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Abstract—Change detection in multitemporal synthetic aperture
radar (SAR) images has been an important research content in
the field of remote sensing for a long time. In this article, based
on the slow feature analysis (SFA) theory and the nonsubsampled
contourlet transform (NSCT) algorithm, we propose a novel un-
supervised change detection method called NSCT nonlocal means
(NSCT-NLM). The powerful extraction to the changed information
of SFA and the superior information fusion of NSCT are jointly
adopted in this method. The main framework consists of the fol-
lowing parts. First, SFA and the log-ratio operator are used to
generate difference images (DIs) independently. Then, the NSCT is
used to fuse two DIs into a new higher quality DI. The newly fused
DI combines the complementary information of the two kinds of
original DI. Therefore, the contrast of the changed regions and
unchanged regions is greatly enhanced, as well as the changed
details are preserved more completely. Furthermore, an NLM fil-
tering algorithm is employed to suppress the strong speckles in the
fused DI. We use the fuzzy C-means algorithm to generate the final
binary change map. The experiments are carried out on two public
datasets and three real-world SAR datasets from different scenar-
ios. The results demonstrate that the proposed method has higher
detection accuracy by comparing with the reference methods.

Index Terms—Nonsubsampled contourlet transform (NSCT),
slow feature analysis (SFA), synthetic aperture radar (SAR) images,
unsupervised change detection.

I. INTRODUCTION

R EMOTE sensing image change detection is a process
of using multisource remote sensing images that cover

the same geographical area at different times to determine
the changes of objects or regions. It has been widely used in
environmental monitoring [1]–[3], forest monitoring [4], [5],
agricultural survey [6]–[8], disaster assessment [9]–[11], mili-
tary monitoring, and so on. Compared with optical sensors and
infrared sensors, synthetic aperture radar (SAR) has attracted
considerable attention due to its unique advantages that it can
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work under nearly all weather conditions and any time [12]. SAR
images have become an extremely important data source for
change detection. It is of great realistic significance to research
change detection in SAR images.

There are various change detection technologies used in SAR
images. In general, it can be divided into two broad categories.
One is utilizing the distinctive attributes of SAR images, such
as coherence and polarization property. Coherent change detec-
tion, using phase differences, can detect subtle trace between
repeat-pass images. In [13]–[15], InSAR coherence has been
exploited for surface deformation and land subsidence. In [16]–
[18], coherent information is made full use to detect the small
and slight changes, such as the small changes in urban areas. The
polarimetry information is also used for monitoring the changes
of land cover. In [19]–[21], the PolSAR images are implemented
in change detection to monitor crops and flood. The other is
based on the digital image analysis and processing methods,
such as image transformation and image fusion. Some deep
learning methods have also been proposed recently, which show
certain competitive power in detection accuracy. Essentially,
they belong to the second kind.

Among the change detection methods, the supervised meth-
ods may have better performance by using a large amount of
labeled data [22]. However, sufficient labeled data are always
difficult to obtain; thus, they could not meet the needs of practical
applications. On the contrary, unsupervised methods do not
need the support of any prior information. Meanwhile, they can
minimize the man-made errors. Therefore, in this article, we
consider using an unsupervised method for SAR image change
detection.

The general unsupervised methods for change detection in
multitemporal SAR images usually include three steps: 1) image
preprocessing; 2) generating difference images (DIs); and 3) an-
alyzing DI [23]. The purpose of image preprocessing is to ensure
that the multitemporal images have the consistent comparability.
The processing of geometric correction, radiometric correction,
and registration is necessary when we get the raw data at first
time. Generating DI is the core of change detection. Among
the algorithms for generating DI, both the difference opera-
tor [24]–[26] and the ratio operator [27] are classic algorithms.
The difference operator is a simple and fast method, but it is
very sensitive to noise, which could lead to serious false alarms.
The log-ratio (LR) operator [28], [29] can suppress the speckle
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noise by transforming the multiplicative noise into additive
noise. However, when processing with logarithm, the contrast
of changed and unchanged pixels is simultaneously decreased,
which may reduce the accuracy of the final classification. The
mean-ratio operator [30] and the neighborhood-based ratio (NR)
operator [31], both using the neighborhood information, can
extract the more accurate information of changed regions. How-
ever, it is easy to bring the fuzziness of boundary information.
Some image transformation methods, such as principal com-
ponent analysis (PCA) [32] and wavelet transform [33], [34],
could not show excellent performance in SAR images due to
the especially imaging mechanism. Some auxiliary denoising
methods are also used in change detection, such as the low-rank
model [35]. Although it may improve the signal-to-noise ratio
to a certain extent, it cannot improve the separability between
changed and unchanged pixels. It may work bad on those regions
where the changes are not obvious.

Slow feature analysis (SFA), as an unsupervised feature learn-
ing algorithm [36], showed a superior performance in multi-
spectral images [37]–[39] change detection. According to the
principle of SFA, the differences of the unchanged pixels are
suppressed so that the changed pixels can be better separated. In
this article, we introduce it into SAR images and hope to obtain
the DI, which has well separability as well as high contrast.

