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Cascade Residual Capsule Network for Hyperspectral
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Abstract—The convolution neural network (CNN) has recently
shown the good performance in hyperspectral image (HSI) clas-
sification tasks. Many CNN-based methods crop image patches
from original HSI as inputs. However, the input HSI cubes usually
contain background and many hyperspectral pixels with differ-
ent land-cover labels. Therefore, the spatial context information
on objects of the same category is diverse in HSI cubes, which
will weaken the discrimination of spectral–spatial features. In ad-
dition, CNN-based methods still face challenges in dealing with
the spectral similarity between HSI cubes of spatially adjacent
categories, which will limit the classification accuracy. To address
the aforementioned issues, we propose a cascade residual capsule
network (CRCN) for HSI classification. First, a residual module is
designed to learn high-level spectral features of input HSI cubes
in the spectral dimension. The residual module is employed to
solve the problem of the spectral similarity between HSI cubes of
spatially adjacent categories. And then two 3-D convolution layers
are exploited to extract high-level spatial–spectral features. Finally,
a capsule structure is developed to characterize spatial context
orientation representations of objects, which can effectively deal
with the diverse spatial context information on objects of the same
category in HSI cubes. The capsule module is composed of two 3-D
convolution layers and the capsule structure, which is connected
to the residual module in series to construct the proposed CRCN.
Experimental results on four public HSI datasets demonstrate the
superiority of the proposed CRCN over six state-of-the-art models.

Index Terms—Cascade residual capsule network (CRCN),
convolution neural network (CNN), high-level spatial–spectral
feature extraction, hyperspectral image (HSI) classification, spatial
context orientation representations.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) usually contains hun-
dreds of spectral channels from which rich spectral fea-

tures can be extracted for the subsequent classification tasks.
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However, it is insufficient to obtain an excellent HSI clas-
sification performance solely via spectral signatures [1]–[4].
Subsequently, spatial–spectral methods are proposed to incor-
porate spatial position information into spectral signatures for
HSI classification [5]–[7]. Many spatial–spectral methods take
HSI cubes cropped from original HSI as inputs. HSI cubes are
samples in HSI datasets and each HSI cube is assumed to have the
same land-cover label with its center pixel. But HSI cubes usu-
ally contain interfering hyperspectral pixels whose land-cover
labels are different from that of the center hyperspectral pixel
of HSI cubes. Leading to diverse spatial context information on
objects of the same category in HSI cubes, which will weaken
the discrimination of spatial–spectral features. Besides, the issue
of spectral similarity between HSI cubes of spatially adjacent
categories are remained to be effectively addressed for HSI
classification.

Recently, the deep learning model has shown its powerful ca-
pability to extract discriminative features for HSI classification
[8]–[12]. Stacked autoencoders [13], sparse autoencoders [14],
and deep belief networks [15] were first adopted to characterize
spectral features. And Wu et al. [16] employed a deep convolu-
tion recurrent neural network to learn spectral features. However,
these models did not consider the significant spatial context
information on objects. Therefore, Chen et al. [5] proposed
a three-dimensional (3-D) CNN to incorporate spatial context
information into spectral signatures and extract spatial–spectral
features, making great breakthrough in HSI classification.

In order to improve the performance of HSI classification,
many 3-D CNN-based models have been proposed [17]–[22].
For instance, Li et al. [23] employed a pixel-pair method to
increase the number of training samples. And in [24], a model
was designed to merge spatial and spectral features extracted
by a 3-D CNN and a balanced local discriminant embedding
approach, respectively. In addition, Song et al. [25] proposed a
deep feature fusion network (DFFN) to merge features learned
by different hierarchical layers. And Fang et al. [26] built a
squeeze multibias network (SMBN) to decouple features into
multiple maps. Besides, Zhang et al. [27] exploited a 3-D
CNN-based network to extract hierarchical spectral and spatial
features. Zhong et al. [22] proposed a spatial–spectral residual
network (SSRN) to extract spatial–spectral features from raw
HSI cubes. In [28], a spatial–spectral attention network (SSAN)
was employed to extract spatial–spectral features from attention
areas of HSI cubes. And Zhang et al. [29] developed a 3-D
CNN-based framework to encode semantic context-aware repre-
sentations for obtaining spatial–spectral features. In [30], spatial

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-6784-7922
https://orcid.org/0000-0001-8138-4074
https://orcid.org/0000-0001-6980-5673
https://orcid.org/0000-0003-3238-4187
https://orcid.org/0000-0001-9626-0437
mailto:meizhm@shanghaitech.edu.cn
mailto:jamesrh@126.com
mailto:yinzs@microsate.com
mailto:wangprchina@hotmail.com
mailto:kongxw@mail.ustc.edu.cn


3090 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 1. Two categories “Soybean-notill” and “Grass-pasture” of the Indian
Pines image are used for illustration. The borders of the two categories are
marked by red and green, respectively. As shown in (b) and (c), the spatial
context information on objects of the two categories in four cropped HSI cubes
are slightly different. This will produce diverse spatial context information on
objects of the same category in HSI cubes of the Indian Pines datasets. (a) Part
of ground truth of the Indian Pines image. (b) Land-cover map of four cropped
cubes of the “Grass-pasture” category. (c) Land-cover map of four cropped cubes
of the “Soybean-notill” category. (d) Color information.

Fig. 2. Two classification submaps obtained by 3-D CNN and the CRCN on the
Indian Pines image are selected for illustration. It mainly contains two spatially
adjacent categories “Soybean-notill” and “Grass-pasture,” which are labeled by
blue and yellow, respectively. Spectral signatures of cropped HSI cubes between
the two categories are quite similar. As can be seen in (b), the classification
areas of “Soybean-notill” and “Grass-pasture” categories are greatly affected
by the spectral similarity between them. (a) Part of ground truth of the Indian
Pines image. (b) Classification sub-map of the Indian Pines image obtained by
3-D CNN. (c) Classification submap of the Indian Pines image obtained by the
CRCN.

and spectral features extracted by a 3-D CNN-based network
were enhanced by some multiple scale covariance functions.
And in [31], spatial–spectral features of specific bands were
extracted by a 3-D CNN-based network for HSI classification.

