
3074 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Global Color Consistency Correction for Large-Scale
Images in 3-D Reconstruction
Yunmeng Li , Yinxuan Li , Jian Yao , Ye Gong, and Li Li

Abstract—Global color consistency correction for multiview im-
ages in three-dimensional (3-D) reconstruction is an important
problem. The color differences between the images will affect the
result of dense matching, thereby reducing the geometric accuracy
of the mesh model. Moreover, it will also affect the result of texture
mapping, causing color differences in the textured model. The color
correction method based on global optimization is mainly used
to solve this problem. And existing methods usually use sparse
matching points as the color correspondences, but the correction
results are not accurate enough as a result of the sparsity of the
points. Besides, their efficiency of solving large-scale images glob-
ally is low. This article proposes a novel color correction method
to eliminate the color differences between large-scale multiview
images effectively. The core idea of our method is to group images
by graph partition algorithm, and then perform intragroup cor-
rection and intergroup correction in sequence. First, for each pair
of images, we calculate the reliable matching regions around the
sparse points as the color correspondences according to the local
homography principle. Compared with sparse matching points,
our strategy can achieve more accurate color correction results.
Next, for large-scale images, we partition them into many groups.
For each group of images, the correction parameters are solved to
eliminate the color differences of the images included in the group.
Finally, we eliminate the color differences between groups by inter-
group correction to achieve overall color consistency. Experimental
results on typical datasets demonstrate that the proposed method
is better than the current representative methods. The proposed
method shows better color consistency in the extreme cases, and
also exhibits higher computational efficiency on large-scale image
sets.

Index Terms—Color consistency, graph partition, local
homography, multiple-view images.

I. INTRODUCTION

THE image-based three-dimensional (3-D) reconstruction is
a process of recovering real-world 3-D information from

Manuscript received December 30, 2021; revised March 14, 2022; accepted
April 8, 2022. Date of publication April 13, 2022; date of current version May
3, 2022. This work was supported in part by the National Natural Science
Foundation of China under Grant 42101440, in part by the Shenzhen Central
Guiding the Local Science and Technology Development Program under Grant
2021Szvup100, and in part by the Open Research Fund Program of Key Labora-
tory of Digital Mapping and Land Information Application, Ministry of Natural
Resources. (Yunmeng Li and Yinxuan Li are co-first authors.) (Corresponding
author: Li Li.)

Yunmeng Li, Yinxuan Li, Ye Gong, and Li Li are with the School of
Remote Sensing and Information Engineering, Wuhan University, Wuhan
430079, China (e-mail: yunmeng.li@whu.edu.cn; yinxuanli@whu.edu.cn; cvrs-
gongye@whu.edu.cn; li.li@whu.edu.cn).

Jian Yao is with the School of Remote Sensing and Information Engineer-
ing, Wuhan University, Wuhan 430079, China, and also with the GongQing
Institute of Science and Technology, Jiujiang 332020, Chinacountry> (e-mail:
jian.yao@whu.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2022.3167264

two-dimensional (2-D) images, and is widely used in many fields
such as smart city, cultural relics restoration, virtual reality, and
unmanned driving system. However, in the process of multiview
image acquisition, especially for large-scale scenes, the acqui-
sition conditions such as shooting time, weather, illumination,
and camera parameters are inevitably different, resulting in color
differences (CDs) in the images. If the original uncorrected
images are used for 3-D reconstruction, it will first affect the
result of dense matching, which partly depends on the similarity
between pixels. And the result of matching will undoubtedly
further affect the geometric accuracy of the reconstructed mesh
model. Moreover, using the original images for subsequent
texture mapping will also cause CDs between patches in the
textured model. Geometric dislocation and texture inconsistency
will greatly affect the visual quality of the final model. There-
fore, it is essential to eliminate CDs between multiview images
through color consistency correction technology.

Over the years, the color correction researches in image stitch-
ing have been continuously developed and improved [1]–[3].
The global optimization strategy is the mainstream method
among them, and the color correspondences are usually cal-
culated based on the overlapping area between the images.
This type of methods cannot be directly applied to the color
correction for multiview images in 3-D reconstruction. Since
the shooting angles and positions of the images used for
3-D reconstruction are usually very different, it is difficult to
precisely align these images. The current basic scheme is to
calculate the color correspondences based on the sparse match-
ing points of multiview images generated by structure from
motion (SfM) [4]. Obviously, this strategy is not reliable enough
compared with the strategy of using the overlapping area as
the color correspondences. The characteristics of the feature
points determine that their distribution is not uniform, and most
of the feature points locate at the borders and corners. Thus,
some color information of the images is ignored and the color
correction results may be influenced. Some researchers propose
to calculate color correspondences based on dense matching,
but this strategy is very time-consuming [5]. In addition, the
global optimization framework is not suitable for processing
large-scale images, because it solves all correction parameters at
the same time. When the number of images increases to a certain
extent, the solution time will be greatly increased. In addition,
the scale of the equation coefficient matrix also increases, and
the solution may be interrupted due to out of memory error.

Considering the above two aspects, we propose a novel color
consistency correction method for large-scale multiview images.
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In response to the problem of inaccurate color correspondences,
we propose a novel strategy to obtain corresponding regions
around the sparse matching points using local homography. In
this way, not only are the statistical color correspondences more
accurate, but the calculation time is within an acceptable range
as well. For large-scale image color correction, we propose a
two-step strategy based on graph partition. First, we construct
a graph based on the image adjacency relationship, and use the
graph partition algorithm to group the images. Then, we perform
intragroup correction to eliminate CDs within each group of
images, and perform intergroup correction to eliminate CDs
in images of different groups. Because the number of images
included in each group is far less than the total number of images,
the computational time and memory requirement for intragroup
correction are greatly reduced. In addition, each group of images
can be corrected independently and parallel. The key contribu-
tion of this article can be summarized as follows.

