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Abstract—A neural network (NN) approach is proposed to com-
bine future infrared (IASI-NG) and microwave (MWS) observa-
tions to retrieve cloud liquid and ice water path. The methodology
is applied to simulated IASI-NG and MWS observations in the
period January–October 2019. IASI-NG and MWS observations
are simulated globally at synoptic hours (00:00, 06:00, 12:00, 18:00
UTC) and on a regular spatial grid (0.125°× 0.125°) from ECMWF
5-generation reanalysis (ERA5). The state-of-the-art σ-IASI and
RTTOV radiative transfer codes are used to simulate IASI-NG and
MWS observations, respectively, from the earth’s state vector given
by ERA5. A principal component analysis of the simulated IASI-
NG observations is performed. Accordingly, a NN is developed to
retrieve cloud liquid and ice water path from a combination of
24 MWS channels and 30 IASI-NG PCs. Validation indicates that
this combination results in liquid and ice water path retrievals
with overall accuracy of 1.85 10−2 kg/m2 and 1.18 10−2 kg/m2,
respectively, and 0.97 correlation with respect to reference values.
The root-mean-square error (RMSE) for CLWP results in about
30% of the mean value (5.91 10−2 kg/m2) and 22% of the variability
(1-sigma). Similarly, the RMSE for CIWP results in about 41%
of the mean value (2.91 10−2 kg/m2) and 22% of the variability.
Two more NN are developed, retrieving cloud liquid and ice wa-
ter path from microwave observations only (24 MWS channels)
and infrared observations only (30 IASI-NG PCs), demonstrating
quantitatively the advantage of using the combination of infrared
and microwave observations with respect to either one alone.

Index Terms—Artificial neural networks, Fourier transform
infrared, low earth orbit satellites, microwave radiometry.

I. INTRODUCTION

C LOUDS are very important regulators of the hydrological
and energy cycles of earth. Thus, clouds play a crucial
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role in Earth’s climate, and their sensitivity and feedback are
major sources of uncertainty in climate predictions [1]. Cloud
physical properties, such as cloud ice water path (CIWP) and
cloud liquid water path (CLWP), are among the essential cli-
mate variables defined in the framework of the Global Climate
Observing System [WMO, 2011]. The last few decades wit-
nessed an increasing trend in cloud observing capabilities, now
providing more than 25 years of adequate climate data records
from visible, infrared (IR), and microwave (MW) observations
[Dowell et al., 2013]. However, the physical characterization
of clouds is still challenging. One way to overcome some of
the observing limitations is sensor synergy, i.e., combining the
complementary advantages offered by different parts of the spec-
trum [2]–[4]. For example, passive MW observations are sensi-
tive to atmospheric temperature, humidity, and liquid/ice water
within the observed volume. In this context, considering the
semitransparency of clouds and the increase of liquid water con-
tribution in the emitted signal with higher frequency, microwave
radiometers are the most common single-instrument approach
to retrieve a large dynamic range of CLWP without saturation.
Information on atmospheric water vapor and cloud liquid water
can be derived from channels at 23.8, 31.4, 90, and 183 GHz.
Information on ice clouds and precipitation can be derived from
millimeter wave measurements at 90 and 150 GHz and possibly
higher frequency window channels. Similarly, passive IR obser-
vations are sensitive to atmospheric temperature, humidity, and
liquid/ice clouds as well as some trace gases within the observed
volume. Since the early years of satellite meteorology, methods
for deriving cloud properties from IR observations have been
developed [5]–[7], followed by the development of methods
for inferring cloud microphysics, such as cloud particle size
and optical thickness [8]–[12]. Hydrometeors forming clouds
strongly absorb at IR wavelengths and the IR radiation reaching a
spaceborne radiometer is mostly generated close to the cloud top.
Conversely, MW radiation emitted from the earth surface is only
slightly affected when passing through nonprecipitating clouds.
MW are also complementary to IR because MW radiation is
sensitive to larger ice crystals and content whereas IR radiation
is more sensitive to smaller particles and cirrus clouds with lower
ice content. Therefore, a proper combination of IR and MW
multispectral measurements may be beneficial for determining
the cloud water content, particularly in case of overlapping cloud
layers.
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As earth observation programs develop, improvements in
spatial and spectral resolutions of satellite-borne sensors pro-
mote more sophisticated retrieval procedures to estimate cloud
products with enhanced accuracy. The upcoming launch of
new advanced high spatial and spectral resolution satellite
sensors offers the opportunity for more accurate estimates of
cloud microphysical parameters, e.g., the next generation atmo-
spheric sounding interferometer (IASI-NG), and the Microwave
Sounder (MWS) that will fly from 2024 onwards. Among the
prelaunch activities, the European Organization for the Exploita-
tion of Meteorological Satellites (EUMETSAT) funds studies
to investigate new retrieval algorithms, including one focusing
on cloud physical properties combining MWS and IASI-NG
observations, named ComboCloud.

