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DIAL: Deep Interactive and Active Learning for
Semantic Segmentation in Remote Sensing

Gaston Lenczner , Adrien Chan-Hon-Tong, Bertrand Le Saux , Senior Member, IEEE, Nicola Luminari,
and Guy Le Besnerais

Abstract—In this article, we propose to build up a collaboration
between a deep neural network and a human in the loop to swiftly
obtain accurate segmentation maps of remote sensing images. In a
nutshell, the agent iteratively interacts with the network to correct
its initially flawed predictions. Concretely, these interactions are
annotations representing the semantic labels. Our methodological
contribution is twofold. First, we propose two interactive learning
schemes to integrate user inputs into deep neural networks. The
first one concatenates the annotations with the other network’s
inputs. The second one uses the annotations as a sparse ground
truth to retrain the network. Second, we propose an active learning
(AL) strategy to guide the user toward the most relevant areas to
annotate. To this purpose, we compare different state-of-the-art
acquisition functions to evaluate the neural network uncertainty
such as ConfidNet, entropy, or ODIN. Through experiments on
three remote sensing datasets, we show the effectiveness of the
proposed methods. Notably, we show that AL based on uncertainty
estimation enables to quickly lead the user toward mistakes and
that it is thus relevant to guide the user interventions. Code will be
open-source and released in this repository.1

Index Terms—Active learning (AL), deep learning, earth
observation, interactive segmentation, semantic segmentation.

I. INTRODUCTION

A. Context

S EMANTIC segmentation, the task of classifying an image
at the pixel level, is extremely important in remote sensing

and is addressed with deep neural networks for a variety of ap-
plications such as land-cover mapping [1], change detection [2],
or farmland monitoring [3]. This task is intrinsically complex,
and while deep neural networks can be very effective, they are
still prone to failure. Indeed, even on academic benchmarks [4],
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[5], current state-of-the-art methods often require specific ar-
chitectures and fine tuning to obtain high performances but still
imperfect results. Moreover, it often gets even more tedious
on “real-life” datasets due to different factors such as domain
adaptation between train and test data inherent to remote sensing
data (different weather, geographical areas, types of sensors,
cloud shadows, etc.) or the difficulty to have access to large
training annotated datasets for every specific business applica-
tion, even though lots of efforts are made by the community in
this direction [6], [7]. Hence, the uncertainty about the quality
of the results of neural networks often makes their deployment
complicated. Human intervention may then be necessary. Pre-
cisely, we are thinking of two scenarios representative of real
situations. First, the Refinement use case, when the user aims
to fix errors within a single dataset, and thus, to improve the
performances of the model on the test data. Second, the domain
adaptation use case, when the user wants to fix on a new dataset,
the errors of a model pre-trained on a previous dataset.

A possible way to address these problems comes with inter-
active learning (IL) [8], [9]. This consists in adding a human in
the loop to work in synergy with a learning algorithm to train
it, fine tune it, or adapt it to user inputs. Compared to classi-
cally supervised algorithms, IL algorithms must also interface
smoothly with the human user. This constraint is particularly
challenging with deep neural networks due to their typical high
number of parameters and long training time. One step further
than IL, active learning [10] (AL) searches in pools of unlabeled
data, for examples, which are the more able to lead the model to a
better classification. These examples, defined as queries, are then
labeled by the user and incorporated in the training. This thus
aims to find the optimal training dataset for the algorithm. To this
purpose, AL methods define acquisition functions to estimate
either the model uncertainty associated to the samples [11] or
their representativeness of the dataset [12].

In this article, we explore IL and AL for semantic segmenta-
tion. Indeed, as presented in Fig. 1, we propose the deep interac-
tive and active learning (DIAL) framework to interactively refine
semantic segmentation maps initially output by a pretrained
neural network. First, it relies on two complementary IL schemes
to integrate information provided by a user in deep learning
algorithms for semantic segmentation. In a nutshell, the first
module uses these annotations to modify at test time the inputs
of the network pretrained to process them, while the second one
uses them for retraining to modify the weights of the network.
Second, we integrate AL within our framework and propose to
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Fig. 1. Visual representation of DIAL encompassing AC, DISCA, and AL. Given a neural network trained to both produce segmentation maps and to use
annotations as channels, the framework starts with an initial prediction using the input image without annotations that the annotator can annotate with new points
(e.g. to fix errors). Three algorithmic mechanisms cooperate to improve the segmentation map: AC processes jointly image and annotations with the same model
without retraining, DISCA additionally retrains the model for better adaptation using the initial prediction as regularization to avoid overfitting on the annotations,
and DIAL also proposes most informative patches to speed up the interactions. Best viewed in color. For more details, AC and DISCA are described in Section II-A
and the uncertainty-based component in Section II-B.

guide the user interventions toward relevant areas to annotate.
This additional guidance relies on different uncertainty measures
that we compare with respect to our framework. These measures
can be simple-yet-effective such as entropy [13] or come from
the current state-of-the-art literature such as ODIN [14] or
ConfidNet [15]. We extensively evaluate our framework both
in the refinement and in the domain adaptation use cases to
well apprehend its potential. We notably show that the first IL
module is more suited to correct spatially small mistakes, while
the second one is more suited for larger ones and that the active
process improves the performance compared to the unguided
one.

In summary, the major contributions of this article are as
follows:

1) We propose a general framework for interactive multiclass
semantic segmentation in remote sensing.

2) We show that AL for area selection allows to speed-up the
improvement of the segmentation and reduces the number
of required interactions for a given quality.