1 Instead of using the sparse points as the color correspon-
dences, we propose a novel strategy based on local ho-
mography to extract more accurate color correspondences.
Our proposed method is more robust since color correspon-
dence is the basis for color consistency correction.

2 To perform global color correction on large-scale images
efficiently, we propose a two-step strategy based on graph
partition. This strategy effectively reduces the computa-
tional burden of equation solving by grouping images and
sequentially performing intragroup correction and inter-
group correction.

Experimental results on various datasets show that our algo-
rithm shows better efficiency and effectiveness than the current
representative algorithms.

The rest of this article is organized as follows. In Section II, an
overview of related work is provided. Section III introduces the
proposed color correction algorithm in detail. The experiments
are presented in Section IV. Finally, Section V concludes this
article.

II. RELATED WORK

We introduce image color correction algorithms from two
perspectives: Color transfer between two images, and color
consistency correction for multiple images.

A. Color Transfer

Color transfer refers to adjusting the tone of the source image
to make it consistent with the target image. According to the
mapping principle, color transfer approaches can be divided into
two categories: Nonparametric and parametric.

Most of nonparametric methods use look-up tables to directly
record the mapping of all color levels in the image. Usually, the
look-up table is calculated based on the 2-D joint histogram
of the known color correspondences between the two images.
Pitié et al. [6] proposed an iterative approach based on the
one-dimensional probability density function (PDF) transfer,
which can accurately transfer the source PDF to target PDF
and obtain the one-to-one color mapping table. Su et al. [7]
proposed to decompose the source image into multiple base
layers and detail layers, and then perform color transfer for

each base layer using Pitié et al.’s method [6]. Finally, the
base layers were combined with the boosted detail layers to
generate the final corrected image. Hwang et al. [8] proposed a
color mapping method based on moving least squares (MLS),
and then combined MLS with the probabilistic modeling of
the color transfer in the 3-D color space to better deal with
misalignment and noise. Liu et al. [9] proposed to decompose
the natural image into reflectance image and shading image
through unsupervised deep learning. Palette-based recoloring
is performed only on the reflectance image to avoid color
overflow. However, the above methods cannot eliminate local
CDs; therefore, some stronger local color transfer schemes are
proposed. Wu et al. [10] proposed a content-based local color
transfer algorithm, which integrates the spatial distribution of the
target color style in the optimization process. Hwang et al. [11]
improved their previous algorithm [8] by introducing bilateral
weights to realize local color transfer that takes into account the
spatial variation of colors. Niu et al. [12] first performed global
coarse color correction using Pitié et al.’s method [13], and
then performed local color correction to improve the local color
consistency.

Different from the nonparametric methods, the parametric
methods describe the mapping relationship between images as
a global transformation, such as the linear model, the gamma
model, and so on. Reinhard et al. [14] first proposed a global
color transfer method based on mean and standard deviation.
This method also converts the image from RGB color space
to decorrelated lαβ color space to process each color channel
independently. Xiao and Ma [15] proposed a gradient preserv-
ing color transfer method, which takes the histogram of the
target image and the gradient map of the source image as the
reference information to solve the corrected image. Nguyen
et al. [16] applied white-balance to remove color casts in the
source and target images, and then performed Xiao et al.’s
method [15] to match the overall brightness between the two
images. Afterwards, a 3-D color gamut mapping was performed
to ensure that the color of the corrected image is completely
within the target color gamut. Similarly, the local color transfer
scheme is also applied in the parameterized method. He et al.
[17] constructed the guide image according to the semantic
correspondences of the source image and the target image, and
then iteratively optimized the local linear model from coarse
to fine. Wu et al. [18] generated a weighted attention map
using the saliency and gradient maps, and then used Reinhard
et al.’s method [14] to correct the salient and nonsalient regions
respectively.

Although many color transfer methods are difficult to extend
to multiple images, it is clear that they also have made a great
contribution to the development of color consistency correction
for multiple images. In general, parametric methods are more
suitable for extending to multiple images than nonparametric
methods.

B. Color Consistency Correction

Color correction for multiple images, also known as color
consistency correction, is a key technology in aerial image
mosaicking, panoramic stitching, and other fields. There are
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mainly two types of methods, namely methods based on path
propagation and methods based on global optimization.

The path propagation methods first select an image as the
reference image, and then gradually transfer its color infor-
mation to other images along the best propagation path. Pan
et al. [19] proposed a network-based method to eliminate the
CDs between images. This method determines the transferring
path based on two factors: the time of transfer and the size of
overlap. They also used a global to local strategy to improve the
performance of color correction. Under the assumption that the
error of each transfer step is equal, Chen et al. [20] determined
the reference image and the transferring path using the shortest
distance algorithm to reduce the normalized error. In essence,
the path propagation method is the color transfer between two
images. The accumulated errors may appear in the propagation
process. In addition, there is no clear standard for the selection
of reference image.