Moreover, many auxiliary methods were incorporated into the
3-D CNN to learn spatial–spectral representations [32]–[34]. In
[35], an end-to-end deconvolution network with skip architec-
ture was proposed to learn spatial–spectral features. And Cao
et al. [36] combined the Markov random fields (MRF) with a
3-D CNN-based network to learn posterior distribution of all
categories. In [37], two CNN-based networks were combined
with a novel feature fusion scheme to learn spatial–spectral
features. In addition, dimension reduction based methods were
proposed to learn the intrinsic discriminative spatial–spectral
representations for HSI classification [38], [39]. However, the di-
verse spatial context information on objects of the same category
in HSI cubes will weaken the discrimination of spectral–spatial
features, which is illustrated in Fig. 1. Besides, the spectral
similarity between HSI cubes of spatially adjacent categories
illustrated in Fig. 2 is still a challenging problem.

In this article, we propose a cascade residual capsule network
(CRCN) to solve the aforementioned two problems. The CRCN
consists of a residual module and a capsule module. The residual

module is composed of four residual units, which is exploited
to learn high-level spectral features in the spectral dimension.
Each residual block contains three convolution layers with short-
cut connection [40], batch normalization (BN), and activation
operation. In addition, the residual module is able to prevent the
degradation of the CRCN due to gradient vanishing. The capsule
module contains two 3-D convolution layers and a capsule struc-
ture. The capsule structure is developed on capsule networks
(CapsNets) [41]–[43], which is employed to characterize spatial
context orientation representations in the spatial dimension.

The contributions of this article are summarized as follows.
1) A residual module is used to learn high-level spectral

features in the spectral dimension, which is exploited to
deal with the spectral similarity between HSI cubes of
spatially adjacent categories.

2) A capsule module is exploited to characterize spatial con-
text orientation representations in the spatial dimension,
which is designed to deal with the diverse spatial context
information.

3) We join the residual module and the capsule module
together into a whole serial network named CRCN with
a new strategy that high-level spectral features are first
extracted in the spectral dimension and then spatial con-
text orientation representations are learned in the spatial
dimension.

The rest of this article is organized as follows. In Section II,
we briefly review the 3-D CNN model and the 3-D CNN-based
method for HSI classification. And then we introduce the CRCN
model in Section III. The experimental results are given in
Section IV. Finally, Section V concludes this article.

II. RELATED WORKS

CNN is an effective model for extracting features of images.
And it has achieved outstanding performance in image classifica-
tion tasks [44]–[47]. A 2-D convolution layer convolves feature
maps in the spatial dimension with 2-D convolution kernels.
While a 3-D convolution layer convolves feature maps in both
the spatial dimension and the spectral dimension with 3-D con-
volution kernels. The difference between the 2-D convolution
and 3-D convolution are shown in Fig. 3.

A. 3-D CNN

The key part of 3-D CNN is the convolution layer, which
exploits convolution kernels to characterize feature maps [48].
In the kth convolution layer, the value at location (x, y, z) in the
lth feature map obtained by convolution kernel K is expressed
as follows:

Uxyz
kl = δ

⎛
⎝ Nf∑

n=0

f(U) +Bkl

⎞
⎠ (1)

f(U) =

WK∑
w=0

HK∑
h=0

C∑
g=0

Kwhg
kl U

(xPw+w)(yPh+h)(zPg+g)

(k−1)n (2)
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Fig. 3. Comparison of (a) 2-D convolution and (b) 3-D convolution.

where Nf is the number of feature maps in the (k − 1)th
convolution layer. WK and HK represent the width and height
of convolution kernel K, respectively. C refers to the number
of channels and Kwhg

kl denotes the value of convolution kernel
K at index (w, h, g). Pw, Ph, and Pg are the sliding intervals of
convolution kernel K in the spatial dimension and the spectral
dimension. And Bkl is the bias parameter of the lth feature map
in the kth layer. Function δ(·) is employed to active the kth
convolution layer. Generally, rectified linear unit (ReLU) [49] is
used as the activation function, which is denoted as

δ(x) = max(x, 0). (3)

In 3-D CNN, the covariance shift of feature maps may lead
to gradient vanishing [50]. BN layer is exploited to reduce the
covariance shift of feature maps, which is usually connected next
to a convolution layer. The function of BN layer is expressed as
follows:

BN(Fm) = γ · Fm − μ√
δ2 + ε

+ β (4)

where Fm is the input feature maps and ε is a constant which
approaches to 0. μ and δ represent the mean and standard
deviation of Fm, respectively. γ and β are weight parameters,
which are learned in the training process.

The 3-D max pooling layer is usually used to reduce feature
map, which is represented as

xwhg = max(S[w : ŵ][h : ĥ][g : ĝ]) (5)

ŵ = Pw × w +Rw, ĥ = Ph × h+Rh, ĝ = Pg × g +Rg

(6)

where S is a feature map, (Rw, Rh, Rg) and (Pw, Ph, Pg) are
the pooling kernel and stride vectors of the 3-D max pooling
layer, respectively. S[w : ŵ][h : ĥ][g : ĝ] denotes all elements
from index (w, h, g) to (ŵ, ĥ, ĝ) in the spatial dimension and
spectral dimension of S.