3) We compare different state-of-the-art methods to estimate
the algorithm uncertainty within the DIAL framework
sketched in Fig. 1, and show that the model confidence
evaluated by ConfidNet and surprisingly the entropy are
the most effective, the latter being also the faster one.

4) We show these techniques consistently improve the quality
of a segmentation map, with the greater gain for the
domain adaption use case where it allows to compensate
for the lack of training data in the target domain.

This article extends previous work presented in an inter-
national conference [16]. It deepens the IL experiments and

combines the interactive and active modules within a single
framework.

B. Scenario

We assume the following context for the rest of this article. A
user needs to quickly and accurately semantically segment Earth
observation images for one of the two aforementioned use cases:
the refinement one and the domain adaptation one. This user has
also access to another annotated database, which depending on
the use case, may or may not belong to the same domain as the
targeted images. For the sake of simplicity, the annotated label
space must be the same as the targeted one.

We propose to first train a neural network on the annotated
database. Then, the user can use this neural network to make
predictions on the target images. If the segmentation result is not
accurate enough for the user’s requirements, they can interact
with the network to refine its predictions. These user interactions
come in the form of clicked points on the mislabeled areas
and represent their corresponding labels, as chosen by the user.
Finally, we propose to also guide the user to the most relevant
areas of the images using uncertainty estimations relying on
different statistical measures.

We have developed a QGIS2 plugin available with the code
to allow potential users to experience the proposed framework.
However, to conduct a large-scale evaluation, we have also sim-
ulated the user behavior to automatically generate interactions.
Hence, in the rest of this article, we refer both to the synthetic
operator and to the potential human user as the agent.

2[Online]. Available: http://qgis.osgeo.org
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When the agent is simulated to automatically generate the
annotations, it samples them in the mistake areas using a com-
parison between the ground-truth map and the prediction map.
It thus necessarily requires a partial access to the ground-truth
maps.

To summarize, our framework combines the following three
criteria:

1) Semantic segmentation: The neural network is able to
provide accurate semantic segmentation maps using only
the input image without user annotations.

2) Interactive learning (IL): The neural network can also
refine these segmentation maps using the annotations to
efficiently fix its mistakes.

3) Active learning (AL): It estimates the neural network
uncertainty to guide the user toward queries.

C. Related Work

1) Interactivity in Remote Sensing: Interactive interpretation
of remote sensing data has a long history, partially due to the
lack of reference data for training in that field. Interactivity has
been processed by various techniques to enhance data mining
tools with relevance feedback capability : Bayesian modeling
of sample distributions was at the core of VisiMine [17], and
support vector machines were used in [18]. More recently,
boosting and random forests [19] have been the method of
choice due to the possibility to train quickly in an incremental
manner [9], [20], [21]. Precisely, ALCD [21] trains a random
forest on user annotations. With respect to these works, our
approach applies deep learning for interactive remote sensing,
which is challenging due to the long training time inherent to
deep neural networks. Finally, AL has recently been applied
to deep learning in remote sensing [22], [23] to interactively
update the models. Kellenberger et al. [23] address detection of
extremely rare objects (e.g., animal detection in aerial images),
while Ružička et al. [22] deal with rare and varied change
detection. On our side, we apply AL to deep learning in the
context of segmentation maps refinement.

2) Interactive Segmentation: Interactive segmentation in-
tends to interactively segment an image into foreground and
background pixels with user annotations. It was initially ad-
dressed using graph-cut-based methods [24] and now mostly by
deep neural networks, which take as inputs a concatenation of
the RGB image and user annotations [25]. In [26], the authors
use the annotations as sparse ground-truth maps to interactively
adapt the neural network to a specific object. Multiclass interac-
tive segmentation broadens interactive segmentation to correct
multiclass segmentation maps. Agustsson et al. [27] proposed a
neural network that takes as input a concatenation of the image
and the extreme points of each instance in the scene, and then,
lets a user correct the proposed multiclass segmentation using
scribbles. We do not assume such extreme point map availability
as it is extremely costly to acquire in a remote sensing image
with potentially many objects.

3) Weakly Supervised Segmentation: When labels are scarce,
training usually boils down to learning the most out of the
available labels while leveraging unlabeled data to learn a better

inner representation as support. To address weakly supervised
semantic segmentation in remote sensing, Li et al. [28] use
image-level labels, while Wang et al. [29] focus on domain adap-
tation using bounding boxes in the target space. Close to seman-
tic segmentation, Daudt et al. [30] address change detection in
a weakly supervised setting. Semantic segmentation with point
supervision was first proposed by What’s the Point (WTP) [31],
which trains a model from scratch using cross entropy loss
on the point labels. Recently and closely related to our work,
Hua et al. [32] proposed FESTA for weak semantic segmentation
in remote sensing. It mainly consists in a regularization to train
a neural network from scratch using notably point labels. In
this article, we start from a neural network pretrained with full
supervision instead of starting from scratch. In our retraining
component, we also design a regularization suited to our use
cases.