The global optimization methods, which solve the correc-
tion parameters of all images simultaneously, are the current
mainstream methods. Such methods establish an independent
color mapping model for each image, and convert the color con-
sistency correction problem into a global energy optimization
problem. The goal of the energy function is to minimize the
total CDs between the images after color correction. The optimal
solution of the energy function is the final parameters of the
image mapping models. Brown and Lowe [1] first proposed to
calculate the gain for multiple images by globally optimizing
the energy function, and used the mean gray value of the over-
lapping area as the color correspondence. Xiong and Pulli [21]
proposed to perform color correction in the decorrelated color
space. Specifically, the linear model is still applied to the color
channels, and the gamma model is applied to the luminance
channel. Xia et al. [2] used a more complex piecewise quadratic
spline curve as the mapping model to obtain more powerful
color correction capability. To eliminate local CDs, Yu et al.
[22] proposed a global to local optimization strategy. They
first used least squares optimization to eliminate global CDs
between images. A local correction strategy is further performed
to eliminate the residual local CDs. In order to avoid meaningless
global solution, Xie et al. [23] proposed a global optimization
method with a supervised initial solution. The initial solution of
each image is obtained by the path propagation method, and then
the distance between the corrected color and the initial solution
is served as a regular term to constrain the optimization process.

The color consistency correction in 3-D reconstruction is
similar to that in image stitching. The most significant difference
between them is the color correspondence extraction method.
HaCohen et al. [5] applied the dense matching points between
images as color correspondences, and then automatically propa-
gated the changes made by the user to other images by minimiz-
ing a global energy cost function. Moulon et al. [24] proposed
to use the virtual line descriptor filter to further extend the set
of color correspondences generated by feature matching. Shen
et al. [25] proposed a multiview color correction approach for
3-D modeling. After reconstructing the triangular mesh from
images, this method accurately calculates overlapping regions

by reprojecting the mesh to images. Park et al. [4] used scale-
invariant feature matches as the color correspondences, and
proposed a robust low-rank matrix decomposition method to
robustly estimate the parameters of the gamma model. Yang et al.
[26] also used the sparse matches as the color correspondences,
but they solved the parameters by minimizing the variance of
all observed color values for each sparse point. In addition, they
also proposed a hierarchical correction strategy for large-scale
images.

III. METHOD

Given a large-scale multiview images I = {Ii}Ni=1, where
N is the number of images. We attempt to eliminate the CDs
between the input images. Considering the low efficiency and
memory consumption of global color consistency optimization
for large-scale images, we propose a two-step strategy, including
intragroup correction and intergroup correction. The first step
of our approach is to group the images. We construct the graph
based on the adjacency relationship. Let G = {V,E} denote the
graph, where V and E represent the images and the adjacency
relationship, respectively. Specifically, we first use the SfM algo-
rithm [27] to obtain sparse matching points, which indicate the
adjacency relationship between the images. Generally speaking,
the more matching points, the more content shared between
the two images. Then we group the images by applying graph
partition in the adjacency graph G.

After that, for each image pair, we need to acquire the accurate
color correspondences, which are the basic measurement for
color consistency optimization. Sparse matching points are often
used as color correspondences [24], [26], but this way usually
ignores color information of many regions other than feature
points. However, more accurate color correspondence extraction
methods such as dense matching require a lot of time. In our
method, we propose a novel strategy that only computes match-
ing pixels for regions near the sparse matching points using local
homography. Compared with other methods, this strategy does
not need to compute dense matching for all pixels; therefore,
reliable corresponding pixels can be obtained efficiently. For
convenience and robustness, the quantiles of the cumulative
color distribution histogram constructed from corresponding
pixels are extracted as the final color correspondences.

Based on the above image groups and color correspondences,
we implement the two-step strategy to perform color consistency
optimization for large-scale images. For each group of images,
the global energy function [2] is constructed based on the color
consistency and gradient preservation constraints, etc. The cor-
rection model parameters of the images included in each group
can be solved by minimizing the energy function globally. After
intragroup correction, the CDs of images belonging to the same
group are eliminated, but there are still CDs between images of
different groups. Therefore, intergroup correction is required.
We regard each group of images as a virtual image. All the
virtual images form a virtual image group. The similar correction
can be performed on the virtual image group to achieve the
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Fig. 1. Workflow of our proposed approach. For the input image set, sparse matching points are first obtained using SfM. Then, we construct the graph and cluster
the images into many groups. In addition, for each pair of images, the color correspondences are constructed using the local homography. Next, the intragroup
correction is performed to eliminate the color differences for images inside the group. Finally, we perform intergroup correction to eliminate the color differences
between groups.

Fig. 2. Graph partition result of School dataset. (a) Initial adjacency graph of this dataset. (b) Simplified graph. (c) Graph partition result. In (a) and (b), the edge
with darker color indicates the higher weight. In (c), the different colors of the nodes indicate different groups.

color consistency of the entire image set. The workflow of the
proposed approach is shown in Fig. 1.

A. Image Grouping

According to the sparse matching points obtained by the
SfM algorithm, we can easily know the adjacency relation-
ship between the images and construct the adjacency graph
G = {V,E}, where the vertices V = {vi}Ni=1 represent the
images, and the edges E = {eij , i �= j} denote the adjacency
relationship between images. The weight wij of eij is positively
correlated with the number of matching points between the
image Ii and Ij . wij = 0 means that there is no matching point
between the two images. An example of initial graph is shown
in Fig. 2(a).