Recently, the strategy of image fusion has been used in change
detection [40]. It showed a better result compared with those
traditional methods. The main reason is that the information in
changed regions can be enhanced, and the background informa-
tion is suppressed effectively by using the appropriate fusion
rules. The nonsubsampled contourlet transform (NSCT), as a
multiscale and multidirectional decomposition method, has been
widely applied in digital image processing [41]. It inherits the
key merits of those traditional image fusion methods and has
the special property of shift invariance. It is proved that the
NSCT can overcome the problem of pseudo-Gibbs phenomena
by upsampling the directional filter rather than downsampling
the input signal in the process of decomposition. Based on this,
this article uses the NSCT to fuse two independent DIs into a
new DI, which the details can be better preserved, and the edge
information will not be aliased.

The analysis of DI is the last step in change detection, which
can be seen as a binary segmentation problem. The K-means
clustering and the fuzzy C-means (FCM) clustering are com-
mon algorithms. The latter usually has a better flexibility and
reliability in SAR images [42]. Therefore, in this article, we
choose FCM to cluster the fused DI.

The purpose of our study is to build an unsupervised change
detection framework in multitemporal SAR images with
stronger stability and better generalization. The changed infor-
mation in SAR images can be better extracted as the introduction
of SFA. However, it could not always perform well because of
the existence of the speckles. SFA is sensitive to noise, which
may lead to the serious miss detection. In order to overcome this
deficiency, a novel contourlet fusion method is, then, utilized.
The new method is based on the NSCT, which combines the
advantages of SFA and the LR operator. During the contourlet
fusion, different fusion rules are implemented in different

subbands. As for the low-frequency subbands, the weighted
average algorithm is adopted. The regional characteristic
measurement (RCM) algorithm is used in the high-frequency
subbands. Considering that some strong speckles may be still
preserved in the fused DI, the nonlocal-means (NLM) [43], [44]
algorithm is implemented to have a further filtering. Finally, the
changed and unchanged regions are classified by FCM.

The main contributions of this article are summarized as
follows.

1) For the critical problem of low separability between the
changed and unchanged regions in unsupervised change
detection methods, the SFA algorithm is first used in SAR
images. The feasibility of the SFA algorithm for SAR
images is demonstrated through the theoretical analysis.
In the SFA algorithm, the extraction of the changed in-
formation is considered as an optimization problem. The
unchanged components can be extracted accurately by
computing the generalized eigenvalue. Then, the changed
components can be separated effectively by suppressing
the unchanged components.

2) To improve the performance, we design a novel framework
based on the image fusion strategy. The NSCT image
fusion algorithm is employed, which could protect more
details of texture and structure in the newly DI. The
nonlocal-based despeckling method, which represents ar-
guably the current state of the art, is then implemented in
the fused DI. To verify the stability and generalization,
the extensive experiments have been conducted on the
datasets containing different changed types. Our proposed
framework showed the better performance even in those
datasets with strong speckles.

The rest of this article is organized as follows. Section II
introduces the proposed change detection framework in detail.
Section III presents our experiments on two public datasets and
three real-world SAR datasets. Finally, Section IV concludes
this article.

II. METHODOLOGY

Given two coregistered SAR intensity images X =
{X(i, j), 1 ≤ i ≤ I, 1 ≤ j ≤ J} and Y = {Y (i, j), 1 ≤ i ≤
I, 1 ≤ j ≤ J}, which have the same size I × J . They are all
obtained from the same geographical region at different times.
The purpose of the change detection is to separate out changed
regions from the background. The proposed change detection
framework is shown in Fig. 1. It involves the following three
main parts: 1) generating two DIs by using the SFA algorithm
and the LR operator, respectively, as marked by the red boxes;
2) fusing the generated DI through the NSCT, as marked by the
purple box; and 3) the NLM algorithm is adopted to suppress
the speckle noise, as marked by the green box. The following
sections will give the full details of how each part is realized.

A. SFA for Generating DI

SFA, as an unsupervised feature learning algorithm, can
extract invariant and slowly varying features from input high-
dimensional time-series signals. It is applied in change detection
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Fig. 1. Proposed change detection framework.

in multispectral remote sensing images and shows superior
performance. When using SFA in change detection, unchanged
pixels are equivalent to slowly varying components and changed
pixels correspond to fast varying components. The unchanged
pixels can be suppressed, and the changed pixels can be sepa-
rated effectively.

Fig. 2 shows the diagram of the SFA algorithm. The blue rect-
angles represent changed pixels, and the red triangles represent
unchanged pixels. As for bitemporal SAR images, the difference
value of the corresponding unchanged pixels is usually not
equal to zero because of the difference in imaging and the
interference of the speckles. The contrast between the changed
and unchanged pixels is not obvious, and it is hard to find an
appropriate classification method to separate them. SFA can
transform the original difference space to the new slow feature
difference space, as shown in the dashed frame. It minimizes the
difference value of the unchanged pixels in background, so that
the unchanged regions are gloomier, and the changed regions
can be better detected.

Assume that the scattering vector pair of bitemporal SAR im-
ages is xi = [xi

1, x
i
2, . . . , x

i
N ] and yi = [yi1, y

i
2, . . . , y

i
N ], where

i indicates the number of pixels and N indicates the number
of polarimetric channels that participate in computing. First,
we need to preprocess the input image data. The normalized
expressions are

x̂i
j =

xi
j − μxj

σxj

(1)

ŷij =
yij − μyj

σyj

(2)

where μxj
indicates the mean and σxj

indicates the variance of
the image X in the jth polarimetric channel.