B. 3-D CNN-Based HSI Classification

The last layer of 3-D CNN is usually activated by the
Softmax(·) function to produce the output vector o, which is
represented as

Softmax(oi) =
eoi∑N−1

i=0 eoi
(7)

where oi is the element of vector o at index i and N is the
number of categories. The cross-entropy loss function is usually
exploited by 3-D CNN for HSI classification, which is defined
as

CE = −
N−1∑
i=0

Ti log(Softmax(oi)) (8)

where Ti = 1 if an input HSI cube is labeled as ith category.
The value of the defined loss function will be decreased by the
stochastic gradient descent (SGD) algorithm until it converges
[51]–[53].

III. CRCN MODEL FOR HSI CLASSIFICATION

An input HSI cube X ∈ RH×W×C consists of H ×W hy-
perspectral pixels. And each hyperspectral pixel xi,j ∈ R1×1×C

contains C spectral channels. To solve the problem of diverse
spatial context information on land-cover areas with the same
label and spectral similarity between HSI cubes of spatially
adjacent categories, we propose a CRCN to learn spectral fea-
tures first in spectral dimension by a residual module and then
characterize spatial context orientation representations in spatial
dimension via a capsule module.

The spectral similarity between HSI cubes of spatially adja-
cent categories is defined as follows:

SS(A,B) =

∑NA

i=1

∑NB

j=1 Num(Xi, Xj)

H ×W ×NA ×NB
(9)

Num(Xi, Xj) =

N∑
n=1

min(Xin, Xjn) (10)

where A and B are any two adjacent categories of all N cate-
gories, NA and NB are the number of HSI cubes of categories
A and B, respectively. Xi is an HSI cube of category A and
Xj is an HSI cube of category B. Xin represents the number of
hyperspectral pixels of the nth category in HSI cube Xi. Xjn

represents the number of hyperspectral pixels of thenth category
in HSI cube Xj . The nth category means each category of all N
categories, and n ranges from [1, N ].

The network structure of the CRCN consists of the residual
module and the capsule module, which is shown in Fig. 4. The
structures and parameters of the residual and capsule module
are different from other residual and CapsNets proposed for HSI
classification. The outputs of the CRCN are the length of activity
vectors and a reconstructed HSI cube. The detailed structure
and specific parameters of the residual module and the capsule
module will be given in experimental settings of Section IV.
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Fig. 4. Network structure of the CRCN model. The Indian Pines image is used as an instance to show the network structure.

A. Residual Module

In the residual module, four residual units are connected in
sequence and each residual unit contains three residual blocks.
Each residual block is composed of three BN, ReLU, and 3-D
convolution layers, which is shown in Fig. 5. The spatial size of
feature maps are invariant while the number of spectral channels
of feature maps are reduced from low-level to high-level residual
blocks.

A residual block is defined as

y = F (x, {Ri}) +Rsx, i = 1, 2, 3 (11)

F (x, {Ri}) = R3σ(R2σ(R1σ(x)

+B1) +B2) +B3 (12)

where x is the input feature map and y is the corresponding
output. Function F (·) is exploited to learn the mapping of the
residual block. And Ri is the weight parameter matrix of the ith
3-D convolution layer. Rs is employed to adjust the dimension
of x for the shortcut connection with y. Bi and σ(·) are bias
and the ReLU activation function, respectively. The identity

Fig. 5. Sketch of one residual block of the residual module.

mapping implemented by shortcut connection is able to prevent
the gradients of parameters from vanishing, which will not add
extra variables or computation complexity.

In the residual module, residual blocks of different levels
stacked in series. Input feature map x is mapped as low-level
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Fig. 6. Spatial–spectral feature map, which contains features of HSI cubes of two categories is used for illustration. Feature regions of HSI cubes of the two
categories are marked as blue and green, respectively. The feature map is converted into spatial–spectral capsules, which contain vectors of recognized feature
regions of HSI cubes. And then vectors of spatial–spectral capsules are linearly transformed by transformation matrix to characterize spatial context orientation
representations. The lengths of the spatial context orientation representations of blue and green feature regions denote the probabilities that land-cover areas of the
two categories exist, respectively.

spectral features in low-level residual blocks and then mapped
as high-level spectral features in high-level residual blocks. The
residual module integrates low, mid, and high-level spectral
features extracted from input HSI cubes. And the levels of
spectral features can be enriched by the number of residual
blocks [40].

B. Capsule Module

As illustrated in Fig. 4, two 3-D convolution layers are first
used to extract high-level spatial–spectral features in the capsule
module. And then spatial–spectral feature maps are converted
into spatial–spectral capsules, which are composed by vectors of
instantiated parameters of recognized fragments of HSI cubes.
Afterwards, vector ui = [ui,1, ui,2, . . ., ui,d] ∈ Rd of spatial–
spectral capsules is linearly transformed by the transformation
matrix Wij to characterize spatial context orientation represen-
tations. The process is illustrated in Fig. 6.

The transformation matrix Wij is able to learn the intrinsic
spatial relationship between the part of objects in HSI cubes
and the whole objects in original HSI. And the transformation
matrix Wij constitutes invariant spatial knowledge, which auto-
matically generalizes to fragments of objects in HSI cubes. The
invariant spatial knowledge unifies the diverse spatial context
information on objects of the same category in HSI cubes.