4) Active Learning (AL): AL aims at optimizing the training
process of a learning algorithm through an iterative collaboration
with a human oracle [10]. It makes the algorithm choose from a
pool of unlabeled data, which ones would be the most relevant
to improve itself. Then, the oracle provides the asked labels and
the algorithm can learn from it. As it defines how to select the
data samples to annotate, the acquisition function is the key
differentiating component of these methods. These acquisition
functions usually rely on an uncertainty, a representativeness or
a diversity score computed directly with the model to select the
most relevant samples. Uncertainty methods can rely on simple
criteria like entropy [13] or disagreement between ensemble
models [33] to estimate the model’s prediction confidence. As
uncertainty-based methods do not aim to be representative of
the dataset, they can select very similar examples. To address
this issue, representativeness-based methods aim to select the
samples in order to form a subset as representative as possible of
the entire dataset. Addressing this as a core-set approach, Sener
and Savarese [12] solves it like the K-center problem using the
L2 distance between the activations of the final fully connected
layer of the CNN. Finally, often relying on clustering [34], [35],
diversity-based AL aims to select samples that are as diverse (i.e.,
different) as possible to reduce the redundancy among the se-
lected samples. In the past decade, AL has been deeply explored
in remote sensing to train algorithms for animal detection [23],
[36], image classification [37], [38], image segmentation [39],
and recently for change detection [22]. We borrow from AL
techniques to smoothly help the agent to guide our interactive
neural network. We focus on uncertainty measures which fit our
use case better than representativeness ones since we aim to
easily spot wrong predictions and not to increase our training
set.

5) Uncertainty in Deep Neural Networks: Uncertainty quan-
tification, or confidence estimation, is a long-standing problem
in machine learning and has many applications such as out-
of-distribution (OoD) samples detection [14], the decision to
trust the model or to defer to a human expertise in fields like
healthcare or the detection of new classes in class-incremental
learning [40]. Notably, it can also be used in AL to determine
which samples should be sent to the oracle for annotation. Many
methods to estimate the uncertainty in deep neural networks have
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been recently proposed, and they often fall into one of these four
categories.

a) Softmax probabilities: The first category of methods
uses the probabilities from the softmax output space of the
neural networks. Indeed, Hendrycks and Gimpel [41] propose a
simple yet strong baseline using the maximum class probability
as an uncertainty estimation and apply to outliers detection.
However, it is now well-established that softmax probabilities
are prone to different issues such as poor calibration [42] and
not fit to differentiate in- from out-of-distribution samples [41].
To overcome these issues, Liang et al. [14] propose ODIN to
detect outliers with a tempered softmax and with adversar-
ial inputs to better distinguish inliers from outliers. Similarly,
Lee et al. [43] perturb their inputs but instead uses the repre-
sentation space before the softmax layer and the Mahanabolis
distance to do the split.

b) Model ensembling: Due to its intuitive concept and
ease of implementation, another popular class of methods es-
timate the confidence associated to a sample by measuring
the disagreement of different models. This model ensembling
can either be explicit and use different models [44] or implicit
to be less computationally greedy with one stochastic model
using dropout [45] (MC Dropout) or batch normalization [22].
However, all these methods inherently require several forward
propagation and are thus relatively slow, making them not en-
gaging for interactive interpretation.

c) Auxiliary models: Other recent approaches design an
auxiliary model to learn the uncertainty of the downstream
model. While [46] mostly focuses on OoD detection, [15]
addresses failure prediction and proposes ConfidNet, a neu-
ral network to predict if the prediction from the downstream
network is accurate or not. These methods do not require
to retrain the downstream network and can thus be easily
plugged into any prerained architecture. However, they are
computationally heavy and require a new training phase for
each new task and model. In remote sensing,Rodríguez [47]
successfully apply the ConfidNet method for land cover
segmentation.

d) Customized loss: Finally, some works design a specific
loss to learn the uncertainty directly during training. For in-
stance, Yoo and Kweon [48] train a model to predict the loss
associated to a prediction and Moon et al. [49] propose a loss that
regularizes the class probabilities to better estimate uncertainty.
These methods are computationally efficient and model agnostic
but require a full training from scratch and cannot be plugged in
a pretrained model.

We compare different methods from these categories in this
article to optimally guide the agent toward relevant areas to
annotate. We focus on the three first categories since an adapted
loss is less tailored for our use case as it would require training
new models from scratch.

II. DIAL: DEEP INTERACTIVE AND ACTIVE LEARNING

DIAL encompasses different IL modules and an AL module to
interactively guide deep neural networks to refine segmentation

Fig. 2. Annotations encoding using distance transform. Best viewed in color.
(a) Car (red) and building (yellow) annotations. (b) Distance-transform encod-
ing.

maps and we now delve in the details of these components, which
are also illustrated in Fig. 1.

A. IL Components

The three following IL mechanisms form the deep image
segmentation with continual adaptation (DISCA) module:

1) Annotations as Channels (AC): The neural network takes
as input a concatenation of the RGB image and agent annota-
tions, extending ideas of DIOS [25] to multiclass segmentation.
As represented on Fig. 2, the annotations are encoded using
distance transform [50] in the annotation channels to better
propagate information than with binary clicks. We extensively
study different encoding functions in Appendix A. At test time,
these annotations are initially provided by the agent in the form
of clicked points, then encoded using distance transforms into
an N -dimensional tensor, where N is the cardinal of the label
space. During the initial supervised training phase, since the
neural network needs to learn how to use clicked points as
guidance to enhance its initial predictions, we simply provide
points randomly sampled from the ground truth to the network.
Image-only inputs are also sampled to train segmentation in a
standard way and ensure that the network proposes accurate
initial segmentation maps. Since the annotations are randomly
sampled during training and not specifically in the center of
mistake areas, the learned models are able to benefit from clicks
independently from their locations. However, from a perfor-
mance evaluation point of view, placing annotations in large
error areas will logically lead to larger metric gains.