Methods to derive CLWP and CIWP from combined IR and
MW observations have been reported using physical and/or
regression approaches [13]–[15]. Here, we propose a method
exploiting artificial neural networks (NN). NN have been in-
creasingly applied to remote sensing [16]–[18] because they are
well adapted to find nonlinear statistical relationships between
target and input variables, such as those arising in the satellite
remote sensing of geophysical parameters through spectral radi-
ances. One important aspect of NN is its property of serving as
a universal approximator [19], thus being able to handle much
more complex problems than least square regression, and thus
making NNs more suitable to tackle the global scale variability.
To this aim, this article investigates the potential of NN to make
a supervised regression of CLWP and CIWP contents with the
combined use of simulated IASI-NG and MWS measurements
in the IR and MW bands.

The rest of this article is organized as follows. Details about
the simulated dataset are given in Section II. The methodology
is presented in Section III, including information about the
machine learning framework and the selection of IASI-NG and
MWS channels. Section IV presents the performances of the
methodology, quantifying the accuracy and the value of IR-MW
combination. Finally, Section V concludes this article.

II. INSTRUMENTS AND DATASETS

This section provides details on the IASI-NG and MWS
sensors, and the generation of the simulated spectral dataset used
in this article.

A. IASI-NG and MWS Instruments

Following the success of the EUMETSAT Earth Polar System
(EPS) program [20], the EPS Second Generation (EPS-SG) pro-
gram will launch several satellites starting from 2024. The Me-
teorological Operational SG (MetOp-SG) satellite missions will
carry several instruments, with the intent to support and improve
current Numerical Weather Prediction at regional and global
scales. The first satellite (MetOp-SG-A1), to be launched on
2024, will carry both IASI-NG and MWS, in a sun-synchronous
polar orbit at 835 km altitude.

The IASI-NG sensor [21] will represent the key element
sensor for the atmospheric observation of the earth system from
space and its main objective is to provide suitable information

TABLE I
IASI-NG TECHNICAL CHARACTERISTICS

TABLE II
MWS TECHNICAL CHARACTERISTIC

on temperature and water vapor profiles, with high accuracy
(about 1K) at a vertical resolution in the lower troposphere
of about 1km. The instrument is a Michelson interferometer
able to measure infrared radiation emitted from the earth, span-
ning the spectral range W = 645 cm−1 − 2760 cm−1, with a
spectral resolution of 0.25 cm−1 (apodized) and sampling of
Δσ = 0.125 cm−1 (see Table I). This results in a number of
linearly independent measurable spectral samples or channels
equal to W

Δσ
+ 1 = 16921.

IASI-NG is a cross-track scanner, with 14 fields of regard
(FOR) per scan, spanning an OFF-nadir angle range of ±46.5◦,
from left to right in each swath. Each FOR measures a 4× 4
array of so-called instantaneous field of view (IFOV), each of
which has a ground diameter of 12 km at nadir and 823 km
satellite altitude. The distance between FOVs within a given
FOR is around 23.83 km at nadir.