SFA is a feature space transformation algorithm, and we
usually consider the linear case. Therefore, the transforming

function can be expressed as

gj(x̂
i) = wT

j x̂
i (3)

where w is the mapping matrix.
Then, the optimized object function of SFA can be constructed

as

min
1

P
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j ŷ

i)2 (4)

where P is the number of pixel pairs in the bitemporal images.
The constraints of the optimized object function are composed
of the following:
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Equation (5) is the zero-mean constraint, which can simplify
the solution process. The unit variance constraint (6) helps to
avoid the constant solution. Constraint (7) guarantees that the
different output components carry different information and
avoids the redundancies of output information.

Construct two new matrices as

A =
1

P

P∑
i=1

(x̂i − ŷi)(x̂i − ŷi)T (8)

B =
1
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]
. (9)

Then, (4), (6), and (7) can be rewritten as
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With (8), (9), and (11), (10) can be written as

1

P

P∑
i=1

(wT
j x̂

i − wT
j ŷ

i)2 =
wT

j Awj

wT
j Bwj

. (13)

This optimization problem is equivalent to the generalized
eigenvalue problem

AW = BWΛ (14)

where W is the generalized eigenvector matrix and Λ is the
diagonal matrix composed of the generalized eigenvalues.
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Fig. 2. Schematic of SFA in SAR image change detection.

Fig. 3. Schematic of ISFA in SAR image change detection.

The generalized eigenvector matrix W is the mapping matrix
that we hope to get, which can extract the slowly varying
component from input data. Finally, the slow feature difference
values are calculated as

SFAj = wT
j x̂− wT

j ŷ. (15)

In order to have a further suppression to the difference values
of the unchanged pixels, the adaptive iterative processing is
usually carried out. During the iteration, the weights of the
unchanged pixels become larger, and the weights of the changed
pixels get close to zero. The unchanged pixels become more
important to the calculation, and the changed pixels have almost
no influence. The diagram of iteration slow feature analysis
(ISFA) is shown in Fig. 3. As can be seen in the weight map,
there are higher values in unchanged regions. It is obvious that
unchanged regions obtain the higher weights. The derivation
process of ISFA is as follows.

According to (5) and (6), the slow feature difference value
satisfies an approximately Gaussian distribution. We assume
that the polarimetric channels are independent of each other.
Therefore, the square sum of the slow feature difference values
from different polarimetric channels approximately follows a
chi-squared distribution with N degrees of freedom. The chi-
squared distance can be expressed as

Ti =

N∑
j=1

(
SFAi

j

)2
λSFAj

∈ χ2(N) (16)

where λ indicates the eigenvalue computed from (14).

Apply the same weight (such as 1) to the pixels at the begin-
ning of the iteration. Then, the weight is updated as

vi = P
{
χ2(N) > T i

}
(17)

where vi indicates the weight of the pixel i. This weight also
represents the probability of no change. Then, the weighted mean
value and the variance of the image X are updated as

μxj
=

∑P
i=1 v

ixi
j∑P

i=1 v
i

(18)

σ2
xj
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∑P
i=1 v

i
(
xi
j − μxj

)2∑P
i=1 v

i
. (19)

The mean value μy and the variance σ2
y of the image Y are

updated at the same time. The input data should be normalized
again using (1) and (2) with the weighted mean value and
variance. We also add the weights in the matrices A and B

Â =

∑P
i=1 v

i
(
x̂i − ŷi

) (
x̂i − ŷi

)T∑P
i=1 v

i
(20)
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(
x̂i
) (

x̂i
)
+

P∑
i=1

vi
(
ŷi
) (

ŷi
)]

. (21)

Then, the new mapping matrixW can be obtained. Finally, we
use this new W to update (16) and (17). The iteration would not
stop until the convergence condition is reached. We usually use
Δλ as the convergence indicator. In this article, the convergence
threshold is set to be 10−6.

From the above theoretical analysis, we can find that ISFA has
a powerful ability of extracting change information. However, it
should be noticed that the ability of resisting noise is weak. Con-
sidering that the LR operator can protect the spatial information
effective but bad for extracting change information, we hope to
find a method to combine the advantages of both and realize the
advantage complementation. Obviously, image fusion is a good
choice.

B. Image Fusion via NSCT

Images fusion is an effective way to obtain the DI with high
quality. WT, as a multiscale image decomposition method, has
obtained a wide range of applications. However, it can only
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Fig. 4. Diagram of multiscale and multidirectional decomposition of the
NSCT.

decompose in vertical, horizontal, and diagonal directions. The
information from other directions is not sufficiently utilized.
That means it could not satisfy the anisotropic characteristic of
SAR images, which may not retain the image edge details effec-
tively and could lead to edge fuzzy. Besides, downsamplers are
usually adopted in image decomposition, which could generate
pseudo-Gibbs phenomena and lead to the image aliasing [45].