2) Retraining on Annotations: Since AC only modifies the
network’s inputs and not its parameters, the information pro-
vided by the annotations does not improve the predictions
globally in the image. Inspired by WTP [31], we propose to
bypass this locality constraint by retraining the network with a
few back-propagation cycles per annotation. Hence, we use the
annotations as a sparse ground truth to interactively retrain the
network using a cross entropy loss on these annotated pixels.
We note f to represent the neural network parameterized by θ
and x its inputs.

3) Regularization: As only a few pixels are annotated among
the millions that usually compose a remote sensing image, the
ground-truth maps resulting from the interactions are extremely
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sparse. In order to deal with this problem and avoid overfitting,
we follow ideas from [26] and [30] by using the initial prediction
p0 = f(x, θ0) for regularization. Precisely we add a L1-loss
term using the original prediction as reference in order to prevent
the model from making a prediction too different from the initial
one. Therefore, our loss during the IL process is defined as
follows:

L(x, c,p0; θ) =
1[c�=−1]

‖1[c�=−1]‖1

{
−

N∑
i=1

ci log (fi(x; θ))

}

+ λ‖f(x; θ)− p0‖1 (1)

where 1 represents the indicator function and c the sparse
annotated pixels. In details, c takes its values in {−1, 0, 1}.
For the pixels annotated as belonging to class i, ci = 1, and
cj = 0 for all j �= i. For the unannotated pixels, ci = −1 for
all i in {1, . . . , N}. ‖1[c�=−1]‖1 weights the loss with respect to
the number of annotated pixels. Finally, the positive parameter
λ balances the influence of user annotations with respect to the
recall toward the initial prediction. Its tuning will be considered
in Section III-C.

The two last mechanisms enable the continual learning po-
tential of DISCA and avoid catastrophic forgetting. During
the interactive training phase, the AC mechanism is randomly
disabled: the annotations are then removed from the inputs. This
avoids overfitting on the annotation channels.

Even though AC is part of DISCA, DISCA is deeply different
from AC-only due to its retraining component. The corrections
are then less localized around the annotations but take more
time and this results in quite different outputs. Hence, we see
AC-only and DISCA as two distinct interactive schemes that can
be easily interchanged and we analyze their respective behaviors
throughout Section III.

B. AL Component

Since remote sensing images can be extremely large, DIAL
also incorporates an AL strategy to swiftly guide the agent
toward queries representing the most meaningful areas of the
image to annotate. It is especially adapted to situations where it is
difficult to put an a priori on the errors of the neural network (i.e.,
the annotator does not know where to look for errors). With this
aim, we compare different state-of-the-art acquisition functions,
which estimate the algorithm uncertainty to find the most suited
to our usage scenario and interaction setups described as follows:

1) Formalization: To formalize the problem, we note f to
represent the neural network parameterized by θ, x an input
image, y its associated label map, a the user annotations, and g
the annotation encoding function. Our goal is then to find the
optimal annotations a� minimizing the following problem:

a� = argmina
∑
j∈I

(
1− δu

j

yj

)

with uj = argmaxc∈[[0,N ]]f
j
θ,c (x⊕ g(a,x, fθ)) (2)

where ⊕ represents the concatenation operation, δ the Kro-
necker operator, N the cardinal of the label space, and I the

pixels set. The problem values range from 0 when all pixels are
well classified to card(I) when all pixels are misclassified.

2) Methodology: We propose the following query strategy to
benefit from DIAL on a given image. The image is divided into
a grid of N patches. The patches are annotated consecutively but
the order in which they are annotated depends on the uncertainty
measure. We have also studied a pixel-based query strategy in
Appendix B.

3) Acquisition Functions: We now present the different ac-
quisition functions that we compare to guide the agent.

a) Entropy: We compute the entropy per pixel at the soft-
max output: U = −∑

c yc × log(fc(x; θ)). As showed by [41],
even though the softmax probabilities of a neural network are
poorly calibrated, they can still provide a strong baseline to guide
the user.

b) MC Dropout: MC Dropout [45] introduces stochas-
ticity in the prediction by enabling dropout regularization at
inference time. This allows to obtain an implicit model ensem-
bling. In practice, we add dropout layers in the neural network
architecture, and then, make multiple forward passes through the
network to create as many softmax vectors. We then compute
the variance of these predictions to measure their disagreement
and use it as the uncertainty measure.

c) ConfidNet: As proposed by [15], we train a small aux-
iliary network to learn to estimate the confidence value of
the downstream network using its last layers as inputs. It is
constituted of one transposed convolutional layer and four 3× 3
convolutional layers of, respectively, 32, 120, 64, 32, and 1
output layers. A final sigmoid layer provides the confidence
score.

d) ODIN: Following [14] that primarily developed this
method for outlier detection, we slightly disturb the image input
with an adversarial-like attack aiming to enforce the predicted
probabilities of the softmax output toward the predicted classes
and add a temperature term in the softmax layer. Then, the
adversarial examples are feed forwarded into the network and
we use the softmax output maximum class probability as a confi-
dence measure. Formally, we disturb the input with the following
perturbation x = x+ εΔxL(fθ(x), ŷ) where L represents the
cross-entropy loss, fθ(x) the predicted probabilities from the
softmax output, and ŷ the predicted class.

4) Computational Cost: Therefore, these approaches have
different inference costs inherent to their underlying structure.
Indeed, entropy is virtually cost-free since it computes a simple
operation directly on the neural network output. On the con-
trary, MC Dropout is particularly expensive since it requires
computing multiple predictions. Despite the extra prediction,
ConfidNet is only slightly more expensive than entropy thanks
to the small size of the auxiliary network. Finally, ODIN falls
between ConfidNet and MC Dropout due to the creation and
inference of the adversarial sample.