The MWS is a passive microwave radiometer at the core of
the future EPS-SG mission. MWS has a direct heritage from
the Advanced Microwave Sounding Unit A (AMSU-A) and the
microwave humidity sounder, currently flying on EUMETSAT
MetOp satellites, but with enhanced spectral characteristic with
respect to its predecessors, adding two temperature and two
humidity sounding channels, plus one high-frequency window
channel sensitive to ice clouds. The sensor will operate a total
of 24 channels from 23–229 GHz, with a spatial sampling at
nadir of about 17–40 km, depending upon channel (see Table II).
The primary purposes of MWS are atmospheric temperature and
water vapour sounding, as well as CIWP estimates.
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Fig. 1. Map of geographical coordinates of IASI-NG and MWS simulated
measurements.

B. Simulated Datasets

IASI-NG and MWS measurements are not available until the
launch of EPS-SG-A1 in 2024. Thus, for this article synthetic
observations are simulated with the state of art σ − IASI [22]
and RTTOV [23] radiative transfer codes. The atmospheric state
vectors needed for the radiative transfer calculations are taken
from ERA5, the fifth generation ECMWF global reanalysis.
Four representative days (1st of January, April, July, October
2019), each at four synoptic hours (00, 06, 12, 18), are selected
to capture both seasonal and daily cycles at global scale. ERA5
state vectors are provided globally on a regular spatial grid
0.125° × 0.125°. However, for our purpose data were decimated
by resampling with a latitude/longitude sampling step of 6.875°,
resulting in 53 latitudes and 26 longitudes (see Fig. 1) from
−86.875° to 85° and from 0° to 357.5°, respectively. This sam-
pling has been chosen for reducing the dataset to a manageable
size while retaining the global coverage and the temporal span
(4 seasons and 4 synoptic hours). The atmospheric state vector
consists of temperature, water vapour, and ozone (T, Q, O)
profiles along with profiles of specific cloud liquid content,
specific cloud ice content, specific rain, and snow water contents.
Note that ERA5 provides only large-scale precipitation profiles.
This sets a limitation to the applicability of the current set-up to
nonconvective systems only. All atmospheric profiles are given
on a pressure grid of 37 levels spanning the range 10–1000 hPa.
In addition, the surface temperature is also taken from ERA5.
Other trace gas profiles are set by climatology.

Three vertical zenith angles (VZA), specifically 0°, 20°, and
44° have been used to compute the spectral radiances. So,
this means that for each VZA a number of simulated sound-
ings equal to 4(days)× 4(synopthic hours)× 53(latitudes)×
26 (longitudes) = 22048 is considered, resulting in 66144
samples in total. Simulations are performed considering a pencil
beam and pass-band computations.

Concerning the surface emissivity, the Masuda model [24] is
adopted for the IR simulations, while for the MW simulations

the ocean emissivity is given by the FASTEM model embed-
ded in RTTOV [23]. Recommended RTTOV-SCATT optical
properties have been used [25] including Mie spheres for rain
and nonprecipitating hydrometeors and sector snowflakes for
solid precipitation. For the IR, the all-sky version of σ-IASI
(σ-IASI_as) is used [26], [27], which exploits the Chou scaling
approximation [28]. The optical properties for ice are those
for ice cloud crystal habits aggregates and are taken from the
LBLDIS [29] library. LBLDIS library and datasets was used
also for liquid water (see [29] for more details).

Simulated observations do include the radiometric noise ex-
pected for both instruments. For IASI-NG the spectral radi-
ance is correlated along the wavenumber because of Gaussian
apodization.1 The current radiometric noise requirement for
IASI-NG is two times lower than that of IASI instrument. Thus,
we assumed level 1B IASI-NG noise equal to half of that of IASI.
Noise for level 1C is obtained by the level 1B after Gaussian
apodization. If Sε denotes the level 1C noise covariance matrix
of IASI-NG, then the observations are simulated based on the
signal-noise additive model according to

R = r + S
1
2
ε η (1)

where R is the vector (size N = 16921) of simulated spectral
radiances; r (same size as R) is the signal computed according
to the forward model; η is vector-valued (same size as R) of
Gaussian noise sample with zero mean and unit variance. Note
that the Sε matrix (size N×N) includes Gaussian apodization
according to IASI-NG specification.