Aim at the aforementioned problems, we introduce the NSCT
into DI fusion. Fig. 4 shows the diagram of the NSCT, where
the blue regions in the rectangles represent the high-frequency
subbands and the purple regions represent the low-frequency
subbands. It can be divided into two main parts: nonsub-sampled
pyramid filter bank (NSPFB) and nonsubsampled directional
filter bank (NSDFB). NSPFB is employed to the multiscale im-
age decomposition. NSDFB is used to filter the high-frequency
subbands in multidirection. When using NSPFB and NSDFB,
signal downsampling is replaced by the filter upsampling, which
overcomes the problem of pseudo-Gibbs phenomena.

Assume that the vector L = [m1,m2, . . . ,ml] includes all
decomposition parameters, where l means the number of multi-
scale decomposition layers. ml-level directional decomposition
is implemented in the lth layer. Therefore, the total number of
subbands is 1 +

∑l
i=1 2

mi , i.e., one low-frequency subband and∑l
i=1 2

mi high-frequency subbands.
Fusion rules are the core of image fusion. After image decom-

position, low-frequency subband coefficients contain a majority
of information of images. They are an approximate expression
of the original image and determine the general outline. High-
frequency subband coefficients contain the details of texture and
structure [46]. They reflect the edge mutation characteristics.
Based on this, different rules are applied to different subband
coefficients. Fig. 5 shows the flowchart of contourlet fusion.

For low-frequency subband coefficients, a weighted average
method is adopted, which can be described as

DL
F = αDL

ISFA + βDL
LR (22)

α = min
((

DL
ISFA, D

L
LR

)
/
(
DL

ISFA +DL
LR

))
(23)

β = 1− α (24)

Fig. 5. Flowchart of the proposed image fusion method.

where DL
ISFA and DL

LR represent the low-frequency subband
coefficients from the DI generated by ISFA and LR, respectively.
DL

F indicates the updated low-frequency subband coefficients

after fusion. DL
ISFA and DL

LR represent the mean values of the
low-frequency subband coefficients, and α and β are weights.
The LR has a better antinoise ability than ISFA. Therefore, the
high weight is assigned to DL

LR, and the background could be
smoother and cleaner.

For high-frequency subband coefficients, it is more reasonable
to determine the fused coefficients by utilizing neighborhood
information. Here, an RCM fusion rule is given. First, define the
local energy of the center pixel (i, j)

El,k(i, j) =

1∑
m=−1

1∑
n=−1

w(m,n)[Dl,k(i+m, j + n)]2 (25)

w(m,n) =
1

16

⎡
⎣1 2 1
2 4 2
1 2 1

⎤
⎦ (26)

wherew is the weighted coefficient matrix of a 3×3 local region.
Dl,k(i, j) denotes the high-frequency subband coefficient at the
point (i, j) in the lth layer and the kth direction.

Then, the matching degree of the local region M(i, j) can be
calculated as

M(i.j) =
2
∑1

m=−1

∑1
n=−1 w(m,n) · DISFA,LR

l,k (i+m, j + n)

EISFA
l,k (i, j) + ELR

l,k(i, j)

(27)

DISFA,LR
l,k (i, j) = DISFA

l,k (i, j) +DLR
l,k(i, j). (28)

Set a threshold parameter T (T ∈ [0, 1]), and the matching
degree is then compared with T . If the value of the matching
degree is less than T , the specific rule can be expressed as

DH
F (i, j) =

{
DH

ISFA(i, j), EISFA
l,k ≥ ELR

l,k

DH
LR(i, j), EISFA

l,k < ELR
l,k

(29)
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TABLE I
PROCESS OF GENERATING THE FUSED DI USING NSCT

If the value of the matching degree is larger thanT , the specific
rule can be expressed as

DH
F (i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρmaxD
H
ISFA(i, j) + ρminD

H
LR(i, j),

EISFA
l,k ≥ ELR

l,k

ρminD
H
ISFA(i, j) + ρmaxD

H
LR(i, j),

EISFA
l,k < ELR

l,k

(30)

{
ρmin = 1

2 − 1
2

(
1−M(i,j)

1−T

)
ρmax = 1− ρmin

(31)

where ρ represents the weights of the high-frequency subband
coefficients. The specific calculation procedure of the image
fusion algorithm is represented in Table I.

For low-frequency subband coefficients, we adopt a weighted
average method to better reflect the general outline of the
original DI. For high-frequency subband coefficients, RCM is
implemented, so that more edges and textures can be preserved.
If the matching degree is less than T , which means there are
significant differences between the two DI in the same local
region, then we select the coefficients with higher energy as
the fused coefficients. If the matching degree is larger than T ,
which means there is a minimal difference in between, then the
weighted average method is applied. Finally, the novel fused DI
can be obtained after coefficient reconstruction.

C. Image Denoising via NLM

Although the NSCT has a certain suppression to the speckle
noise, some strong speckles could be still preserved and seri-
ously affect the final classification results. To solve this problem,
the speckle suppression algorithm is then adopted.

SAR speckle reduction technologies have been developed
rapidly during the past decades. A large number of models have
been proposed, including spatial adaptive methods [47]–[49],
homomorphic approaches [50], wavelet-based methods [51],
[52], and nonlocal-based methods [53]–[55]. Among these
methods, the NLM method represents arguably the current state
of the art. The core idea is to compute the best value of the current

Fig. 6. Schematic of the NLM filtering algorithm.

pixel through a suitable measure of similarity based on the local
patch. Both local and nonlocal information in fused DI are made
full use during the algorithm execution. The strong speckles can
be filtered better and details could be greatly protected.