In fact, the elements ofui represent different properties of spa-
tial context information on objects in HSI cubes. Transformed
vector uij makes predictions for vector ui of spatial–spectral
capsules via transformation matrix. It is obtained by multiplying
the transformation matrix Wij by vector ui of spatial–spectral
capsules, which is expressed as

uij = Wijui. (13)

Vector sj = [sj,1, sj,2, . . ., sj,f ] ∈ Rf is the weighted sum of all
transformed vectors, which is denoted as follows:

sj =
∑
i

cijuij (14)

where cij is the coupling coefficient, which is initialized by
the Softmax(·) function at the beginning of dynamic routing
process. The initial value bij of the coupling coefficient cij
represents the log prior probabilities that the ith spatial–spectral
capsule is coupled to the jth class capsule. The initialization of

Fig. 7. One step of the iterative dynamic routing process. All vectors of spatial–
spectral capsules are transformed by transformation matrices. The transformed
vectors are weighted and summed to obtain vectors of class capsules. Every
vector of class capsule is activated by the squash function. Activity vectors of
class capsules have a big scalar product with the prediction coming from the
vectors of spatial–spectral capsules.

cij is expressed as

cij =
ebij∑
k e

bij
. (15)

To obtain the jth activity vector vj of class capsule, the length
of vector sj is scaled down via a nonlinear squash function,
which is used as activation function. Unlike classical activation
function, such as ReLU, the squash function normalizes vector
sj to unit vector with a squeeze coefficient, which is defined as

vj =
‖sj‖2

1 + ‖sj‖2
sj

‖sj‖ (16)

where ‖sj‖2
1+‖sj‖2 is the squeeze coefficient.

The sketch of the dynamic routing process is shown in Fig. 7.
The elements of the transformation matrix Wij are network
parameters, which are updated in the training process. The
coupling coefficients cij are initialized and determined in the
iterative dynamic routing process. The key point of the dynamic
routing algorithm is the agreement between the current squashed
vector vj of the jth class capsule and the transformed vector uij

of the ith spatial–spectral capsule. The agreement is actually an
iterative and consistent transformation via the coupling coeffi-
cient cij between transformed vectoruij and squashed vector vj .
The initial value bij of coupling coefficient is assigned to 0 in the
beginning of the dynamic routing process. The scalar product
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Algorithm 1: Dynamic Routing.
Require: The activity vector of spatial-spectral capsule
uij , iteration times r, and the initial coupling coefficient
bij between the ith spatial-spectral capsule and the jth
class capsule.

1: bij = 0
2: for p = 0 to r do
3: for all spatial-spectral capsules:ci = softmax(bi)
4: for all class capsules:sj =

∑
i cijuij

5: for all class capsules: vj = squash(sj)
6: for all spatial-spectral capsules and class

capsules:bij = bij + uijvj
7: end for
8: return vj

disparity between activity vectors is expanded by the dynamic
routing process. The detailed procedure of the dynamic routing
is described in Algorithm 1.

The length of activity vector is exploited to predict the cate-
gory of an input HSI cube. Long activity vectors of class capsules
are expected to be more related to spatial context orientation
presentations, which are characterized by transformation matrix.
Therefore, we try to minimize a separate margin loss function
to make the length of activity vectors of class capsule whose
indexes are the same with the label of input HSI cube longer. If
the predicted category corresponds to the index of short vector,
the margin loss will be large. On the contrary, if the predicted
category corresponds to the index of long vector, the margin loss
will be small. The margin loss function is defined as

Lc =
N∑
i=1

(Ti max(0, α+ − ‖vi‖)2

+ λ(1− Ti)max(0, ‖vi‖ − α−)2) (17)

where Ti is the element of land-cover label vector of the input
HSI cube, α+ and α− = 1− α+ are threshold values. And N is
the number of categories. Weight hyperparameter λ can prevent
the length of activity vectors from being shrunk in the initial
stage of training process. The value of Ti obeys the following
distribution:

Ti =

{
1, i = t

0, i �= t
(18)

where t denotes the corresponding land-cover category of an
input HSI cube.

C. HSI Classifier

A convolution decoder is employed to reconstruct the input
HSI cube from the reconstruction target of class capsules, which
is use as a regularization item. The decoder consists of several
3-D deconvolution layers followed with BN layers and ReLU
activation function. The input of the decoder is the reconstruction
target, which is obtained by masking all activity vectors of

class capsules with land-cover label of the input HSI cube. We
exploit the mean squared error between input HSI cubes and
reconstructed outputs as the reconstruction loss function which
is defined as

Lr =
1

m

m∑
i=1

‖D(Xi)−Xi‖22 (19)

wherem is the number of HSI cubes in one batch. FunctionD(·)
represents the convolution decoder. And Xi ∈ RH×W×C is the
ith HSI cube. The loss function of the CRCN is the weighted
sum of the reconstruction and the margin loss functions, which
is denoted as

L = Lr + θLc (20)

where θ is a weight hyperparameter. And the classifier of the
CRCN is defined as

ĵ = arg max
j∈1,...,Kc

‖vj‖ (21)

where Kc is the number of vectors of class capsules and ĵ is the
predicted label of an input HSI cube. All network parameters
of the CRCN are tuned automatically by the backpropagation
and SGD algorithm [54]–[56], which is exploited to optimize
the loss function L.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Sixty-five experiments on each comparison method were con-
ducted to evaluate the classification performance of the CRCN
model on each public HSI dataset.

A. Hyperspectral Image Datasets

The Indian Pines image is captured by the AVIRIS sensor on
the Indian Pines test site in 1992. It contains 220 spectral bands
and 16 land-cover categories. The wavelengths of its spectral
bands range from 0.4 × 10−6 to 2.5 × 10−-6 m. And 20 water
absorption bands are removed in experiments. The spatial size
and resolution of the Indian Pines image are 145 × 145 and
20 m/pixel, respectively. A total of 10% pixels of each land-cover
category are randomly selected for training and the rest of them
are used for testing. The detailed quantities are listed in Table I.
The false-color composite and the corresponding ground truth
are shown in Fig. 8.