However, it is expensive to consider all matching relation-
ships, because we need to calculate the color correspondences
for each edge. And the scale of the coefficient matrix is propor-
tional to the number of edges. In addition, the edges with a few
matching points are unreliable. Thus, we tend to only consider
the major edges in our method. Namely, we need to simplify the

initial graph. To solve this problem, the intuitive method is to
directly discard the edges with small weights. Another simple
way is to keep only the first T edges with higher weights for
each vertex. We combine these two methods. We first use a
threshold to remove edges with a few matching points, and then
set a parameter T to limit the number of edges for per vertex.
For each edge eij , we calculate the normalized weight wij as
follows:

wij =

⎧⎪⎪⎨
⎪⎪⎩
0, if mij ∈ [0,M1]
mij −M1

M2 −M1
, if mij ∈ (M1,M2)

1, if mij ∈ [M2,+∞)

(1)

where mij is the number of matching points between Ii and Ij .
For a dataset, the number of matching points for major image
pairs is similar. Thus, to facilitate the graph partition method,
we define two adaptive thresholdsM1 andM2 to linearly stretch
and normalize the weight. The calculation method of M1 and
M2 is as follows. For each vertex vi in the graph G, vi usually
has several edges. The number of matching points of each edge
is different. For each vertex vi, we first calculate the maximum
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Fig. 3. Calculation process of the homography matching regions. (a) Original image pair. (b) Sparse matching points of two images. (c) Grid division of the first
image. (d) For a valid grid that contains matching points, the local homography is calculated using the neighboring matching points. (e) Projection result of one
grid. (f) Mask and (g) the final extracted matching regions.

number of matching points mi as

mi = {max(mij)|j ∈ [0, N), j �= i,mij �= 0)}. (2)

Then, we define a set M = {mi}Ni=0 that represents the max-
imum number of matching points for all vertices. M1 and M2

are calculated as

M1 = a1 ×min(M),M2 = a2 ×max(M) (3)

where a1 and a2 are two coefficients. min(·) and max(·) repre-
sent the minimum and maximum values of all elements included
in M, respectively. In general, we set a1 = 0.6 and a2 = 0.8.

After calculating the weights of all edges, we directly discard
the edges with a weight equal to 0. However, there are still a lot
of redundant edges in the graph. Thus, we further restrict that
the maximum number of edges of each vertex is less than T . In
general, we set T = 5. We find that T = 5 generates the similar
color consistency result compared with no this restriction. The
simplified graph is shown in Fig. 2(b).

Based on the simplified graph, we apply the graph partition
algorithm to group images. The graph partition, also known
as graph clustering, aims to divide a graph into many uniform
parts. Graph clustering usually aims to maximize within-cluster
association or minimize the cut between clusters. In this article,
we directly apply the normalized cut method [28] to complete
the task of graph partition. The normalized cut is to minimize

the cut relative to the degree of a cluster instead of its size, which
is formulated as follows:

NCuts(G) = min
C∑

c=1

∑
Ii∈Vc,Ij /∈Vc

Wij

degree(Vc)
(4)

where C is the number of clusters. Vc represents the cth cluster.
degree(Vc) is the degree of Vc, which is calculated as the sum
of the degrees of vertices included in Vc. The result of graph
partition is shown in Fig. 2(c).

B. Color Correspondence Extraction

The current multiview image color correction methods for 3-D
reconstruction usually use sparse matching points as color cor-
respondences, which is not reliable enough. Some researchers
calculate the dense matching for each image pair to obtain a
more accurate color correspondences, but it is time-consuming.
We propose a method to balance these two factors, as shown
in Fig. 3, which can effectively improve the accuracy of color
correspondences and control the time consumption at a normal
level.

The core idea of this method is to calculate the matching
regions around the sparse matching points using local homog-
raphy. For any pair of images (Ii, Ij), as shown in Fig. 3(a),
we already obtained the sparse matching points in the stage of
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graph construction. These sparse matching points are regarded
as the guidance. First, we divide the first image Ii into m× n
grids at the interval lgrid, as shown in Fig. 3(c). We will further
check whether each grid includes the matching points. We only
calculate the corresponding regions for the grids that include at
least one matching point.

Inspired by the local image warping methods [29], we calcu-
late the matching regions for each grid using local homography.
We assume that the transformation between two local regions
can be approximated by a local homography. For each grid in
image Ii, to estimate the local homography matrix, we need to
prepare enough matching points. The best choice is the one that
uses the matching points included in the current grid. However,
in most of cases, there are not enough matching points in the
current grid. Thus, we search the matching points from the sur-
rounding grids until the number of matching points reaches the
predefined threshold. In our article, to ensure that the estimation
of homograph matrix is robust, we set the number threshold as 8.
Based on the matching points, the projection error functions are
established and minimized to estimate the parameters of local
homography matrix, as shown in Fig. 3(d). Then, we directly
project the grid onto the second image Ij using the estimated
homography matrix to find the corresponding matching regions,
as shown in Fig. 3(e).

In Fig. 3(f) and (g), we visually show the final matching
regions of two images. However, for the local regions located
by the obvious objects such as buildings, the local homography
only can roughly approximate the transformation between two
images. Thus, there may be some outliers in matching regions.
To suppress the influence of the outliers, instead of directly using
the matching pixels as the color correspondences, we apply the
statistic-based method to extract the color correspondences from
the matching regions. We calculate the cumulative distribution
functions (CDFs) for the matching regions of two images. Then,
we take the same quantiles of two CDFs (color value pairs with
the same frequency) as the color correspondences.

