
First, a well-trained DNN that is robust to the target and environ-
ment, and also selective, i.e., good true positive rate (TPR) and
low false negative rate (FNR). Second, it is necessary to be able to
scale the application of the DNN over large areas, potentially in
parallel, and then aggregate and refine the detections into a final
ranked list for human analytical consumption. That is, the system
should triage the area and rank likely boma higher and low-
confidence boma lower. In [2], different DNN approaches were
evaluated: the residual network, inception network, and neural
architecture search (NAS). The ResNet50 [10] is a 50-layer deep
vanilla residual network, while the Xception [8] is an extreme
version of the inception module. The Inception-ResNet-v2 [9]
combines the idea of residual network and inception module.
The ProxylessNAS [7] is a NAS algorithm that searches without
any proxy task and was proven to have better performance than
other proxy-based NAS algorithms. These four architectures are
representative, but not exhaustive, of the set respective DNN
approaches. The top-performing DNN, ProxylessNAS (see Sec-
tion IV-A) was then used for scanning the full study area.

A. Broad-Area Scanning

In the evaluation of automated boma mapping, the AOI was
scanned with a 512× 512 pixels window with a 512-pixel step
size to get a sense of the performance of the models. However,
during the analysis of the automated boma mapping results, a
group of image chips with partial boma structure presented were
falsely marked as non-bomas. To fix the false-negative issue and
to geo-locate the bomas more accurately, the AOI was rescanned
using an 8192× 8192 pixels window with a stride of 32 pixels,
19.2 m. The overlapped tiles ensured that there was sufficient
AOI coverage (no boma structures were partially captured on
the edges). Each of the 8192× 8192 pixels tiles was then sliced
into 512× 512 pixels chips. The chips were then passed to
the pretrained ProxylessNAS models to generate geo-located
classification response vectors. Fig. 4 shows the workflow from
AOI tile to chip to DNN inference to classification vector. The
response vectors were geo-located based on the latitude and
longitude of the chip center.

B. Mode Seeking

The CVRF generated from the DNN can be sliced into two
classification layers, one for bomas and one for non-bomas.
For bomas, a response layer R can be sliced from the DNN
classification responses to form a surface on the AOI whose
topology is formed by the DNN output neurons. Regions with
possible boma structures are expected to have peaks in R. The
peaks in R are then ranked by their confidence scores to assist
broad area search. To discover the peaks, an alpha-cut was
applied using a confidence threshold. Since the final layer of
DNN used the softmax function, the confidence scores range
from 0.0 to 1.0, and the sum of network outputs per chip is 1.0.
We used a threshold of 0.99 to dramatically reduce the data space
to the most confident points of the DNN model.

In summary, we generated a density spatial field in which
dense regions have a higher probability of having a boma struc-
ture. After that, the data points around the local peaks were
clustered and the clusters were labeled and ranked to assist the
human search process. As mentioned previously, the softmax
classification in the last layer makes the sum of outputs equal
to 1.0. Thus, when examining a single class from the responses
individually, there will be irregularities and holes appearing in
the surface. These irregularities and holes may separate a single
large density into several small disparate densities. To reduce
the effects of irregularities and holes on the response surface,
an additive function-to-function morphology was applied to
amplify the spatial density surface. For each data point, we
define the spatial decay function s(p) = exp(−d/D) to describe
the closeness between the data point and one of its neighbors,
where d is the haversine distance between the two points and
D is the radius of the neighborhood N(p). Then, the point p’s
score in the amplified spatial density field is computed based on
the intersected volume defined by the spatial neighbors of p and
N(p) [18], i.e.,

δ(s(p), N(p)) =
∑

(max(p, n) ∗ s(p)). (1)
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Fig. 4. Scanning workflow. The AOI is scanned as a set of overlapped tiles, then each tile is sliding-window processed into a set of 512× 512 pixel chips.
The chips are then pushed into the DNN models and produce the binary geo-located classification vectors.

In this work, we applied the weighted mean-shift algorithm
to find the clusters based on the amplified field of the DNN
responses. The main advantage of the mode-seeking clustering
algorithm is that its performance does not depend on a predefined
number of clusters. For a field with amplified density, the clusters
are the centers of mass of spatially connected densities. Since
the number of such density centers was unknown, we applied the
weighted mean-shift algorithm to find the modes. During each
iteration, a spatial aperture of the nearest neighbors of a certain
data point p were evaluated. Then the point p was moved to the
center of mass of its spatial local neighbors.

Algorithm 1 describes the procedures to cluster the response
surface R from DNN to mode-clustered response R′. We used
a confidence threshold of 0.99 for alpha-cut and 100 m for the
radius of spatial neighborhoods. First, a confidence filter was
applied on the response surface R, only points with DNN’s
outputs confidence scores larger than 0.99 were selected for
clustering. Then, the spatial decay function, s(p), was used to
weight the mean density of each local field.