The University of Pavia image is collected by the ROSIS
sensor on Northern Italy. It contains 103 spectral bands and
9 land-cover categories. The wavelengths of its spectral bands
range from 0.38 × 10−6 to 0.86 × 10−6 m. The spatial size and
resolution of the University of Pavia image are 610 × 340 and
1.3 m/pixel, respectively. A total of 2% pixels of each land-cover
category are randomly chosen as training samples and the rest
of them are used as testing samples. The detailed quantities are
listed in Table II. The false-color composite of the University of
Pavia image and the corresponding ground truth are shown in
Fig. 9.

The Salinas image is acquired by the AVIRIS sensor on
Salinas Valley. It contains 224 spectral bands and 16 land-cover
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TABLE I
NUMBERS OF TRAINING AND TESTING SAMPLES OF THE INDIAN PINES

DATASET (10%, 90%)

Fig. 8. Indian Pines image. (a) False color composite. (b) Ground truth. (c)
Color code.

categories. The wavelengths of its spectral bands range from
0.4 × 10−6 to 2.5 × 10−6 m. The spatial size and resolution of
the Salinas image are 512 × 217 and 3.7 m/pixel, respectively.
A total of 0.8% pixels of each land-cover category are randomly
picked as training samples and the rest of them are used for test-
ing. The detailed quantities are listed in Table III. The false-color
composite of the Salinas image and the corresponding ground
truth are shown in Fig. 10.

The University of Houston image is gathered by the ITRES-
CASI on the University of Houston campus and the neighboring
urban areas in 2012. It contains 144 spectral bands and 15
land-cover categories. The wavelengths of its spectral bands

TABLE II
NUMBERS OF TRAINING AND TESTING SAMPLES OF THE UNIVERSITY OF PAVIA

DATASET (2%, 98%)

Fig. 9. University of Pavia image. (a) False color composite. (b) Ground truth.
(c) Color code.

TABLE III
NUMBERS OF TRAINING AND TESTING SAMPLES OF THE SALINAS DATASET

(0.8%, 99.2%)
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Fig. 10. Salinas image. (a) False color composite. (b) Ground truth. (c) Color
code.

TABLE IV
NUMBERS OF TRAINING AND TESTING SAMPLES OF THE UNIVERSITY OF

HOUSTON DATASET (5%, 95%)

range from 0.36 × 10−6 to 1.05 × 10−6 m. The spatial size
and resolution of the University of Houston image are 349
× 1905 and 2.5 m/pixel, respectively. A total of 5% pixels
of each land-cover category are randomly selected as training
samples and the rest of them are used for testing. The detailed
quantities are listed in Table IV. The false-color composite of
the University of Houston image and the corresponding ground
truth are shown in Fig. 11.

The percentages of training pixels of the four datasets vary
widely because each HSI have different spatial context and
spectral signatures. Experiment results show that 10%, 2%,
0.8%, and 5% are approaching the lower bounds on the premise
of a good performance on the four datasets, respectively. In
order to mitigate the problem of limited training HSI cubes,
all HSI cubes in datasets are horizontally and vertically flipped
and rotated 90°, 180°, and 270°. Then, the number of HSI cubes
is increased by 400%.

B. Evaluation Measures

We use the overall accuracy (OA), average accuracy (AA),
kappa coefficient (Kappa), and the accuracy of each category
to quantify the classification performance of the CRCN model.
OA is employed to measure the overall classification accuracy,
which is the ratio of the number of correctly classified HSI
cubes to the number of all HSI cubes. AA represents the average
classification accuracy in all categories. And Kappa reflects the
degree of agreement between classification results and ground
truth.

Assuming that M ∈ RN×N denotes the error matrix of clas-
sification results, whereN is the number of categories. AndMij

denotes the value of M in index (i, j). It means that there are
Mij HSI cubes in the ith category, which are classified to the jth
category. Then, the formula of OA, AA, and Kappa is defined
as follows:

OA =

∑N
i=1 Mii∑N

i=1

∑N
j=1 Mij

(22)

AA =
1

N

N∑
i=1

Mii∑N
j=1 Mij

(23)

P =

∑N
k=1

∑N
i=1

∑N
j=1 MikMkj

(
∑N

i=1

∑N
j=1 Mij)2

(24)

Kappa =
OA − P

1− P
. (25)

In the data process stage, we normalized the values of all HSI
cubes to the range from 0 to 1, which is expressed as

X̂(x, y, z) =
X(x, y, z)−min(X)

max(X)−min(X)
(26)

where X is the original HSI cube and X(x, y, z) denotes the
value of X in position (x, y, z). X̂(x, y, z) represents the nor-
malizedX(x, y, z). Themax(X) andmin(X) are the maximum
and minimum of X , respectively.

C. Experimental Settings

The performance of the CRCN is compared with that of
other models, which include 3-D CNN [5], SSRN [22], DFFN
[25], SMBN [26], CapsNets [41], and SSAN [28]. The detailed
parameter information of each layer in the CRCN on the Indian
Pines, University of Pavia, and Salinas datasets are listed in
Table IV. Besides, the residual module and capsule module are
also evaluated on the four datasets. For a fair comparison, all
models in our experiments use the same experimental settings,
including data processing, data augmentation, and parameter
settings. In experiments on the residual module, the capsule
module is replaced with several 3-D convolution layers whose
convolution kernel’s spectral size is set to 1. And the classifier
of the residual module is a fully connected layer activated by
the Softmax(·) function, we denote the residual module and its
classifier as RM+classifier. And in experiments on the capsule
module, shortcut connections in all residual blocks are not
retained and the convolution kernel’s spatial size in all residual
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Fig. 11. University of Houston image. (a) False color composite. (b) Ground truth. (c) Color code.

blocks is set to 1× 1. And the classifier of the capsule module
is the same with the CRCN, we denote the capsule module and
its classifier as CM+classifier.