To illustrate the effectiveness of the proposed color corre-
spondence extraction method, we compare it with the widely
used strategy that applies the sparse matching points as the
color correspondences. In Fig. 4, we present the color correction
results offered by the homography matching regions and sparse
matching points. From the first row of Fig. 4, we observe that the
input image I1 is dark and the input image I3 is bright. When
dealing with the darker image I1, the correction result of the
method using sparse points is obviously grayer, and our result is
more vivid. For the brighter image I3, our correction result has
more natural color and moderate brightness.

In addition, to better illustrate why the method with the use
of homography matching regions can generate the better results
than that with the use of sparse matching points, we calculate
the probability density function (PDFs) and CDFs of sparse
matching points and homography matching points. In Fig. 5,
we show the PDFs and CDFs of two pairs of images (I1, I2)
and (I3, I4). It can be seen that when sparse matching points
are used as color correspondences, the pixel value distribution
is relatively concentrated, and the broken lines in the CDFs pic-
ture are also steep. After calculating the homography matching

Fig. 4. (Row 1) Original images. (Rows 2 and 3) Correction results of the
method using sparse matching points and our proposed method using homog-
raphy matching pixels. (Row 4) Local enlarged details.

Fig. 5. PDFs and CDFs of two image pairs (I1, I2) and (I3, I4). (Rows 1 and
2) PDFs of sparse matching points and homography matching regions. (Rows 3
and 4) Corresponding CDFs. The red, green, and blue lines represent the Y, Cb,
and Cr channels, respectively. (a)I1. (b)I2.(c) I3.(d)I4.

pixels, the range of pixel value distribution is wider, and the
broken lines in the CDFs picture are also more gentle. This
shows that using homography matching pixels as color corre-
spondences can more accurately describe the color information
of images.

C. Global Optimization

Global optimization, that is, obtains the color mapping models
of all images. Based on the extracted color correspondences,
we establish and minimize the global energy function to solve
the optimal parameters of color mapping models. However,
for large-scale images, solving all image correction parameters
at the same time is not only time-consuming, but also easy
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to fall into an unsolvable situation due to memory limitation.
Therefore, we propose an efficient two-step strategy to indirectly
achieve the effect of global optimization through intragroup and
intergroup correction.

Let I = {Ii}Ni=1 denote the original images. After perform-
ing image grouping, all images are divided into many groups.
LetV = {Vc}Cc=1 denote the groups. In the intragroup correction
stage, we process each group of images independently. For each
group Vc, global color consistency optimization is performed
to obtain the color mapping models for images included in Vc.
The CDs between the images included in Vc can be effectively
eliminated. Let F = {Fi}Ni=1 denote the intragroup color map-
ping models of all images. In the intergroup correction stage, we
treat each group of images as a virtual image. Let J = {Jc}Cc=1

denote all virtual images. The global color consistency optimiza-
tion is performed again to eliminate the CDs between virtual
images. Let F′ = {F ′

c}Cc=1 denote the intergroup color mapping
models. For intragroup and intergroup color consistency opti-
mization, we apply the same color correction method presented
in our previous work [2] to effectively eliminate the CDs. The
general definition of its global energy function is as follows:

E =
∑

wij �=0

wijEdata(fi, fj) + λ

N∑
i=1

Eregulation(fi)

subject to : Crigid(fi), ∀i ∈ [1, N ] (5)

where wij is the weight of edge eij , and λ represents the balance
coefficient. fi and fj represent the correction models of the
images Ii and Ij . Edata(fi, fj) represents the data term to
constrain the CDs between the corrected adjacent images to be
as small as possible. The second part Eregulation(fi) enforces
certain constraints on the color correction softly, including reg-
ularizing the parameters and stretching dynamic range. Finally,
the increasing monotonicity and mapping domain are guaranteed
through the rigid constraint term Crigid(fi). For more details,
refer to [2].

After solving the parameters of the mapping models, we can
correct the images in turn. Generally speaking, for each pixel p
in Ii included in group Vc, its correction process is formulated
as

Ĩi(p) = F ′
c(Fi(Ii(p))) (6)

where Ii(p) and Ĩi(p) denote the intensity values of pixel p in
the original image Ii and corrected image Ĩi, respectively.

IV. EXPERIMENTS

The experiments consist of three parts. In the first part, in
order to determine the graph simplification parameters involved
in Section III-A, experiments are conducted on several datasets.
In the second part, to illustrate the effectiveness of our proposed
color correction method, we compare the proposed method
with several existing methods [4], [24], [25]. Because most of
color correction methods cannot process large-scale datasets, we
apply several small-scale datasets to conduct the comparative
experiments. In the third part, to illustrate that the proposed

method can efficiently and effectively process large-scale im-
ages, we evaluate the performance of the proposed method on a
large-scale dataset.

A. Datasets and Evaluation Indicators

We evaluate the proposed color correction approach on vari-
ous types of datasets. The details of each dataset are shown in
Table I. In order to increase the challenge of color consistency
optimization, we randomly adjust the original colors of the
images included in School [26], YongZhou, and Cathedral [30]
datasets. These three synthetic datasets are used for comparative
experiments. Four Internet datasets, namely ShangQing, ZiXiao,
Gendarmenmarkt [31], and NotreDame [32], are used to evaluate
the correction effect of the proposed method on natural datasets.
Three reconstruction datasets PiazzaDante, Navona [33], and
Toledo [34] are used to evaluate the performance of our proposed
method on the actual textured model. The last dataset WHU-
MVS [35] is used to evaluate the performance of our proposed
method on large-scale images. Furthermore, in the parameter
determination experiments, two datasets are involved, School
and Navona.