The WeightedMeanShift function computes the weighted dis-
tance between the points in amplified response surface R′ and
its neighbors as d(p, n) = haversine(p, n) ∗ s(p). Then, the
points are continuously evaluated and shifted toward the modes
until the final movement is less than a certain threshold or the
iterations are greater than the iteration limit. In the experiments,
the movement threshold was set to1× 10−6 m and the maximum
number of iterations was 500.

After shifting, data points were converged to the modes. Then,
the modes were clustered and labeled using Algorithm 2. Each
cluster was formed with a data point and its neighbors within

neighborhood radius D. The scores of the clusters were com-
puted as the volumes under their amplified spatial density. At the
end of labeling, the clusters were ranked based on their scores for
subsequent human analysis, and clusters with single-detection
were considered as spatial outliers and filtered out of the result.

The weighted mean-shift algorithm becomes computation-
ally expensive with large-scale datasets, however, the locality
attributes of the CRVF allow a geometric decomposition and
reassembly of a solution. To reduce the processing time, we
designed a two-phase weighted mean-shift. During phase 1, the
data points are divided into batches, weighted mean-shift is ap-
plied on each batch in parallel to generate a set of mini-clusters.
In phase 2, these mini-clusters are considered as data points, and
the scores of these mini-clusters are the confidence scores. Then
weighted mean-shift is executed again to merge a certain range
of mini-clusters into one large cluster. Combined with parallel
computation, the modified weighted average shift significantly
reduces the computation time for large-scale datasets.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of DNN for detecting and map-
ping boma, we conducted a diverse set of experiments. First,
we recap our closed-world model evaluations using traditional
cross-validation techniques and traditional metrics. Then, we
explore the performance and metrics in the nonclosed-world,
real application scenario of automated mapping and scanning
precision metrics. These extended experiments provide not just
a broad understanding of the suitability of the DNN for this
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TABLE I
NETWORK CROSS-VALIDATION PERFORMANCE ON MAASAI BOMA

TABLE II
NORMALIZED CROSS-VALIDATION CONFUSION MATRICES FOR RESNET50,

XCEPTION, INCEPTION-RESNET-V2, PROXYLESSNAS

particular task, but also a sense of how well the models transition
to real-world applications such as broad area search.

A. Cross-Validation

As a baseline, we can look to the results from [2], summarized
in Table I. The four evaluated networks were trained using
1 × 10−4 initial learning rate, the Adam optimizer, and batch
size 8. To overcome the limited amount of training data (635
boma, 1726 non-boma), we leveraged transfer learning and aug-
mentation as prescribed in [12]. We can see that ProxylessNAS
achieved a recall of 97.288%, which is important for the mapping
task. In the mapping scenario, the recall represents the likelihood
of a false negative, i.e., a missed detection.

Table II shows that all the DNNs other than Xception achieved
true negative rate (TNR) 0.98, on recognizing the non-boma
images. In the broad area mapping use case, we want to min-
imize false negatives (FN) and will be more tolerant of false
positives (FP), where the mode-seeking algorithms discussed in
Section III help to filter the spurious FP.

B. Computational Costs

Not only did the ProxylessNAS architecture achieve the high-
est accuracy, but this model also consumed the shortest training
time. Using the Nvidia Tesla P100 GPU, it took 8.572 h to train
the ResNet50 model, 9.856 h to train the Xception model, and
12.696 h to train the Inception-ResNet-V2 model. In contrast,
the training time for the ProxylessNAS model was only 6.923 h,
which is 1.4× faster than the Xception and 1.8× faster than the
Inception-ResNet-V2.

C. Automated Mapping Evaluation

To evaluate our trained ProxylessNAS in the broad area
mapping task, we systematically downloaded 0.6 m nominal
GSD images from the Google Maps Static API. The scanning
evaluation area was bounded by 3◦ 58’ 37” S – 4◦ 31’ 18” S
latitude by 36◦ 09’ 05” E – 36◦ 43’ 53” E longitude. Downloaded
tiles were carved up into512× 512px for batching into the DNN
during inference.

TABLE III
SUMMARY OF SCANNING COUNTS FOR LEFT AND RIGHT

Fig. 5. Geospatial mapping of boma: Left trained ProxylessNAS shown as
blue points on right of AOI, right trained network scan results shown as red
points on left of AOI, ground truth bomas shown as green points.

We divided the ground truth into a left and right side
at the median ground truth boma position of longitude
(36◦ 25’ 49.47656” E) to ensure blind testing evaluation. Two
ProxylessNAS models were trained using data from the left and
right sides, respectively. It took a total of about 4.97 h to train
the two models using the Nvidia Tesla P100 GPU. These models
were then used to scan the opposite side of the AOI. Scanning
the left and right sides consumed 27 and 31 min, respectively.