All models are trained for 300 epochs and the batch size is
set to 18. The spatial size of input HSI cubes is set to 11× 11.
The threshold value α+ is set to 0.9. The iteration times r of
dynamic routing is set to 2. Weight hyperparameters λ and θ are
set to 0.5 and 1, respectively. The initial learning rate and weight
decay of each epoch are both set to 10−4. We optimize all models
via the Adam optimizer with default parameters on TensorFlow.
All experiments are conducted with Intel Core i7-9700K, 32GB
RAM, GeForce GTX Titan X, TensorFlow 1.15.0, cuda 10.0,
cudnn 7.6.0, and python 3.7.9. The detailed network architecture
of the proposed CRCN on the Indian Pines, University of Pavia,
and Salinas images is listed in Table V.

D. Classification Results and Analysis

As can be seen in Table I, the distribution of the number of
training samples for all categories in the Indian Pines image
is quite uneven. In the “Grass-pasture-mowed” and the “Oats”
categories, there are merely 2 pixels for training. In the “Alfalfa”
and the “Stone-Steel-Towers” categories, there are just 4 and
9 training pixels, respectively. The classification results of all
compared models on the Indian Pines dataset are shown in
Table VI. The CRCN achieves an accuracy of 100.00% in the
categories of “Alfalfa,” “Grass-pasture-mowed,” “Oats,” and
“Stone-Steel-Towers.” SSAN obtains an accuracy of 100.00%
in both “Grass-pasture-mowed” and “Oats” categories but only
gets an accuracy of 85.71% in the “Alfalfa” category. 3-D CNN
achieves an accuracy of 96.15% in the “Grass-pasture-mowed”
category and an accuracy of 100.00% in the “Stone-Steel-
Towers” category. But it just gains an accuracy of 90.48% in
the “Alfalfa” category and an accuracy of 88.89% in the “Oats”
category. DFFN obtains the same performance with 3-D CNN in
the “Grass-pasture-mowed,” “Oats,” and “Stone-Steel-Towers”
categories but merely gets an accuracy of 88.10% in the “Alfalfa”
category. The accuracies achieved by SMBN in the “Grass-
pasture-mowed,” “Oats,” and “Stone-Steel-Towers” categories
are 96.15%, 100.00%, and 98.18%, respectively. While it just
gets an accuracy of 88.10% in the “Alfalfa” category. Similarly,
SSRN and CapsNets only obtain the accuracies of 88.10% and
85.71% in the “Alfalfa” category but both achieve an accuracy
of 100.00% in the “Stone-Steel-Towers” category. From the
classification results, we can observe that the CRCN achieves a

superior performance in the “Alfalfa,” “Grass-pasture-mowed,”
“Oats,” and “Stone-Steel-Towers” categories, which all have
limited training samples. The capsule module with its classifier
outperforms other compared methods in OA, AA, and Kappa.
Besides, the CRCN improves the OA, AA, and Kappa of the
capsule module with its classifier by 0.28%, 1.22%, and 0.32%,
respectively, which indicates the effectiveness of the CRCN.

According to Table II, the distribution of the number of
training samples for all categories in the University of Pavia
image is also uneven. In the “Shadows” category, there are only
18 training pixels. In the “Painted-Metal-Sheets” and “Bitumen”
categories, there are just 26 pixels for training. As shown in
Table VII, the CRCN provides competitive results to these com-
pared state-of-the-art methods. The CRCN achieves the maxi-
mum accuracy of 99.92% while 3-D CNN obtains the minimum
accuracy of 90.41% in the “Bitumen” category. The accuracies
obtained by DFFN, SMBN, SSAN, SSRN, and CapsNets in
the “Bitumen” category are 93.79%, 98.85%, 99.54%, 94.94%,
and 96.70%, respectively. SMBN achieves the maximum ac-
curacy of 100.00% while SSAN gets the minimum accuracy
of 95.16% in the “Shadows” category. The CRCN achieves an
accuracy of 99.89% in the “Shadows” category. The accuracies
achieved by 3-D CNN, DFFN, SSRN, and CapsNets in the
“Shadows” category are 99.14%, 99.46%, 99.25%, and 99.78%,
respectively. All models achieve the accuracy of 100.00% in
the “Painted-Metal-Sheets” category. Both the residual module
with its classifier and the capsule module with its classifier
outperform other compared methods in OA, AA, and Kappa,
which illustrates the validity of the two modules. In addition, the
CRCN improves the OA, AA, and Kappa of the capsule module
with its classifier by 0.14%, 0.35%, and 0.23%, respectively,
which indicates the effectiveness of the capsule module and the
residual module.

From Tables III and IV, we can see that the distribution of the
number of training samples for all categories in the Salinas and
University of Houston images is slightly more balanced than
that in the other two images. There are 90 training pixels in the
“Grapes_untrained” category, while in “Lettuce_romaine_6wk”
category, there are merely 7 pixels for training. In the “Let-
tuce_romaine_4wk” and “Lettuce_romaine_7wk” categories,
there are only 8 pixels for training. From the classification results
reported in Table VIII, we can see that both the CRCN and SSAN
obtain an accuracy of 100.00% in the “Lettuce_romaine_6wk”
category. The accuracies obtained by SMBN, SSAN, SSRN
in the “Lettuce_romaine_4wk” category are 99.15%, 98.58%,
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TABLE V
NETWORK ARCHITECTURE OF THE CRCN ON THE INDIAN PINES, UNIVERSITY OF PAVIA, AND SALINAS IMAGES

TABLE VI
CLASSIFICATION ACCURACIES (IN PERCENTAGES) ON THE INDIAN PINES IMAGE OBTAINED BY 3-D CNN [5], DFFN [25], SMBN [26], SSAN [28], SSRN [22],