III. EXPERIMENTS

A. Experimental Setup

1) Datasets: We experiment on three semantic segmentation
remote sensing datasets: the INRIA Aerial Image Labelling
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dataset [4] composed of two classes (buildings and not build-
ings) and covering more than 800 km2 in different cities at a
30-cm resolution, the Aerial Imagery for Roof Segmentation
(AIRS) dataset [51] composed of the same two classes and
covering 457 km2 in New Zealand at a 7.5-cm resolution and
the ISPRS Potsdam dataset [52] composed of six classes (imper-
vious surface, buildings, low vegetation, tree, car, and clutter)
covering 3 km2 on Potsdam at a 5-cm resolution. The datasets
are divided into a training set and a validation set with a ratio
80%–20%. This allows to synthesize the annotations required
to automatically evaluate the framework. During training, the
neural network sees 10 000 image slices of size 512 × 512
randomly sampled from the training set at each epoch for 50
epochs. For evaluation, the images are tiled into patches of size
512 × 512 with an overlap of size 128 to be processed.

2) Hyperparameters: We use a neural network based on the
LinkNet [53] architecture but our approach is agnostic from the
neural network backbone.

Except in the annotation encoding study, the annotations are
encoded into the neural network channels inputs using distance
transform.

For DISCA, during the IL phase, we optimize the weights
using ten stochastic gradient descent passes with a learning
rate of 2e−6 and minimize the loss defined in (1) with the
regularization parameter λ set to 1.

3) Active Learning (AL) Setup: For ODIN, we set the pertur-
bation parameter ε to 1/255 and the temperature term to 100.

For MC Dropout, we add a dropout layer between each en-
coder and decoder block of our architecture, set the dropout rate
to 0.1 and compute the variance over five different inferences.

The ConfidNet auxiliary network is trained for ten epochs per
dataset with Adam optimizer.

To automatically evaluate the active learning component,
we split the test images into 512 × 512 patches, sample one
annotation per patch, and then, make a new prediction on this
patch using AC-only and DISCA. With DISCA, we retrain the
network sequentially with each patch. We study whether the an-
notation order can be optimized. The annotations are generated
inside the spatially largest mistakes of the patches. We compute
the uncertainty globally in the images, and then, compute an
uncertainty score per patch by averaging the uncertainty across
all the pixels of the patch. We compare the uncertainty-ordered
sequences to a randomly drawn one that constitutes the baseline.

B. Performances and Understanding of DIAL Mechanisms

As we can observe on Fig. 3 and on Table I where a 50 clicks
budget has been set, both AC and DISCA successfully enhance
the outputs initially proposed by the neural network. DISCA
reaches better improvement than AC-only on AIRS and ISPRS:
in Table I, AC’s mean gain with AL is of 2.2%, while DISCA’s
one is of 2.5%. Visually, this translates into correction of areas as
a whole in a single click, like the buildings or the wide plaza of
Fig. 3. The slight superiority of not retraining the network with
DISCA on INRIA is probably due to a better noise robustness.
Indeed, INRIA labeling is based on land register and is thus not
as signal compliant as AIRS or ISPRS. The overall superiority

TABLE I
MEAN IOU AFTER 50 ANNOTATED PATCHES WITH RANDOM AND AL

(ENTROPY) ORDERS

For 50 patches on Figs. 4 and 5, one recovers results from this Table.

TABLE II
MEAN INFERENCE TIME ON A 512 × 512 PATCH

TABLE III
MEAN TIME FOR PREDICTION WITH UNCERTAINTY COMPUTATION ON

6000 × 6000 IMAGES

of DISCA has to be also moderated by the inference time of the
two algorithms. Indeed, as shown in Table II, DISCA is more
than 10× slower than AC-only due to its retraining component.

1) AL With AC: As we can see in Fig. 4, the random or-
der leads to an improvement linear w.r.t. number of processed
patches. All AL schemes speed up the gain in performances by
targeting the more uncertain areas. This is particularly noticeable
on the AIRS dataset where 50 annotations are enough to reach
75% of the final improvement. This behavior is probably due to
the dataset itself. Indeed, since it covers a lot of rural areas, many
images only contain few buildings and the uncertainty measures
then allow to quickly show the areas of interest to the user.

Regarding the different uncertainty measures, ODIN is con-
sistently the worst one. Indeed, it is only slightly better than the
random order, and contrary to the other methods, its performance
is almost linear on the AIRS dataset. This behavior might be
explained by the method original purpose. Indeed, while the
other methods aim to estimate the model uncertainty, ODIN aims
to detect outliers. Though these tasks are related, it appears here
that model errors are not due to this type of issue in the image
area. Moreover, Table III shows that ODIN and MCDropout
considerably slow the prediction process (resp., by factors 1.5
and 2) compared to entropy (factor 1) and ConfidNet (factor
1.2).

ConfidNet and entropy consistently obtain the best perfor-
mances, with a slight advantage for the former on AIRS and the
domain adaptation use case. However, ConfidNet is also a bit
slower and less flexible since it requires to train an additional
network for each dataset. Eventually, entropy offers an excellent
tradeoff between high accuracy performances and fast compu-
tation, as it is only slightly slower than a random pick.