Table III shows the counts for training chips for boma, non-
boma, as well as total testing tiles, and the number of detections
for each side. It can be seen that the total detections were 779,
more than our ground truth, where we expect some FP, however,
we see a high occurrence of human false negatives (HFNs).
As noted in Algorithm 1, the confidence threshold applied to
detections was 0.99.

Fig. 5 shows the respective detections, left-trained in blue and
right-trained in red. As can be seen, the mapping of the detections
closely follows the spatial pattern shown in the spatial training
data (see Fig. 2). In fact, of the top 50 detections that were not
colocated with known-ground truth, all were boma except ranks
24 and 25, which were abandoned boma. This speaks to two
issues related to closed world evaluation. First, human-labeled
data at a massive scale in the ever-changing landscape and
environment of earth will always be missing true positive labels.
Second, metrics that are more true to the real-world applications
are needed to evaluate DNN in situ of the real-world use cases.
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D. Scanning Results

The Google Maps Satellite images covering a 76.620 km2

AOI across 4◦ 18.176’ S - 4◦ 24.0813’ S latitude and
36◦ 18.8062’ E - 36◦ 22.5862’ E degree longitude were acquired
and scanned. A total of 127 008 768 chips were inferred using
the ProxylessNAS models. After confidence filtering using a
threshold of 0.99, the remaining 2485432 detections were used
for dilation and spatial clustering. The processing time for each
8192× 8192 pixels tile was about 5 sec using an NVIDIA
GeForce GTX 1080 GPU. It took approximately 689 h to process
the entire AOI, however, this can be accelerated with parallel
computing techniques at the host-level.

1) Scanning False-Positive Data Augmentation: An initial
investigation was applied on the scanning and clustering results
to find human false negatives. It used a batch size of 10, neigh-
borhood radius D = 100 m, and searched 100 nearest neighbors
in building the neighborhood during two phases of weighted
mean-shift. During analysis of the scanning results, a few falsely
detected bomas were found around the towns. Constructions
in the towns have dense rectangular fencing structures that are
easily confused with the boma structure. Thus, 27 additional
non-boma examples were collected around three villages and
added to the training dataset. A five-fold cross-validation exper-
iment and automatic mapping evaluation were reapplied on the
new training dataset. The F1-score achieved by the Proxyless-
NAS model was reduced from 97.288% to 96.337%, however,
the mapping evaluation results showed those false detections
around villages disappeared.

Fig. 6(a) shows the TPR, FNR, and F1 for scans using different
aggregation apertures. At an aggregation aperture of 250 m, the
model generated 194 clusters and achieved a TPR of 91.791%
and an F1 of 81.485%. Ground truth derived FP generated using
an aggregated aperture of 250 m were investigated for possible
HFNs. Of the 65 candidates, 50 HFNs were identified. Fig. 7
shows the top ten clusters that went undetected during the human
scanning. Most of the HFNs are small boma structures that are
easily overlooked during human visual scanning. However, these
examples received relatively high scores during the automated
DNN and aggregation scan.

After adding the confirmed HFNs to the list of ground truth,
the TPR increased to 94.022% and the F1 score increased to
95.395% using the aggregation aperture of 250 m. Fig. 6(b)
shows the changes of updated TPR, FNR, and F1 scores with
different aggregation aperture. As we see the F1 score lift above
the TPR, we can infer that the recall or selectivity was also
improved.

Borrowing from the information retrieval domain for scoring
content-based query results [19], which is the analogous task
of broad area search in imagery, we can use an order-dynamic
retrieval precision as the scanning precision. Given a list L
of ranked object candidates generated by Algorithm 2, then
scanning precision for L is defined as

Pscan(L) =

m∑

i=1

i

r(L, i)
(2)

Fig. 6. Trends of true positive rate (TPR), false negative rate (FNR), and F1
relative to the aggregation aperture for ground truth scanning for both (a) before
adding HFN as new TP to training, and (b) after adding HFN as new TP.

TABLE IV
DISTANCES BETWEEN DETECTED BOMAS AND THE GROUND TRUTH

wherem = min(|L|, nr) and r(L, i) is the rank of relevant (true)
detection i in the set L. nr is the number of true detections dis-
covered a posteriori inL. Of note, the a posteriori is captured by
m in (2), which can be set based on ground truth or an arbitrarily
large value greater than the known ground truth. Fig. 8 shows
the change of scanning precision and traditional precision with
the results examined size. The difference between the scanning
precision and traditional precision is more significant before the
confirmed HFNs were added into the ground truth.