Similarly, for MWS we considered the radiometric noise
requirements provided through the WMO Observing Systems
Capability Analysis and Review (Oscar) tool.2 The covariance
matrix Sε is assumed to be diagonal although for MWS chan-
nels.

Finally, the dataset has been partitioned in three different
subsets: 1) training, 2) validation, and 3) test dataset. The training
and the validation datasets are used to learn and assess the
performance of the NN models. The test dataset is used for a final
evaluation of the generalization performances of the network
to new input data. Specifically, we divided the total dataset as
follows: 70% for training, 20% for validation, and 10% for test.

III. METHODOLOGY

This section describes the proposed retrieval scheme. First,
we present the NN regression framework, and then we introduce
the analysis related to the preprocessing of IASI-NG and MWS
observations.

A. NN Regression Framework

Multilayer perceptron (MLP) [30], [31] is nowadays the lead-
ing architecture used for implementing NN supervised regres-
sors. From a set of samples S(X, y), where X represents the
set of inputs and y the corresponding outputs, MLP emulates a

1[Online]. Available: https://www.eumetsat.int/eps-sg-iasi-ng
2[Online]. Available: https://space.oscar.wmo.int/instruments/view/mws

https://www.eumetsat.int/eps-sg-iasi-ng
https://space.oscar.wmo.int/instruments/view/mws
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neural structure, linking many parallel processors called “per-
ceptrons” to mapX → y. These processors are organized in dis-
tinct layers: 1) the first layer represents the set of network inputs
X , 2) the last layer represents the output of the mappingX → y,
and 3) a number of intermediate layers, also called “hidden
layers”. The entire neuronal structure is connected via percep-
tron links associated with network weights W . The ensemble of
perceptrons, links, and weights, provides to the NN architecture
the ability to learn from example and make predictions. The
learning is pursued by the adoption of forward- and backward-
propagation algorithms whose objective is to minimize the error
between NN predictions and training outputs. Keras-python
framework [32] has been used to build and implement the NN
structure. To this end, Keras offers a built-in tuner [33] to
optimize the searching for the best NN structure with respect
to the input/output units and a set of “hyperparameters” (e.g.,
the number of hidden layers, hidden units, activation function,
optimizer, and so on). In this article, the Bayesian tuner [34],
[35] has been used. Based on random selection, Bayesian tuner
addresses the problem of finding the best NN architecture for a
given learning task and dataset. The search for the best hyper-
parameters is based on network morphism in NN architecture
search [34] and a tree-structure search space [36].

B. IASI-NG and MWS Preprocessing

In processing hyperspectral data, such as from IASI-NG,
principal component analysis (PCA) [37], [38] is key to re-
duce the high-dimensionality of the data space. Since it is well
established that high-dimensional MLP architectures are more
prone to overfit [39], [40], this article exploits PCA to develop a
statistical NN regressor with a low-dimensional architecture. A
common approach is used to build the IASI-NG PCA basis [37].
First, we consider an ensemble of M state vectors R, which are
piled up in the columns of the matrix Σ (of size N ×M , with
M < N ). Only clear sky radiances are considered to build Σ.
Before buildingΣ, the radiance vectorR is centred by removing
the mean and normalized to the IASI-NG covariance matrix

S
− 1

2
ε

(
R− R̄

)
(2)

with R̄ the mean value of the ensemble. The covariance matrix
of the ensemble C is then computed as

C =
1

M
ΣΣt (3)

where the superscript t denotes the transpose matrix. The basis
of eigenvectors U , is obtained by singular value decomposition
of C

C = USVt (4)

where S is the diagonal matrix of singular values, and U =
V the basis of eigenvectors. Note that all matrices have size
N ×N , and U = V, because the matrix C is symmetric. For a
given radiance vectorR (clear or cloudy), the vector of principal
component coefficients (or scores vector)c is obtained according
to

c = U
(
S

− 1
2

ε

(
R− R̄

))
. (5)

Conversely, the 24 MWS channels are used directly as input
to the NN.