Theoretically, all the pixels get involved in the process of
relevant calculation. However, NLM is usually carried out in a
small window in practical application. As shown in Fig. 6, the
searching window centered on the pixel x is 15 × 15, the red
sliding window centered on the pixel y is 3 × 3, and the blue
neighborhood window of x is also 3 × 3. As the red window
moves in the searching window, the similarity of the red and
blue window is calculated.

The updated gray value of the center pixel x can be calculated
by

μ̃(x) =
∑
y∈U

w(x, y)v(y) (32)

∑
j∈U

w(x, y) = 1 (33)

where v(y) is the gray value of pixel y and U denotes the range
of the searching window. The weight w(x, y) represents the
similarity of pixels x and y, which is defined as

w(x, y) =
1

Z(x)
exp

(
−d(x, y)

h2

)
(34)

Z(x) =
∑
y

exp

(
−d(x, y)

h2

)
(35)

d(x, y) = Gρ‖v(Nx)− v(Ny)‖2 (36)

where d(x, y) represents the Euclidean distance between the two
neighborhoods centered on x and y. Gρ indicates a normalized
Gaussian weighting function with zero mean and ρ standard
deviation. h is an important smoothing parameter, which is used
to control the degree of filtering. The larger the value of h, the
smoother the images. Meanwhile, the more details may be lost.
Therefore, a suitable compromise value of h is usually selected
in practice.
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TABLE II
BASIC INFORMATION OF SAR IMAGE DATASETS

III. EXPERIMENT

To evaluate the performance of the proposed method, in this
section, experiments are carried out on two public [56] and
three self-made SAR image datasets. For public datasets, the
ground-truth maps are offered by their authors. For self-made
datasets, the reference change samples in ground truth are man-
ually marked pixel by pixel. The basic information of these
datasets is shown in Table II.

A. Experiment Settings

In the experiments, some change detection methods are in-
troduced for comparison: NR operator [28], ISFA [34], wavelet
fusion (WF) algorithm [37], neighborhood-based ratio and ex-
treme learning machine (NR-ELM) [57], PCANet [58], and
convolutional wavelet neural network (CWNN) [59]. The first
three methods are unsupervised, and the last three methods are
deep learning based. Some parameters in these methods are set to
the recommended value. For NR, the neighborhood size is set to
be 3 × 3. For ISFA, the convergence threshold is set to be 10−6.
For NR-ELM, the neighborhood size of the NR operator and the
feature extraction are set to be 3 × 3 and 5 × 5, respectively.
To control the variables, for three unsupervised comparison
methods, the same NLM algorithms are implemented to sup-
press the speckle noise. Three deep-learning-based methods are
implemented by the authors’ open-source codes.

Some quantitative evaluation indexes are adopted, including
false negatives (FN), false positives (FP), the overall error (OE),
F1 score (F1), and the Kappa coefficient (Kappa). It should be
noted that the Kappa coefficient and the F1 score are the two
most convincing indexes in change detection.

B. Ablation Experiment

In order to verify the effectiveness of the proposed framework,
the controlled experiment was first designed on the public Bern
dataset. Two original images of this dataset were acquired in
April and May 1999, respectively. The images size is 301× 301.
Fig. 7(a) and (b) shows the two original images, and Fig. 7(c)
shows the ground-truth map.

Fig. 8 and Table III show the results of this test. As can be
seen from Fig. 8(a), plenty of speckles are preserved, and some
of the unchanged regions are wrongly classified in the final
change map when using single ISFA. The result using single
LR operator is also unsatisfying. The classification accuracy
has been improved greatly when using the NSCT to obtain the

Fig. 7. Bern dataset. (a) Image acquired in April 1999. (b) Image acquired in
May 1999. (c) Ground-truth map.

Fig. 8. Change detection results of the Bern dataset using (a) single ISFA,
(b) single LR operator, (c) NSCT without NLM, and (d) proposed NSCT-NLM.

TABLE III
RESULTS OF THE CONTROLLED EXPERIMENT ON THE BERN DATASET

better DI. The Kappa coefficient is nearly at 0.83, which is a very
high value without despeckling. Fig. 8(d) shows the result when
adding the despeckling algorithm into the framework. There are
hardly speckles preserved in the final change map, and the value
of Kappa coefficient rises almost 4 percentage points to 0.87.
The improvement of the classification accuracy is significant as
the implementation of NLM.
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Fig. 9. Sardinia dataset. (a) Image acquired in September 1995. (b) Image
acquired in July 1996. (c) Ground-truth map.

Fig. 10. Change detection results of the Bern dataset using (a) NR-NLM,
(b) ISFA-NLM, (c) WF-NLM, (d) NR-ELM, (e) PCANet, (f) CWNN, and
(g) proposed NSCT-NLM.

TABLE IV
RESULTS OF QUANTITATIVE EVALUATION ON THE BERN DATASET

C. Experiment on Two Public Datasets

In this section, we conducted the proposed framework on two
public datasets: the first one is the Bern dataset, as mentioned
in Section III-B, and the second one is the Sardinia dataset,
acquired in September 1995 and July 1996, respectively. The
image size is 412 × 300. Fig. 9(a) and (b) shows the original
images, and Fig. 9(c) shows the ground-truth map of this dataset.