The effect of neighborhood radius during the second phase
of weighted mean-shift was also investigated. Fig. 9 shows the
change of TPR and F1 scores with different neighborhood radius
and aggregation aperture. With a fixed aggregation aperture, the
clusters produced using a smaller neighborhood radius lead to a
higher TPR, while the F1 scores are almost identical.

Table IV summarizes the central tendency and dispersion
of the distances between the positions of detected bomas and
the centers of true bomas. The average distance between the
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Fig. 7. Top ten human false negatives (HFN) during the sub-AOI scan. These
clusters were ranked relatively high among the 194 clusters.

Fig. 8. Comparison of traditional precision and scanning precision (a) before
adding HFN as new TP to training, and (b) after adding HFN as new TP.

Fig. 9. Performance trends as the aggregation neighborhood aperture is ad-
justed during scanning results in (a) True Positive Rate (TPR) and (b) F1 score.
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predicted positions of bomas and the centers of bomas is 52.1 m.
The distances between 75% of the detected boma centers and
true boma centers are less than 87 m. This tells us that using the
DNN to perform broad area search and triage rank detections
ensure that more than half the detections are within 19 m of a
true boma.

V. DISCUSSION

In this article, we have extended the investigations in [2] to
the next logical step, that is evaluating the DNN in a real-world
application scenario. We leveraged limited ground truth curated
by human visual scanning in Google Earth Pro, along with RSI
image chip downloads to train DNN and scan over 3900 km2

in Tanzania. The DNN produced analytical layers have been
given to the Humanity for Children CHAMP project to help
bring humanitarian health care to the Maasailand population
within Tanzania. In [2], we evaluated four representative DNN
architectures for the boma-mapping task through five-fold cross-
validation experiments. The ProxylessNAS model achieved the
highest F1 score and run 1.4× faster than the Xception and
1.8× faster than the Inception-ResNet-V2. Due to its leading
performance, the ProxylessNAS model was selected for auto-
matic boma mapping.

A brief scan of the entire AOI was performed with a window
of 512× 512 pixels and a step size of 512 pixels. The detected
boma distribution was highly correlated with the distribution of
collected boma samples. Additionally, numerous human false
negative (HFN) bomas from the human review process were
detected with the assistance of the models. The brief scan is
effective for roughly predicting the distribution of boma. How-
ever, in this process, some bomas may be missed due to the small
scan window and large step size cutting off part of the boma
structure at the edges. In addition, the positions of the bomas are
imprecise. The distances between the roughly detected bomas
and the real bomas may be around 300 m. Therefore, the results
of the brief scan were not effective in helping CHAMP staff
locate the bomas.

To geo-locate the bomas, we scanned a 76.620 km2 sub-AOI
using an 8192× 8192 pixels window and a stride of 32 pix-
els. There were 50 HFNs (new discoveries) found among the
194 machine-detected bomas. Using an aggregation aperture
of 250 m, the model achieved 94.022% TPR and 95.395% F1
score. The median distance between the detected positions and
boma centers is 18.8 m. And for 75% of the detected bomas, the
distances between their centers and the centers of true bomas are
less than 87 m. With the scanning results, the time for ground
survey can be greatly reduced and the CHAMP group is able to
spread resources and clinics to more areas.

VI. CONCLUSION

In this article, we presented our work combining machine
learning algorithms with remote sensing data to aid nonprofit
organizations to map the Maasai boma homesteads. A complete
procedure to map unmarked targets by scanning the earth with
a trained deep neural network was proposed and evaluated. We

presented novel adaptations for broad area scanning aggrega-
tions along with an in-depth analysis of parameterization of
the aggregation. We evaluated the scanning results against the
ground truth collected by humans and showed that the model was
able to find the boma structures missed by human annotators. In
addition, we reported quantitative metrics of scanning accuracy
that allow interpretation of composite systems, deep neural
models, and scan aggregation for human practitioners using this
technique to aid in visual analysis tasks. This work addressed
the challenge of utilizing deep neural networks or any applied
machine learning models in practical applications of remote
sensing, where absolute ground truth is difficult to achieve on
the ever-changing Earth’s surface.

There are many areas in the world, such as Tanzania, that lack
resources and are not integrated into the existing systems. This
approach can be applied to similar areas and assist organizations
in locating remote villages, rare structures, or any variety of
diverse anthropogenic features.

Scanning the area with a large window size and small stride
is necessary for precisely locating the positions of bomas. This
results in a computationally costly process using high-resolution
imagery, even with the efficient ProxylessNAS model. One
direction for future work is to optimize the scanning workflow
using parallel computing and other techniques. Another direc-
tion is to train a robust model for lower resolution imagery,
so that images covering the AOI can be replaced with lower
resolution imagery and scanning time is reduced.
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