CAPSNETS [41], RM + CLASSIFIER, CM + CLASSIFIER, AND CRCN WITH 10% TRAINING SAMPLES PER CLASS
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TABLE VII
CLASSIFICATION ACCURACIES (IN PERCENTAGES) ON THE UNIVERSITY OF PAVIA IMAGE OBTAINED BY 3-D CNN [5], DFFN [25], SMBN [26], SSAN [28], SSRN

[22], CAPSNETS [41], RM + CLASSIFIER, CM + CLASSIFIER, AND CRCN WITH 2% TRAINING SAMPLES PER CLASS

TABLE VIII
CLASSIFICATION ACCURACIES (IN PERCENTAGES) ON THE SALINAS IMAGE OBTAINED BY 3-D CNN [5], DFFN [25], SMBN [26], SSAN [28], SSRN [22],

CAPSNETS [41], RM + CLASSIFIER, CM + CLASSIFIER, AND CRCN WITH 0.8% TRAINING SAMPLES PER CLASS

and 97.92%, respectively. And SSAN achieves an accuracy
of 98.87% in the “Lettuce_romaine_7wk” category. Although
the CRCN achieves an accuracy of 98.87% in the “Let-
tuce_romaine_7wk” category, it outperforms SSAN in OA,
AA, and Kappa by 0.14%, 0.34%, and 0.15%, respectively.
In addition, the CRCN improves the OA, AA, and Kappa
of the capsule module with its classifier by 0.40%, 0.05%,
and 0.45%, respectively. From the classification results re-
ported in Table IX, we can see that the CRCN achieves a
better performance than other compared methods in OA, AA
and Kappa. The bold entries in Tables VI–IX are the best clas-
sification accuracies of all compared methods on each category
of the four datasets.

The classification maps of all compared models and the
corresponding ground truths of the Indian Pines, University of
Pavia and Houston, and Salinas images are shown in Figs. 12–

15. As can be observed in Fig. 12, more intact edges of objects
are preserved in the classification map of the CRCN than that
of other compared approaches on the Indian Pines image. And
smaller spatially adjacent land-cover areas are misclassified in
the classification map of the residual module with its classifier
than that of other compared methods on the Indian Pines image,
which illustrates that the residual module with its classifier is
effective to distinguish spectral similarity between HSI cubes
of spatially adjacent categories. In Fig. 13, we can see that
the classification map of all compared models are very nice
on the University of Pavia image. But for several categories
in which objects are scattered, the visual results of the CRCN
are less noisy than that of other compared methods. In addition,
misclassified borders between spatially adjacent categories in
the classification map of the CRCN are less than that of other
compared models in Figs. 14 and 15. In order to reflect the
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TABLE IX
CLASSIFICATION ACCURACIES (IN PERCENTAGES) ON THE UNIVERSITY OF HOUSTON IMAGE OBTAINED BY 3-D CNN [5], DFFN [25], SMBN [26], SSAN [28],

SSRN [22], CAPSNETS [41], RM + CLASSIFIER, CM + CLASSIFIER, AND CRCN WITH 5% TRAINING SAMPLES PER CLASS

Fig. 12. Classification maps on the Indian Pines image obtained by (a) Groundtruth, (b) 3-D CNN, (c) DFFN, (d) SMBN, (e) SSAN, (f) SSRN, (g) CapsNets,
(h) RM + classifier, (i) CM + classifier, and (j) CRCN.

computational efficiency of HSI classification models in our
experiments. In Table X, we record the training and testing time
of the CRCN and compared models.

E. Effect of Depth of Residual Module

The depth of the residual module is a significant factor on the
accuracy of HSI classification. Therefore, we conduct experi-
ments to explore the performances of the CRCN with different
depths of the residual module on the Indian Pines, University
of Pavia and Houston, and Salinas datasets. The training ratios
of each category on the four datasets are set to 10%, 2%, 5%,
and 0.8%, respectively. The spatial size of input HSI cube is

set to 11× 11 and the depth of the residual module is set from
12 to 36. The OAs of the CRCN with different depths of the
residual module on the four datasets are shown in Fig. 16.
Generally, the OA is improved when increasing the depth of
the residual module. But excessive depth also leads to a slight
decline in accuracy because with the increasing of the network
capacity, more training samples are required to achieve a good
performance [57].

F. Effect of Ratio of Training Samples

The ratio of training samples is also an important factor on
the accuracy of HSI classification. In this part, we conduct
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Fig. 13. Classification maps on the University of Pavia image obtained by (a) Groundtruth, (b) 3-D CNN, (c) DFFN, (d) SMBN, (e) SSAN, (f) SSRN,
(g) CapsNets, (h) RM + classifier, (i) CM + classifier, and (j) CRCN.

TABLE X
TRAINING AND TESTING TIME (SECONDS) OF THE CRCN AND COMPARED MODELS ON EACH DATASET

experiments to explore the performances of all compared models
with different ratios of training samples on the Indian Pines,
University of Pavia and Houston, and Salinas datasets. First,
5%, 10%, 15%, and 20% labeled pixels in each category of
Indian Pines image are randomly selected for training. And
for the University of Pavia image, 0.5%, 1%, 1.5%, and 2%
labeled pixels in each category are randomly selected as train-
ing samples. And 5%, 10%, 13%, and 18% labeled pixels in
each category are randomly selected as training samples in the
University of Houston image. At last, 0.8%, 1%, 2%, and 5%
labeled pixels in each category of Salinas image are randomly
selected for training. The performances of all compared models
with different ratios of training samples on the four datasets are
shown in Tables XI – XIV. To achieve an excellent classification

performance, the CRCN requires only 1.5% training samples in
the University of Pavia image but needs about 18%, 5%, and
15% training samples in the University of Houston, Salinas, and
Indian Pines images, respectively.