The final binary change maps of the Bern dataset are given
in Fig. 10, and we zoom in on key areas for better visuals. The
results of quantitative evaluation are given in Table IV, and the
optimal two values of each evaluation index are shown in bold.
As can be seen from Fig. 10, the clean and clear changed re-
gions are extracted for three unsupervised comparison methods
because of the implement of NLM. Among all the methods, the
proposed NSCT-NLM shows the best performance. The reason
is mainly due to the strong capability of detail preservation, such
as the regions marked by the red rectangle. The results of CWNN
and NR-ELM are also satisfactory. NR-NLM, ISFA-NLM, and
WF-NLM are all working bad on edge protecting, which bring
high values of OE. PCANet shows the worst performance as a
large number of changed pixels are undetected.

Fig. 11. Change detection results of the Sardinia dataset using (a) NR-NLM,
(b) ISFA-NLM, (c) WF-NLM, (d) NR-ELM, (e) PCANet, (f) CWNN, and
(g) proposed NSCT-NLM.

TABLE V
RESULTS OF QUANTITATIVE EVALUATION ON THE SARDINIA DATASET

The final binary change maps of the Sardinia dataset are given
in Fig. 11, and the results of quantitative evaluation are given
in Table V. As shown in Fig. 11(a) and (c), some isolated noise
points are still preserved in the binary change maps of NR-NLM
and WF-NLM, which bring the low kappa values as well as
F1 scores. The classification accuracy of ISFA-NLM, CWNN,
and NSCT-NLM is very close, as the Kappa values are all over
than 0.85 and F1 scores are all over than 0.86. As a whole,
NSCT-NLM slightly outperforms the other two methods. We
can find that NSCT-NLM has a lower FN as 785, which means
fewer changed pixels are left out, such as the regions marked by
the red rectangle in Fig. 10(b), (f), and (g).

According to the above tests, we can see that the proposed
method shows satisfactory performance. In order to verify the
generalization ability, the further experiments are carried out on
three self-made SAR datasets, which contain different changed
types.

D. Experiment on the Sendai Dataset

The first dataset is the Sendai dataset. On March 11, 2011, a
strong earthquake and subsequent tsunami attacked the coastal
areas of Sendai, Japan. The tsunami caused devastating damage
and large swath of land was drowned [60]. This dataset has
three images, acquired on October 20, 2010, March 13, 2011,
and March 23, 2011, respectively. As the row images are too big
to process, one part of the changed regions is selected with the
size of 1001 × 1001. Fig. 12(a)–(c) shows the original images,
and Fig. 12(d) and (e) shows the two ground-truth maps.

Fig. 13 shows the DI of the first two images generated by
NR, ISFA, WF, and the proposed NSCT. For the NSCT, we
set the value of the threshold parameter h to be 0.7. As can be
seen from Fig. 13, the DI generated by NR has low values of the
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Fig. 12. Sendai dataset. (a) Image acquired in October 20, 2010. (b) Image
acquired in March 13, 2011. (c) Image acquired in March 23, 2011. (d) Ground-
truth map of the first two images. (e) Ground-truth map of the last two images.

Fig. 13. Different DI generated by (a) NR, (b) ISFA, (c) WF, and (d) proposed
NSCT.

overall pixels, and the edges of the change regions are a bit fuzzy.
Intuitively, there is a better separation between the changed and
unchanged regions for ISFA. Visually, the difference between
WF and NSCT is difficult to distinguish.

In order to have a better comparison, Fig. 14 shows the DI
in the forms of the 3-D map and the pseudocolor map. The
chroma values represent the normalized gray values of the pixels.
As shown in Fig. 14(a) and (b), though the changed pixels
have high chroma values, there is a low contrast between the
changed and unchanged pixels. That means NR reduces the
difference of changed regions and background when utilizing
neighborhood information. On the contrary, ISFA maximizes
the contrast, but the chromaticity range of changed regions is
getting wider, which is approximately between 0.5 and 0.9.
Meanwhile, there are some strong speckles preserved in the
background. That is easy to generate the miss detection and false
detection. The results of WF and NSCT are somewhat similar,
but the separability of NSCT is higher, and the information in
the background is better suppressed. The chromaticity range of

Fig. 14. Pseudocolor maps and 3-D maps of DI. (a), (c), (e), and (g) are
the pseudocolor maps using the NR, ISFA, WF, and the proposed NSCT,
respectively. (b), (d), (f), and (h) are the 3-D maps using the NR, ISFA, WF,
and the proposed NSCT, respectively.

changed regions in the NSCT is approximately at 0.5–0.7. That
means the changed regions could be better extracted in the final
classification.

The selection of the parameter values will have great influence
to the results when using the NLM algorithm. Theoretically, the
larger the size of the searching window is, the better the result of
filtering is. However, it will be very time consuming if the size is
set too large. To obtain the best size of the searching window and
sliding window, a large number of repetitive experiments were
carried out on the Sendai dataset. Fig. 15(a) and (b) shows the
curves of time cost and Kappa coefficient with different sizes of
the searching window and sliding window, respectively. As can
be seen from the changes of the curves, the time cost will increase
dramatically with the increasing of the searching window size.
However, the Kappa coefficient is stagnant and even decreases
slightly. In other words, there are no good returns received by
the large size of the searching window. It can easily lead to over-
smoothing when using the large window in mid-low resolution
data. In addition, the size of the sliding window is often set to
be 3 × 3 or 5 × 5 on experience. From the curves, there are
no significant difference of the Kappa coefficient between them,
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Fig. 15. Line chart of time cost and Kappa coefficient with different sizes of the
searching window and sliding window. (a) Relationship between the time cost
and window sizes. (b) Relationship between the Kappa coefficient and window
sizes.