C. Neural Network Training Process

Using the Bayesian tuner, a NN structure composed of 5 layers
was designed. The input layer is composed by 55 input units,
i.e., the first 30 IASI PCs, 24 MWS channels, and the VZA.
A criterium for selecting IASI PCs is suggested in [37], where
they demonstrate that the number of IASI-PC that would sep-
arate the signal from noise ranges between 10–100. Thus, to
be conservative we select 30 IASI-PC for the retrieval process,
which span 99.96% of the total variance. The dataset was pre-
liminarily filtered to avoid extremely large CLWP/CIWP values
(i.e., CLWP and CIWP larger than 0.6 kg/m2 and 0.5 kg/m2,
respectively) that may harm the NN training, screening out less
than 0.3% of the initial dataset. In addition, to avoid uncertainty
due to surface emissivity in the MW spectral region, only sim-
ulations over ocean are considered in this analysis. These two
screenings leave 31593 samples in total, which are then divided
in three sets used to train (70% = 22746 samples), validate
(20% = 5687 samples), and test (10% = 3160 samples) the
NN model. The partitioning of the samples into training, valida-
tion, and test datasets was such to keep the same variability with
respect to the VZA parameter. Because the dynamic range of
IASI-NG PCA and MWS brightness temperatures may greatly
differ, it is good practice to normalize the two data spaces. This
is achieved by means of standard normalization (i.e., inputs are
normalized with respect to the training set by removing the mean
and scaling to unit variance), applied to both IASI-NG PCs and
MWS channels. Three hidden layers, composed, respectively,
of 1024, 1024, and 64 hidden units are chosen by the tuner.
The output layer is composed by two units corresponding to
CLWP and CIWP. The ReLU [41] function is used to activate
the network units, and the mean squared error (MSE) is used as
the loss function

MSE =
1

NS

NS−1∑
i=0

(yi − ŷi)
2 (6)

where ŷi is the predicted value of the ith corresponding output
true valueyi;NS indicates the total number of samples to predict.
The NN learning step is based on a backpropagation algorithm,
whose goal is to update the NN learning parameters [31], min-
imizing a loss function at each temporal iteration (epoch), and
ideally finding its global minimum. In literature this process
is indicated as optimization task and is handled by a specific
algorithm. In this article, we adopted an “adaptive momentum”
based optimizator, specifically the Adam algorithm [42], regu-
larized according to the weight decay algorithm [43]. Adam is a
mini-batch optimization algorithm, representing nowadays the
de facto standard to train deep learning NN models [30], due
to its high versatility in adapting to complex architectures with
high capacity cost functions [44]. Table III displays a summary
of the NN parameters used in this article.

The tuner indicates as optimal architecture a multilayer NN.
With limited training data, however, this complex architecture
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TABLE III
SUMMARY OF NN PARAMETERS FOR THE COMBINED IR-MW CONFIGURATION

DEVELOPED IN THIS ARTICLE (INDICATED AS M1 IN FIGS. 4 AND 6)

Fig. 2. Neural network training and validation loss function history.

could lead to overfitting; for this reason we adopted regulariza-
tion, aiming at making the model generalize better, i.e., produce
better results on the test set [45]. The use of regularization to
avoid overfitting has been proved empirically [30]. In fact, there
are many worked examples in the open literature showing how
high-capacity architectures, i.e., NN with more parameters than
training data couples, can improve the generalization perfor-
mance. In other words, contrarily to overfitted architectures,
the validation error remains close to the training one. This
empirical evidence has been rigorously proved in mathematical
form by [44]. In effect, Belkin et al. [44] demonstrated that
the deep learning architecture is the condition needed to move
beyond the classical under-parameterized regime to the modern
interpolation where the predictors have negligible training risk.