2) AL With DISCA: Since DISCA slightly modifies the neu-
ral network parameters, we recompute the entire prediction and
uncertainty after each processed patch. Since MC Dropout and
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Fig. 3. Visual comparison of the two approaches on examples from AIRS (rows 1, 3, and 4) and ISPRS (row 2). Row 4 is a zoomed version of row 3. In rows 1,
3, and 4, building labels and predictions are in cyan. In row 2, impervious surface labels are transparent and the associated annotations are in white, buildings are
in cyan, low vegetation in green, high vegetation in magenta, cars in gold, and clutter in red. In row 2, a wide plaza is initially predicted as “building” and is then
corrected as “impervious surface” with also an added “tree” on the right. Best seen in color.

ODIN proved to be relatively slow and less performing with AC,
we only compare entropy and ConfidNet in this setup. As we
can observe on Fig. 5, results are more complex to interpret than
with AC.

On ISPRS, the different methods are all a bit unstable, which
is probably explained by the different improvements for the mul-
tiple classes of this dataset. However, both uncertainty methods
still perform better than the random strategy and the strategy
relying on ConfidNet enables a gain up to 5% compared to
4% for the random one. On INRIA, both uncertainty strategies
outperform the random one for the first 60 patches but end
up being caught up, probably stuck in a local minimum. It is
noteworthy that ConfidNet ends up outperforming entropy on
these two datasets by a larger margin than with AC. On AIRS and
in the domain adaptation situation, the behaviors are similar to
the ones obtained with AC, with noticeably higher performances.
Indeed, the gain are around 20% and 5% with DISCA, while they

were around 10% and 4% with AC, respectively, on the domain
adaptation situation and the AIRS dataset.

Hence, these results confirm the benefits of a guidance toward
relevant patches relying on uncertainty measures. ConfidNet is
on average the best method to this aim. However, the faster,
simpler, and only slightly underperforming entropy is a very
good alternative for successfully recognizing the most relevant
areas to annotate.

C. Ablation Study and Comparison With State-of-the-Art

1) Active Learning (AL): As shown in the previous section,
an AL patch order leads to better agent annotations than a
random patch order with both AC and DISCA. To this purpose,
we compared different state-of-the-art uncertainty-based acqui-
sition functions. We compare it here to a theoretical upper bound
of AC and DISCA: the agent generates each click at the center
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TABLE IV
PERFORMANCES IN TERMS OF MEAN IOU BEFORE AND AFTER THE INTERACTIVE PROCESSES WITH ONLY TEN ANNOTATIONS PER IMAGE, W.R.T.

CORRESPONDING COMPLEXITY

Fig. 4. IoU evolution with respect to the number of annotated patches with
AC (one annot. per patch). This compares the different uncertainty measures
to select the patch-to-annotate. (a) ISPRS. (b) INRIA. (c) AIRS. (d) AIRS →
ISPRS.

Fig. 5. IoU evolution with respect to the number of annotated patches with
DISCA (one annot. per patch). This compares the different uncertainty measures
to select the patch-to-annotate. (a) ISPRS. (b) INRIA. (c) AIRS. (d) AIRS →
ISPRS.

of the largest spatial error on the whole image, which would be
optimal in terms of potential improvement but at the cost of a
whole image search. As we can observe in Table IV, this leads,

Fig. 6. Ablation study and comparison with the state-of-the-art on ISPRS
dataset.

Fig. 7. Mean IoU of AC and DISCA for domain adaptation (AIRS → ISPRS).
The fully supervised model (ISPRS → ISPRS) is outperformed in (a) by DISCA
after 130 annotations. (a) Mean IoU w.r.t the number of annotations. (b) IoU
after 20 annotations.

with ten annotations with AC/DISCA, to an average 1.3/1.7%
improvement over the three datasets against a 1.1/1.5% improve-
ment with the AL strategy. However, this slight superiority is
mitigated by the complexity to find the annotations. Indeed, in
the whole image case, the agent has to browse through 3.6 × 107

pixels for each click in a 6000 × 6000 image (complexity:
O(nannots ∗ d2image)), while, in the patch case, it has to browse
through 2.6 × 105 pixels in a 512 × 512 patch (complexity:
O(nannots ∗ d2

patch)). Hence, it is 100 times more costly to find
the annotation in an entire remote sensing image than in a patch.

2) AC and DISCA: To understand the influence of the aspects
of the DISCA algorithm, we analyze separately its different
components, all of them coming from state of the art works.
AC (ours) adds input layers for annotations [25], randomly
pretrained on the ground truth. WTP [31] retrains the model
based on a few annotations. DISCA (ours) sums up AC and
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Fig. 8. Domain adaptation (AIRS → ISPRS) visual examples

WTP with regularization with respect to the initial prediction.
We also test AC combined with WTP, and WTP combined with
regularization. To study the importance of the regularization
parameter λ, we test various values DISCAλ=1 and DISCAλ=10.
Finally, we also compare our models to FESTA [32], which trains
a neural network on point annotations (as WTP) with a different
regularization.

As shown on Fig. 6, AC and WTP+reg obtain IoU gains
around 1% for ten clicks and are beaten by the various flavors
of DISCA, which almost doubles the gain. This means that the
interactive retraining process could be effectively applied to any
classically trained neural network but needs to be combined with
the AC process to fully exploit the annotations. Moreover, we

observe that the regularization is extremely important in DISCA
as its absence leads to worse results (AC+WTP curve) than
the initial ones (LinkNet curve). A too high λ also decreases
the benefits brought by DISCA because it then prevents the
algorithm to optimally exploit the annotations. Finally, in this
framework of incremental learning, WTP [31] and FESTA [32]
also lead to worse results than the initial ones, as emphasized
in Table V. These methods were originally designed to train the
neural networks from scratch on point annotations. Hence, it
explains why they are not optimal in a refinement scenario since
they take into account different constraints.