Fig. 16. Denoising result using NLM. (a) Fused DI generated by the NSCT.
(b) Novel DI after denoising using NLM with h is 0.4.

while the size of 5 × 5 is more time-consuming. To improve
the algorithm efficiency, in this article, the size of the searching
window is set to be 5 × 5, and the size of the sliding window
is set to be 3 × 3. Fig. 16 shows the despeckling results of the
Sendai datasets using the above parameter values. After filtering,
the speckle noise is suppressed significantly.

The final results are shown in Figs. 17 and 18. Fig. 17 shows
the changed regions submerged by tsunami, and Fig. 18 shows
the changed regions where the flood receded. The results of
quantitative evaluation are given in Tables VI and VII, respec-
tively. As can be seen from Fig. 17, there are hardly isolated
noise points for those unsupervised methods. A lot of speckles

Fig. 17. Change detection results of the first two images of the Sendai dataset
using (a) NR-NLM, (b) ISFA-NLM, (c) WF-NLM, (d) NR-ELM, (e) PCANet,
(f) CWNN, and (g) proposed NSCT-NLM.

Fig. 18. Change detection results of the last two images of the Sendai dataset
using (a) NR-NLM, (b) ISFA-NLM, (c) WF-NLM, (d) NR-ELM, (e) PCANet,
(f) CWNN, and (g) proposed NSCT-NLM.

TABLE VI
RESULTS OF QUANTITATIVE EVALUATION ON THE SENDAI DATASET I

are preserved in the final change maps generated by NR-ELM
and CWNN, while PCANet works better on suppressing the
speckles. As shown in Table VI, PCANet and the proposed
NSCT-NLM have the optimal two values of F1 score and Kappa
coefficient. PCANet has the lowest FN as 16 480, which means
it has a higher recall. NSCT-NLM has the lower FP as 9400,
which means it has a higher precision ratio. Both of them are
satisfactory. WF-NLM and NR-NLM take second place, while
ISFA-NLM, NR-ELM, and CWNN show the worse perfor-
mance. For ISFA, a larger number of changed pixels is left out,
which leads to a bad result.

In Fig. 18, unsupervised methods show better than those
deep-learning-based methods. As indicated in Table VII, WF
and NSCT-NLM, as the image fusion methods, obtain the higher
F1 scores and Kappa values. NSCT-NLM gets the lowest OE,
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TABLE VII
RESULTS OF QUANTITATIVE EVALUATION ON SENDAI DATASET II

Fig. 19. Gulf of Mexico dataset. (a) Image acquired in March 2010. (b) Image
acquired in June 2010. (c) Ground-truth map.

TABLE VIII
RESULTS OF QUANTITATIVE EVALUATION ON THE GULF OF MEXICO DATASET

and it shows a better balance in the recall and precision ratio. The
results of three deep-learning-based methods are chaotic, and the
changed information is submerged in noise. All of them have
low F1 score and Kappa coefficient. The reason is mainly due
to the wrong choice of training samples. In these methods, the
positive and negative samples are selected by using the clustering
methods. The confidence degree of samples will be lower when
the clustering precision decreases due to the interference of the
speckles. The wrong training samples will lead to the wrong
classification of the DI.

E. Experiment on the Gulf of Mexico Dataset

The second dataset is the Gulf of Mexico dataset. On April
20, 2010, a serious oil spill happened in the north of Gulf of
Mexico. After several months, the spilled oil has rapidly spread
to the vast part of the Gulf of Mexico. Two images of this dataset
were captured in March and June 2010, respectively. The size
of them is 1038 × 731. Fig. 19(a) and (b) shows the original
images and Fig. 19(c) shows the ground-truth map.

The final binary change maps are given in Fig. 20. The
results of quantitative evaluation are shown in Table VIII. The
classification accuracy of the Gulf of Mexico dataset, in general,
is higher than that of the Sendai dataset. It is mainly because
there is hardly strong electromagnetic scattering in the surface
of sea. Therefore, the background of the Gulf of Mexico dataset
is smooth enough. On the contrary, the background of the Sendai

Fig. 20. Change detection results of the Gulf of Mexico dataset using (a)
NR-NLM, (b) ISFA-NLM, (c) WF-NLM, (d) NR-ELM, (e) PCANet, (f) CWNN,
and (g) proposed NSCT-NLM.

dataset mainly consists of building areas, which are easily to
generate a large number of strong scattering points. For the Gulf
of Mexico dataset, the unsupervised methods perform much
better than those deep learning based. From the perspective
of numerical, unsupervised methods are still keeping a higher
classification accuracy, especially the proposed NSCT-NLM,
which obtains the best values of F1 score and Kappa coefficient.
Three deep-learning-based methods show the bad performance
under the different evaluation indexes. It demonstrates that their
generalization ability is insufficient.