In addition, in order to quantitatively evaluate the performance
of color correction methods, we apply the peak signal-to-noise
ratio (PSNR) and Structural SIMilarity (SSIM) to measure the
similarity of color and structure. The calculation formula of
PSNR is as follows:

PSNR = 10× log10
MAX2

MSE
(7)

where MAX is the possible maximum pixel value of the image,
and MSE is the mean square error of the two images. When
calculating SSIM, a sliding window is generally used to divide
the image into S blocks, and then the structural similarity of the
corresponding block is calculated. Finally, the average value is
used as the structural similarity measure of the two images. The
calculation formulas are as follows:

SSIM =
1

S

S∑
s=1

SSIM(xs, ys) (8)

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(9)

where μx and μy are the mean values of the block x and y, σx

and σy are the variances, and σxy is the covariance of x and
y. c1 and c2 are two constants. Higher PSNR and SSIM scores
mean that the corrected image is more similar to the original
image, retaining more information of the original data. But
these two metrics cannot evaluate the color consistency between
images. Therefore, the scores of these two indicators cannot fully
reflect the quality of the color correction results. For this reason,
we additionally calculated another reference metric, the CD. It
reflects the color consistency of the dataset by calculating the
average of the differences between the color correspondences of
adjacent images after color correction. The calculation formula
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TABLE I
DETAILS OF DATASETS USED IN THE EXPERIMENTS

Fig. 6. Histogram and CDFs of matching points for image pairs in School
datasets. The upper and lower figures show the positions of M1 and M2 within
the matching point range when a1 and a2 take different values, respectively.

is as follows:

CD =
1

Nedges ·K
∑

wij �=0

K∑
k=1

‖v̂i,k − v̂j,k‖2 (10)

where Nedges is the number of edges whose weight is not zero,
(v̂i,k, v̂j,k) represents the kth color correspondence values of
the image pair after image correction, and K is the number of
color correspondences. The smaller the CD, the better the color
consistency between the images.

B. Parameter Determination

In Section III-A, we set three parameters,a1,a2,T , to simplify
the graph. In this section, we conducted experiments to explore
reasonable values for these parameters. First, we estimate a1
and a2 by taking statistics on the distribution of matching points
for all edges in the graph. Fig. 6 shows the positions of M1

and M2 within the range of matching points when a1 and a2
take different values. The value of a1 ranges from 0 to 1, and
its main function is to exclude edges with few matching points.
From the histogram distribution in Fig. 6, when the frequency
is high, the number of matching points is small, which is less
robust. Therefore, it is more appropriate for a1 to be between
0.4 and 0.8, then the value of M1 is between 220.8 and 441.6.

Fig. 7. Relationship between T and CD/time on two datasets (T = −1 means
that there is no limit to the number of connected edges per vertex).

The value range of a2 is between a1 and 1, mainly to prevent
the weight value of the edge from being too concentrated due to
the existence of extreme values. It can be seen from the CDFs
curve in Fig. 6 that when a2 is about 0.8, the CDFs value is close
to 1. This shows that there are very few edges with more than
this number of matching points. In general, we set a1 = 0.6 and
a2 = 0.8.

Then, we conducted experiments on two datasets, School and
Navona, to test the effect of different T on the correction results,
as shown in Fig. 7. Here, the metric CD is used to indicate
the correction effect of different T . It can be seen that when T
is too small, there are few edges between image nodes, and
the CD of the correction result is large. When T gradually
increases, the CD of the correction results decreases and tends to
be stable, and the corresponding processing time also increases
gradually. In general, we set T = 5 to strike a balance between
processing time and correction effect. We found that T = 5
produced similar color consistency results compared toT = −1.

C. Comparative Experiments

C. Qualitative Evaluation: To illustrate the superiority of our
method, we compared the proposed color correction method
with the other three methods [4], [24], [25] on three synthetic
datasets, namely School, YongZhou, and Cathedral datasets.
We named the selected three comparative methods as Moulon
et al.’s method [24], Park et al.’s method [4], and Shen et al.’s
method [25], respectively. Moulon et al.’s method has been inte-
grated into openMVG [36]. Thus, we directly install openMVG
to show the performance of this method. The MATLAB code
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Fig. 8. Color correction results on School dataset. Limited by the space, only part of the images are displayed. (Row 1) Input images. (Rows 2–5) Results of
Moulon et al.’s method [24], Park et al.’s method [4], Shen et al.’s method [25], and our proposed method.

Fig. 9. Color correction results on YongZhou dataset. Limited by the space, only part of the images are displayed. (Row 1) Input images. (Rows 2–5) Results of
Moulon et al.’s method [24], Park et al.’s method [4], Shen et al.’s method [25], and our proposed method.

of Park et al.’s method is provided by the authors. Because the
source code of the method presented in [25] is not provided,
we reimplement Shen et al.’s method based on sparse matching
points instead of reprojection.

Fig. 8 presents the experimental results of the four color
correction methods on the School dataset. There are large expo-
sure inconsistencies between the images included in the School
dataset. It can be seen that Moulon et al.’s method [24] offers the
worst results. The corrected images are hazy due to the loss of
image gradient. In addition, the CDs between corrected images
are still obvious. This method applies the linear model to approx-
imate the CDs, and their color correction ability is relatively
weak. Park et al. [4] used matching patches instead of sparse
matching points as the color correspondences, so on most images
in the School dataset, their results are similar to our results in

terms of color consistency and image quality. However, their
approach is not robust enough. When the brightness changes
drastically, abnormal correction results may occur, such as the
penultimate image. The results of Shen et al.’s method [25] are
similar with the results generated by Moulon et al.’s method
in color consistency. The contrast of the images corrected by
Shen et al.’s method is better than the images corrected by
Moulon et al.’s method. This is because Shen et al.’s method
has linearly stretched the images to increase the contrast after
the color correction. As shown in the last row of Fig. 8, the
results of our proposed approach are the best.