Since we move to the interpolating regime, in this article, we
dedicate particular care to the training, validation, and test steps
of the NN. The NN model has been trained and validated for 100
epochs on the dataset of MWS + IASI-NG measurements indi-
cated in Section II. Fig. 2 reports the NN learning performances

TABLE IV
SUMMARY OF NN PARAMETERS FOR THE MW-ONLY CONFIGURATION

(INDICATED AS M2 IN FIGS. 4 AND 6)

TABLE V
SUMMARY OF NN PARAMETERS FOR THE IR-ONLY CONFIGURATION

(INDICATED AS M3 IN FIGS. 4 AND 6)

in training and validation steps, showing that the validation error
is stable and follows the training error.

To demonstrate the value of MW and IR combination, we also
developed two reference NN architectures, based respectively on
IASI-NG only and MWS only. By comparing the performances
of the three different configurations, the advantage of combining
IR and MW with respect to either one can be quantified. For
MW-only, the NN configuration takes in input the VZA and
the 24 MWS channels. For IR-only, the configuration takes
in input the VZA and the first 30 IASI-NG PCs. Similarly to
the IR-MW combined architecture, the MW-only and IR-only
NN configurations are optimized by the tuner, as reported in
Tables IV and V. The three architectures are hereafter indicated
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Fig. 3. Scatterplot of the NN prediction for CLWP (A) and CIWP (B). These
results correspond to the M1 configuration, taking in input the combination
of IASI-NG & MWS observations. μ and σ indicate the mean and std of the
reference true values. Except for correlation and determination coefficients
(R and R2), units are in kg/m2.

as M1 (combined IASI-NG and MWS), M2 (MWS), and M3
(IASI-NG).

IV. RESULTS

This section analyses the performances of the NN configura-
tions introduced in Section III-C. A quantitative intercomparison
of M1, M2, and M3 is also shown.

As anticipated in Section II, after the NN learning process the
regression performances are tested on a set of unseen simulated
measurements.

The results are shown in Fig. 3, indicating a good capability
to infer both CLWP and CIWP from the combination of the
MW and IR observations. The overall root-mean-square error
(RMSE) for CLWP is 1.85 × 10−2 kg/m2, while 1.18 × 10−2

Fig. 4. Error analysis of the NN to estimate CLWP (A) and CIWP (B). The
figure shows the mean of predicted values as a function of true ones. The errorbars
indicate the uncertainty corresponding to each binned estimate.

kg/m2 for CIWP. The RMSE for CLWP results in about 30% of
the mean value and 22% of the variability (1-sigma). Similarly,
the RMSE for CIWP results in about 41% of the mean value
and 22% of the variability. These results are comparable with,
though better than, previously reported, e.g., [46] using third-
order multiple regression and maximum likelihood algorithms
to retrieve CLWP and CIWP from a simulated dataset of MW
observations at a subset of MWS channels.

To further assess the performance of the M1 configuration,
and to compare it with M2 and M3, we performed a binning
analysis of the scatter plots such as in Fig. 3. For this aim, the
x-axis is divided in ten bins; for each bin the average and standard
deviation of true and the corresponding predicted values are
computed. These are displayed in Fig. 4, for both CLWP and
CIWP and all the three configurations, providing information
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Fig. 5. Root-mean-square error of the estimate of CLWP and CIWP obtained
from the NN approach. The three dotted lines correspond to 5% (lower),
15% (middle), and 25% (higher) error. Results for the M1 configuration
(MWS+IASI-NG combination) are shown.

on systematic and random error as a function of the absolute
values. Fig. 4 helps picturing the contribution of the IR and MW
observations to the combined approach.