G. Effect of Spatial Size

The spatial size of input HSI cubes is also an important factor
on the accuracy of HSI classification. In this part, we conduct
experiments to explore the performances of all compared meth-
ods with different spatial sizes of input HSI cubes on the four
datasets. The ratios of training samples of the Indian Pines,
University of Pavia and Houston, and Salinas datasets are set
to 10%, 2%, 5%, and 0.8%, respectively. The spatial sizes of
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Fig. 14. Classification maps on the Salinas image obtained by (a) Groundtruth, (b) 3-D CNN, (c) DFFN, (d) SMBN, (e) SSAN, (f) SSRN, (g) CapsNets,
(h) RM + classifier, (i) CM + classifier, and (j) CRCN.

TABLE XI
OA (IN PERCENTAGES) ON THE INDIAN PINES IMAGE OBTAINED BY 3-D CNN [5], DFFN [25], SMBN [26], SSAN [28], SSRN [22], CAPSNETS [41],

RM + CLASSIFIER, CM + CLASSIFIER, AND CRCN WITH DIFFERENT TRAINING RATIOS

TABLE XII
OA (IN PERCENTAGES) ON THE UNIVERSITY OF PAVIA IMAGE OBTAINED BY 3-D CNN [5], DFFN [25], SMBN [26], SSAN [28], SSRN [22], CAPSNETS [41],

RM + CLASSIFIER, CM + CLASSIFIER, AND CRCN WITH DIFFERENT TRAINING RATIOS
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Fig. 15. Classification maps on the University of Houston image obtained by (a) Groundtruth, (b) 3-D CNN, (c) DFFN, (d) SMBN, (e) SSAN, (f) SSRN,
(g) CapsNets, (h) RM + classifier, (i) CM + classifier, and (j) CRCN.

TABLE XIII
OA (IN PERCENTAGES) ON THE SALINAS IMAGE OBTAINED BY 3-D CNN [5], DFFN [25], SMBN [26], SSAN [28], SSRN [22], CAPSNETS [41], RM +

CLASSIFIER, CM + CLASSIFIER, AND CRCN WITH DIFFERENT TRAINING RATIOS

TABLE XIV
OA (IN PERCENTAGES) ON THE UNIVERSITY OF HOUSTON IMAGE OBTAINED BY 3-D CNN [5], DFFN [25], SMBN [26], SSAN [28], SSRN [22], CAPSNETS [41],

RM + CLASSIFIER, CM + CLASSIFIER, AND CRCN WITH DIFFERENT TRAINING RATIOS

input HSI cubes are set from 3 × 3 to 13 × 13. The OAs
of all compared methods with different spatial sizes of input
HSI cubes on the four datasets are shown in Figs. 17–20. The
OAs on the four datasets gradually increases as the spatial size
increases because large HSI cube contains more spatial context

information. However, when the spatial size is increased to
13 × 13, the OAs of all methods begin to decline since too
large spatial size contains more background and hyperspectral
pixels of other categories and the number of HSI cubes of each
category for training is not increased.
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Fig. 16. Effect of depth on classification accuracy of the CRCN in the Indian
Pines, University of Pavia, Salinas, and University of Houston images.

Fig. 17. Effect of spatial size on classification accuracy of all compared
methods in the Indian Pines image.

Fig. 18. Effect of spatial size on classification accuracy of all compared
methods in the University of Pavia image.

Fig. 19. Effect of spatial size on classification accuracy of all compared
methods in the Salinas image.

Fig. 20. Effect of spatial size on classification accuracy of all compared
methods in the University of Houston image.

TABLE XV
OA (IN PERCENTAGES) ON THE INDIAN PINES (IP), UNIVERSITY OF PAVIA

(UP), SALINAS (SA), AND UNIVERSITY OF HOUSTON (UH) IMAGES OBTAINED

BY CRCN WITH DIFFERENT HYPERPARAMETERS IN LOSS FUNCTION

H. Determining the Values of Hyperparameters in Loss
Function

The hyperparameters α+, λ, and θ in loss function L can
significantly affect the performance of the proposed method. To
determine the value of the three hyperparameters for the better
classification performance, we conduct a set of experiments for
each of them, in which only the value of one hyperparameter is
changed, and the other two hyperparameters remain unchanged.
The final value of each hyperparameter is chosen via the results
of the corresponding set of experiments. Except for the three
hyperparameters, the values of other hyperparameters are the
same as in the experimental settings. The value of α+ is set
from 0.8, 0.9, and 0.95. The value of λ is set from 0.1, 0.5, and
2.5. And the value of θ is set from 0.2, 1, and 5. We provide the
OA of the proposed method with different values of the three hy-
perparameters on the four datasets in Table XV. And we denote
the Indian Pines, University of Pavia, Salinas, and University of
Houston images as IP, UP, SA, and UH, respectively.

V. CONCLUSION

In this article, we propose a new deep learning-based model
for HSI classification. The proposed CRCN is designed to deal
with the spectral similarity between HSI cubes of spatially
adjacent categories and the diverse spatial context information
on objects of the same category. The residual module of the
CRCN is designed to learn high-level spectral features only in the
spectral dimension, which can effectively alleviate the influence
of spectral similarity between HSI cubes of spatially adjacent
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categories. And then the capsule module of the CRCN is de-
signed to learn spatial context orientation representations, which
can effectively deal with the diverse spatial context information
on objects of the same category in HSI cubes. Experimental
results on the Indian Pines, University of Pavia and Houston,
and Salinas datasets demonstrate that the CRCN outperforms
six compared state-of-the-art methods and achieves more robust
HSI classification performance with limited training samples.
Although the CRCN is able to suppress the effects of spectral
similarity between HSI cubes of spatially adjacent categories,
the architecture of the CRCN is rather complicated. In future
works, we will seek simple and effective methods to address
the issue of spectral similarity between HSI cubes of spatially
adjacent categories and diverse spatial context information on
objects of the same category.
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