We also compare our approaches with the recent ALCD
method [21] also deployed in the field of remote sensing for
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TABLE V
COMPARISON ON ISPRS DATASET AFTER TEN ANNOTATIONS

cloud segmentation in low resolution (60 m/pixel) images. To
adapt it to our use case, we run ALCD in a fine-tuning setting
on the ISPRS dataset. In practice, we initially pretrain the
ALCD random forest on 100 000 samples per image from the
training set, and then, adapt the classifier with the same number
of annotations as AC and DISCA. However, it leads to very
poor performances both before (30% IoU) and after fine tuning
(30.5% IoU) compared to AC/DISCA results presented previ-
ously. While the absolute results might be due to differences of
peculiar implementations of random forest and neural network,
the ALCD gain is only +0.5%, which is two times less than AC
and three times less than DISCA.

D. Domain Adaptation Use Case

1) Performances: The objective in this domain adaptation
use case is to detect the buildings on the eight images of the
ISPRS validation set. To this purpose, we compare a neural
network trained on AIRS under AC and DISCA settings to a
control one trained on the ISPRS training set. The ISPRS images
are down-sampled using bilinear interpolation to the AIRS res-
olution. The neural network’s weights are reinitialized between
each image. Fig. 7 shows that a network weakly supervised with
DISCA beats AC by a large margin in this scenario. Besides,
it can quickly reach high performances (more than 80% IoU
within 20 annotations) and even outperform a fully supervised
one with a sufficient amount of annotations. This is visually
confirmed on Fig. 8. Indeed, ten annotations enable the network
to well understand the new domain images, and thus, propose
decent segmentation maps. More annotations correct most of the
remaining mistakes.

2) Sequential Learning: Moreover, we analyze the general-
ization of DISCA through a sequence of images in the same
domain adaptation scenario. This means that we do not reinitial-
ize the neural network weights between each image. We refer
to this set up as sequential learning, and we learn two insights
from it on Fig. 9. First, DISCA does not suffer from catastrophic
forgetting here as the algorithm does not diverge even on the
last seen images. Second, sequential learning greatly improves
the initial performances directly after the first image. Indeed, the
initial IoU then approximately increases by 20%. However, after
few annotations, the sequential learning benefits vanish and the
performances become similar to the nonsequential setup.

E. Discussion: When to Choose AC-Only or DISCA?

To better apprehend the difference between the two methods,
we sample 10 000 512 × 512 crops from each dataset. Then,
given one annotation, we compare the difference between AC

Fig. 9. Sequential learning study with DISCA in a transfer scenario. The
legend corresponds to the order in which the algorithm processes the images.
(a) Weights reinitialized between each image. (b) Weights updated between each
image.

Fig. 10. Comparison of AC-only and DISCA (IoU) with respect to the spatial
size of the corrected mistake and the initial accuracy. Legend “best” designates
the best method for the given sample.

and DISCA based on two parameters: the spatial size of the
corrected mistake and the initial accuracy of the network on
the patch. Precisely, the spatial size of the corrected mistake is
the size of the error polygon in which the annotation is sampled.
Similarly to the initial accuracy, it is obtained with a comparison
between the initial predicted map and the ground-truth map. It
is intuitively obvious that both AC and DISCA are correlated
to these parameters since, if the mistake to correct is small,
the overall IoU gain will be smaller than with a larger mistake
to correct. However, we think that this comparison can bring
valuable insights to choose the appropriate method depending
on the situation.

Fig. 10 compares the two methods with respect to these
two criteria. First, both methods seem to work well and can
outperform the other one when the mistake area is small and
the initial performance is high. We thus recommend to use AC
in these situations. Indeed, the locality of AC is no longer a
constraint since the error is strongly spatially contained and
the relatively long retraining time inherent to DISCA makes
it less suitable here. Second, when the initial accuracy is low or
the area to correct large, DISCA now clearly tends to perform
better than AC, and we thus believe that it should be favored in
these situations. Indeed, its spatial globality resulting from its
retraining can be fully expressed to correct large mistakes. This
outcome shows that DISCA is more relevant to correct deeply
flawed segmentation maps than AC.

IV. CONCLUSION

In this article, we have presented DIAL, a framework to
interactively enhance segmentation maps initially proposed by
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a neural network. Its core concept relies on interactions between
a deep neural network and an agent under the form of clicked
annotations.

First, we have proposed an IL framework that builds on com-
plementary mechanisms. First, AC modifies the neural network
inputs. This approach is fast and local since it does not modify
the weights of network. Second, an on-the-fly retraining uses the
annotations as a a sparse ground truth. Finally, a regularization
term based on the initial prediction is crucial to complement
the cross-entropy loss during retraining and avoids catastrophic
forgetting. Since this modifies the weights of the network, the
full framework is slower but improves the segmentation maps at
a larger scale.

Finally, we have integrated AL within our framework to
guide the agent interventions toward relevant patch queries.
To this purpose, we have compared different state-of-the-art
acquisition functions to estimate the neural network uncertainty
to finally conclude that entropy is the most suited one thanks to
its simplicity and efficiency. Hence, AL speeds up the use of our
interactive segmentation algorithms and is particularly relevant
to face budget constraints.

In the future, we intend to apply DIAL in a class-incremental
scenario to make it easily adaptive to new tasks and use cases.
This, along with the promising results shown in domain adap-
tation, will provide Earth observation scientists and companies
with a powerful to reuse, transfer, and enhance deep learning
models.