Fig. 9 presents the experimental results of the four color cor-
rection methods on the YongZhou dataset. The images included
in the YongZhou dataset have serious inconsistencies in terms of
exposure and color. The results of Moulon et al.’s method [24]
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Fig. 10. Color correction results on Cathedral dataset. Limited by the space, only part of the images are displayed. (Row 1) Input images. (Rows 2–5) Results of
Moulon et al.’s method [24], Park et al.’s method [4], Shen et al.’s method [25], and our proposed method.

TABLE II
QUANTITATIVE EVALUATION RESULTS OF FOUR METHODS ON THREE SYNTHETIC DATASETS

The bold entities means that this method has the best result of the comparison methods.

and Shen et al.’s method [25] have poor color consistency. In
addition, the results of Moulon et al.’s method have serious loss
of detail. The results of Shen et al.’s method have color overflow,
such as the areas around the roads in the last few pictures. Except
for the third image, the visual quality of the rest of images
corrected by Park et al.’s method [4] is good. In this dataset,
our method also offers the best correction results.

In the Cathedral dataset, there are strong color inconsistencies
between the images, as shown in the first row of Fig. 10. From
Fig. 10, it can be seen that the results of Moulon et al.’s method
still have large residual CDs, and the tones of corrected images
are unnatural. Park et al.’s method fails to correct the images with
drastic tone differences. The tones of the second and seventh
corrected images of Park et al.’s method are still different with
other images. The results of Shen et al.’s method also have the
problem of unnatural image tones. For this challenging dataset,
our method still can generate the corrected images with invisible
CDs and high visual quality; even the tone differences of input
images are very large.

In addition, we tested the four methods on four natural Internet
datasets, namely, ShangQing, ZiXiao, Gendarmenmarkt, and
NotreDame datasets. Due to space limitations, only the results of
our method are presented, as shown in Fig. 11. The quantitative
evaluation results of the four methods on the Internet datasets
are given in the next section. Since Internet pictures are taken
by handheld cameras with different shooting angles and times,

there are large CDs between original images. However, the pro-
posed method performs well on these datasets. We successfully
eliminate the CDs between the original images, especially for
the areas of buildings.

C. Quantitative Evaluation: In addition to the qualitative
evaluation, we also performed the quantitative evaluation to con-
vincingly illustrate the effectiveness of our approach. The quan-
titative evaluation results of all methods are reported in Table II.
Because we use the synthetic datasets (School, YongZhou, and
Cathedral) to conduct the comparative experiment, the PSNR
and SSIM values can be calculated by comparing the corrected
images with the original images. For each dataset, the average
values of PSNR and SSIM of all images are used as the final
results. For the CD metric, as described in the formula, it is
the average of the CDs of all image pairs. It can be seen that
the scores of Moulon et al.’s method [24] and Shen et al.’s
method [25] have relatively poor scores. This conclusion is
consistent with the previous qualitative comparison results. Park
et al.’s method [4] and our proposed method offer better PSNR
and SSIM scores. It indicates that the corrected images have a
similar color and structure with the original images. However,
Park et al.’s method has higher CD scores. It indicates that the
CD between the correction results is large. And on these three
datasets, the CD scores of the correction results of our method
are the best. Combined with the qualitative results, it can be
concluded that our method is more robust than Park et al.’s
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Fig. 11. Color correction results of four Internet datasets. The first rows of (a)–(d) show the original images, and the second rows of (a)–(d) show our color
correction results. Limited by the length and space of manuscript, only part of the images in each dataset are displayed.

TABLE III
QUANTITATIVE EVALUATION RESULTS OF FOUR METHODS ON FOUR NATURAL INTERNET DATASETS

The bold entities means that this method has the best result of the comparison methods.

method, and our method can achieve good color consistency
even in the extreme cases.

We also conducted quantitative evaluations on four natural
Internet datasets, as shown in Table III. As can be seen from the

table, for the PSNR and SSIM metrics, Park et al.’s method [4]
has the highest scores, and our method is the second. Different
from synthetic datasets, in natural datasets, PSNR and SSIM
reflect the similarity between the corrected images and the input
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Fig. 12. Performance on textured models. (a), (c), and (e) Results without color correction on PiazzaDante, Navona, and Toledo. (b), (d), and (f) Results with
color correction on PiazzaDante, Navona, and Toledo.

images. A high score simply means that the corrected image
is similar to the input image. However, the input images have
obvious CDs and brightness differences, and are not suitable
as the reference image. Therefore, the PSNR and SSIM scores
are only used as auxiliary information here. And for the CD
metric, our method gets the best scores, followed by Shen et al.’s
method [25]. This also supports our previous conclusion that our
method achieves better color consistency results.