Some comments may be derived from Fig. 4. For CLWP it is
seen that M3 (IASI-NG) yields unbiased values only for small
values (<0.1 kg/m2). The reason is that IASI-NG radiances
soon saturate in presence of thicker water clouds. In contrast,
MWS predictions are fairly unbiased up to the value of ∼= 0.30
kg/m2. As expected, the MW-IR combination provides more
information and, thus, predictions are closer to the 1:1 line.
Similar comments apply to CIWP. The same binned analysis
is used to estimate the RMSE as a function of the predicted
values, as shown in Fig. 5. The binned analysis shows that
the RMSE tends to increase with the estimated value, staying
between 5-25% for both CLWP and CIWP, except for values
lower than 0.1 kg/m2.

To illustrate the value of IR+MW combination with respect
to the individual systems (IR- and MW-only), in Fig. 6, we
use the Taylor diagram [47]. The Taylor diagram provides a
graphical and intuitive method to compare the performances of
the three NN configurations to retrieve CLWP and CIWP. The
performances are quantified in terms of three statistics: 1) the
Pearson correlation coefficient, 2) the RMSE, and 3) the standard
deviation. From Fig. 6, the relative merit of the different NN
configurations is evident. Concerning CLWP predictions [see
Fig. 6(a)], it is straightforward that M1 shows the best retrieval
performances. M2 also shows good performances, confirming
the ability of MW sensor to infer CLWP, while M3 performances
are worst. Similar consideration applies for the CIWP retrieval
[see Fig. 6(b)], where the configuration performances are con-
siderably better for M1 than for M2 and M3. Quantitatively, the
IR and MW combination (M1) provides CLWP with 2% higher
correlation and a 1.4 factor lower RMSE with respect to MW
only (M2), and 14% higher correlation and a 2.4 factor lower
RMSE with respect to IR only (M3). Concerning CIWP, the

Fig. 6. Taylor diagram analysis for CLWP (A) and CIWP (B). The analysis
refers to the three NN architecture, M1, M2, and M3 developed in this article.

TABLE VI
M1, M2, AND M3 PERFORMANCES IN TERMS OF RMSE OF THE CLWP AND

CIWP REGRESSION FOR THE TRAINING, VALIDATION, AND TEST DATASETS.
UNITS ARE IN 10−2 KG/M2

IR and MW combination provides 4% higher correlation and a
1.7 factor lower RMSE with respect to MW only, and 8% higher
correlation and a 2.1 factor lower RMSE with respect to IR only.

Finally, to demonstrate that our approach, which operates in
the interpolating regime, does not lose in terms of generalization,
Table VI shows the RMSE computed for the training, validation
and test datasets for both CLWP and CIWP and the three config-
urations. Note that the performances for the validation and test
datasets are nearly the same, indicating that a fair generalization
has been achieved.

V. CONCLUSION

This article focuses on the potential of a deep learning ap-
proach to infer microphysical key cloud parameters (CLWP and
CIWP) by the synergic use of IR and MW observations. Results
indicate that the combined use of IR and MW modern sensors
allow us to estimate CLWP with an overall RMSE of 1.85×10−2

kg/m2. For CIWP, the RMSE is 1.18×10−2 kg/m2. According to
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the WMO OSCAR requirements for global NWP applications,
the obtained accuracy is close to the breakthrough values (20
and 10 g/m2, respectively) and about half the threshold values
(50 and 20 g/m2, respectively).3

A comparison was carried out to assess the added-value of
the combined IR and MW measurements with respect to MW
or IR measurements separately. It is shown that the IR and MW
combination provides CLWP with higher correlation (2–14%)
and lower RMSE (factor of 1.4–2.4) than single MW and IR only,
respectively. Similarly, for CIWP, with 4–8% higher correlation
and 1.7–2.1 factor lower RMSE, respectively.

Finally, the analysis will be consolidated on the basis of real
observations, an effort that is ongoing using IASI and AMSU
observations. Nevertheless, the synergy of IR and MW has been
proved, paving the road to more complete exploitation of next
generation satellite platforms for weather and climate.
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