APPENDIX A
HOW TO OPTIMIZE THE ENCODING ?

We investigate here the annotations encoding to analyze its
influence on the AC mechanism.

There are many possibilities to encode the annotations in
their dedicated channels and they all provide different spatial
information. The size of the encoding is the most obvious issue:
if it is too small, it might not provide enough information to
efficiently fix the initial segmentation but a coarser encoding
might provide erroneous information. A popular context-free
tradeoff used in most interactive segmentation works [25], [54]
is to encode the annotations with Euclidean distance transforms
to dilute spatial information. However, due to its context in-
dependence, this encoding might be suboptimal. Ideally, the
perfect encoding would be the original ground-truth map but
it is obviously impossible to get. Based on this insight, we
study here how to best approximate this ground truth given the
available data: the input image, the annotations, and the trained
neural network. We define the following two possible context
use besides the no-context one:

1) using the input image;
2) using the initial prediction.
As encoding baselines, we use small binary (bin.) disks of

1.5-pixels radius and distance transform (DT) applied on 10-
pixels radius disks. We build on this DT encoding for the context
encodings. To use the input image, we rely on guided filtering
(GF) [55] in order to preserve the edges in the encoding. To
use the initial prediction, we encode the annotations using their

Fig. 11. Different annotations encodings depending on context uses. Best
viewed in color. (a) Car (red) and building (yellow) annotations. (b) Ground-
truth connectivity encoding. (c) Distance-transform encoding. (d) Guided filter
encoding.

TABLE A1
IOU ON ISPRS AFTER 120 ANNOTATIONS WITH AC DEPENDING ON THE

ENCODING

Fig. 12. Annotations sampled using uncertainty and error knowledge (smart
corrector agent). (a) AC-only. (b) DISCA.

Fig. 13. Annotations sampled with uncertainty but without error knowledge.
(a) AC-only. (b) DISCA.

connected pixels in the prediction map (C-PM). To estimate
the superior boundary theoretically reachable with an encoding
from the ground truth, we also encode the annotations using
their connected pixels in the ground-truth map (C-GT). These
different methods to encode the annotations are represented in
Fig. 11.

However, as shown in Table A1, the different encoding
strategies seem to provide similar information to the network
as the gains are in the same order of magnitude. Indeed, they
all increase the IoU of around 6% for 120 annotations on the
ISPRS images, even though the binary encoding is slightly lower
and confirms the usefulness of DT encoding. The GF encoding
obtains the same gain as the DT one, C-PM is lower of 0.1%
and even C-GM is only better of 0.1%.
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Fig. 14. Initial output corrected with annotations relying on entropy. On the “Entropy” column, the areas with an entropy higher than the ninth quantile over the
image are highlighted in red. On the “Annotation(s)” column, the color of the annotations represents their labels w.r.t. the associated ground-truth maps.

These insignificant differences show that the network does not
need any contextual guidance to learn nearly optimal informa-
tion from the annotations using a simple and intuitive encoding
such as distance transform.

APPENDIX B
AL FOR PIXEL-BASED GUIDANCE

A. Setup and Objectives

To investigate local guidance, we sample 10 000 512 × 512
crops from each dataset, make an initial prediction, generate
one annotation per sample, and then, do a new prediction with
ac-only and DISCA. Our acquisition function here is entropy.
We test two conjectures. First, we want to determine whether
highly uncertain pixels among the misclassified ones can lead
toward particularly meaningful annotations. Second, we want to

figure out whether the uncertainty measurements can help the
agent to spot errors at a pixel level.

B. Uncertainty for Optimal Annotations

We make the hypothesis that an agent always clicks on a
wrongly segmented area, or in other words that he is able to spot
the mistakes and correct them. To look for optimal annotations,
we compare the following annotations sampling strategies.

1) We sample the annotation randomly in the wrongly seg-
mented area (random).

2) Like in the other experiments, we sample the annotation
in the middle of the spatially largest wrongly segmented
area (max).

3) We threshold the uncertainty map at the ninth quantile
to keep only the highest uncertainty values. We then
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sample the annotation in the intersection of the wrongly
segmented area and this thresholded uncertainty map.

As shown on Fig. 12, the uncertainty-based annotations lead
to corrections of the same magnitude than the random ones on
average. Moreover, these uncertainty-based annotations clearly
do not provide more information to the model than the ones based
on max. Indeed, the gains of max annotations with AC-only are
around 6.4% IoU against, respectively, 4.5% and 4.7% for the
random and uncertainty-based ones.

This corroborates the correlation between the gain and the
size of the corrected area previously exhibited and shows that
uncertainty does not lead toward more meaningful annotations
than the ones contained inside large mistakes.

C. Uncertainty to Spot Mistakes

In order to evaluate if the uncertainty measures can help to
spot mistakes at the pixel level, we compare annotations sampled
randomly and on the basis of uncertainty measures without
ground-truth prior knowledge. In other words, we do not coerce
the annotations to be sampled in mistake areas.

Fig. 13 shows that the uncertainty-based annotations lead
to better improvements (3.7% IoU with AC-only, 4.5% with
DISCA) than the random ones (1.3% IoU with AC-only, 1.9%
with DISCA) on average. We can visually confirm these insights
on Fig. 14 where uncertainty measures tend to highlight wrongly
predicted areas. Besides, the highlighted areas that are initially
correctly predicted tend to be legitimately questionable such as
object contours or road surfaces looking like buildings (third
row).
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