C. Texture Mapping: In the previous experiments, we tested
our method on several synthetic and natural datasets. We illus-
trated that our method can generate the images with consistent
tone and high quality. Then, we attempted to illustrate that
our method can improve the visual quality of the textured 3-D
models. We tested our method on PiazzaDante, Navona, and
Toledo datasets. First, we reconstructed the 3-D models for
these datasets using multiview environment [37]. Then, the
textured 3-D models were generated using the texture mapping
method presented in [38]. We applied the original images and
the corrected images generated by our method to complete the

texture mapping, respectively. The textured models with the use
of original and corrected images are presented in Fig. 12. It can
be seen that there are large CDs in the textured models when the
original images are applied for texture mapping, as shown in the
Fig. 12(a), (c), and (e). The visible seams would significantly
degrade the visual quality of the textured 3-D models. With
the use of the corrected images generated by our method, the
visible seams disappear as our expect, as shown in Fig. 12(b),
(d), and (f).

D. Large-Scale Dataset

A series of previous experiments on small datasets proved
that the color correction ability of our proposed method is
better. Then, we attempted to illustrate that our method can
process large-scale datasets efficiently. In order to evaluate the
effectiveness of our proposed two-step strategy, we conducted
experiments on the large-scale dataset WHU-MVS. The dataset
has 1776 images, the image size is 5376 × 5376, and the number
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TABLE IV
EQUATION SOLVING TIME COMPARISONS OF THREE METHODS ON DIFFERENT NUMBERS OF IMAGES IN THE WHU-MVS DATASET (UNIT: SECOND)

Fig. 13. Relationship between group number and time consumption on WHU-
MVS dataset (s1, s2, and s3 represent image I/O, color correspondence extrac-
tion, and correction parameter solving, respectively).

of image pairs is 5040. The experimental device is a desktop
computer with 16 GB RAM and an Intel i7-8700 CPU running
at 3.2 GHz. In order to facilitate the experiments, all images
in WHU-MVS are resampled to 1344 × 1344. The relationship
between the algorithm time consumption and the number of
groups is presented in Fig. 13.

The main computation of our proposed algorithm includes
three parts, namely image I/O, color corresponding calculation,
and correction parameters solving. We named the time spent
in the three parts as s1, s2, and s3, respectively. s1 is mainly
related to the image size and the number of images. And s2
is positively correlated with the number of image pairs. The
proposed two-step strategy has nothing to do with these two
parts, but for the convenience of comparison and understanding,
they are shown together in Fig. 13.

The third part s3 is the time to construct and solve the energy
equation. We optimize this part through the proposed two-step
strategy. By controlling the number of image groups, we can
analyze the relationship between the time consumption and the
number of groups. When the number of groups is 1, a out of
memory error occurs, so the number of groups in the experiment
starts from 2. From Fig. 13, it can be seen that as the number
of groups increases, s3 decreases sharply. When the number of
groups is 2, there are about 888 images in each group, and the
total solution time exceeds about 2500 s. When divided into 14
groups, there are about 126 images in each group, and the total
solution time is only about 30 s. This proves that the proposed
two-step strategy can effectively improve the computational
efficiency of the correction algorithm on large-scale datasets.

Fig. 14. Relationship between group number and PSNR/SSIM/CD on WHU-
MVS dataset.

In addition, there is no parallel optimization in the above exper-
iment. If parallel optimization is performed, s1, s2, and s3 will
all benefit.

Finally, we attempted to illustrate that the two-step strategy
will not have a significant impact on the correction results.
Therefore, the PSNR, SSIM, and CD scores were calculated
for each set of correction results. The relationship between
group number and PSNR/SSIM/CD is presented in Fig. 14. It
can be seen that as the number of groups increases, PSNR and
SSIM show a slight downward trend, while CD shows a slightly
increasing trend. This shows that when the number of groups
is different, the correction results are similar. In summary, our
proposed method can not only greatly improve the efficiency of
the algorithm, but also ensure the color correction effect. This
meets the needs of color consistency correction for large-scale
images.

On the large-scale dataset WHU-MVS, we compared the
equation solving time of three methods by controlling the num-
ber of images involved in the operation, as shown in Table IV.
We did not compare with Park et al.’s method [4], because
this method is implemented in Matlab, so the efficiency is very
low. Moulon et al.’s method [24] is implemented on the linux
platform. It can be seen from the table that its solution efficiency
is lower than the latter two methods. When the number of images
is small, such as 110 images, it takes 255 s for Moulon et al.’s
method [24] to solve the model parameters, but only 1.09 s
for Shen et al.’s method [25]. The solution efficiency of our
method without grouping is similar to Shen et al.’s method [25].
However, when the number of images is large, the time to solve
the equations of Moulon et al.’s method [24] and Shen et al.’s
method [25] increases greatly, and may even be impossible
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to solve. After applying a two-step strategy based on image
grouping, it can be seen that our method takes a significant
reduction in the time to solve the equations. In our method with
grouping, image grouping is applied when the number of images
is greater than 200. Because grouping is not necessary when
the number of images is small, we simply set the number of
groups equal to the number of images divided by 111. The above
time comparison experiments demonstrate that our method can
handle color correction on large-scale datasets more efficiently.

V. CONCLUSION

In this article, we propose a color consistency correction ap-
proach for large-scale images in image-based 3-D modeling. The
proposed approach obtains more accurate color correspondences
through local homography matching, so the final color correction
results are more reliable. In addition, this approach proposes a
two-step strategy based on graph partition, which effectively
reduces the computational burden when correcting large-scale
images. Experiments show that our approach can achieve good
color consistency results on various datasets, and outperforms
the existing color correction methods. Although the matching
regions applied in our method can get more color information
than sparse matching points, it still unavoidably ignores some
low-frequency information of image. In the future work, we will
pay attention to the problem of color consistency correction in
weak texture areas.
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