F. Experiment on the Poyang Lake Dataset

The third dataset is from Poyang Lake, Jiang Xi province,
China. Six images of this multitemporal dataset, which are cap-
tured from January 2009 to January 2010, present the dynamic
change tendency of Poyang Lake in one year. In summer and
autumn of 2009, the water surface area of Poyang Lake increased
greatly because of the persistent heavy rainfall in Yangtze River
Valley. In spring and winter, there is hardly heavy rainfall, and
the water surface area was shrunk. As shown in Fig. 21, a typical
changed region of Poyang Lake is selected in this experiment
with the size of 445 × 468. Fig. 21(a)–(f) shows the six images
and Fig. 21(g)–(k) shows five ground-truth maps of neighboring
two images.

All the comparison methods are implemented in every neigh-
boring two images. In order to save space, we exhibit only five
sets of visible experiment results of NSCT-NLM, as shown in
Fig. 22. The values of the Kappa coefficient for every method
are listed in Table IX. In order to be expressed vividly, the line
chart of the Kappa coefficient is presented as shown in Fig. 23.
In Fig. 24, we present the values of FN, FP, and OE of different
methods in forms of histograms. Generally, the classification
results in the Poyang dataset is not as good as in the first two
datasets. The reason mainly lies in the strong speckles. The
background regions of this dataset are rougher, and the changes
in some small areas are not obvious. Among all the methods,
NSCT-NLM shows a best performance. It keeps the lowest value
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Fig. 21. Poyang Lake dataset. (a) Image acquired on January 15, 2009. (b)
Image acquired on March 2, 2009. (c) Image acquired on July 18, 2009. (d)
Image acquired on September 2, 2009. (e) Image acquired on October 18, 2009.
(f) Image acquired on January 18, 2010. (g) Ground-truth map of the first two
images. (h) Ground-truth map of (b) and (c). (i) Ground-truth map of (c) and
(d). (j) Ground-truth map of (d) and (e). (k) Ground-truth map of the last two
images.

TABLE IX
FIVE GROUPS OF KAPPA VALUES FOR DIFFERENT METHODS

of OE and the highest value of Kappa coefficient all the time.
WF-NLM, NR-NLM, and PCANet also work well, while ISFA,
CWNN, and NR-ELM are instable.

From the above experiments, we can see that the proposed
NSCT-NLM has well generalization ability and strong robust-
ness. In summary, NSCT-NLM is a superior method for multi-
temporal SAR image change detection.

G. Parameter Analysis

There are two main classes of parameters in our algorithm: the
parameters used in generating the fused DI and the parameters
used in filtering the fused DI. The former mainly includes the
convergence threshold σ in ISFA and the matching threshold T
in contourlet fusion. The latter mainly includes the searching

Fig. 22. Change detection results of the Poyang Lake dataset using NSCT-
NLM. (a) Detection results of the first two images. (b) Detection results of the
second and third images. (c) Detection results of the third and fourth images.
(d) Detection results of the fourth and fifth images. (e) Detection results of the
last two images.

Fig. 23. Line chart of the Kappa coefficient for different methods.

window size L, the sliding window size l, and the smoothing
parameter h. Based on experience, the changes of σ would not
make an appreciable difference to the classification results, so
σ is set to be a small value as 10−6. The L and l usually have
an important impact on filtering performance. To balance the
filtering accuracy and computing time, we select two compro-
mise values as 5 × 5 and 3 × 3, as described in Section III-D.
The selection of T and h, theoretically, could affect the final
classification results significantly. To evaluate their influence on
classification accuracy, we analyze the relationships between
Kappa coefficients and their values using the above three SAR
datasets.

First, we vary the values of the matching threshold T from 0.5
to 0.95 with step 0.05, and other parameters remain the same. As
shown in Fig. 25, the Kappa value first increases and then reduces
as T increases. However, T has different impacts on different
datasets. As a whole, these trends are not obvious in Sendai
datasets as well as Poyang Lake datasets I and V. The reason
is that the separability between changed and unchanged regions
is very high in these datasets. The energy in the same local
areas of the different DI is very close; thus, the changes of fused
high-frequency subband coefficients are slight whether using the
comparison strategy as (29) or the weighted average strategy as
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Fig. 24. Values of three quantitative evaluation indexes. (a) Values of FN for
different methods. (b) Values of FP for different methods. (c) Values of OE for
different methods.

(30). On the contrary, the Kappa value changes significantly in
those datasets such as Poyang Lake datasets III and IV. We can
find that the peak values of the Kappa coefficient in all of these
datasets are obtained when T is between 0.65 and 0.75. To get
the best performance of the proposed method, we set T to be
0.7.

The smoothing parameter h controls the decay of the expo-
nential function and, therefore, decides the degree of filtering. In

Fig. 25. Relationship between the threshold parameter T and the Kappa
coefficient in different datasets.

Fig. 26. Relationship between the smoothing parameter h and the Kappa
coefficient in different datasets using NSCT-NLM.

Fig. 26, we present the results using NSCT-NLM with different
values of h in different datasets. The h is set from 0 to 2.0,
and other parameters remain the same. As the h increases, the
Kappa values increase rapidly and then reduce and converge
to a constant value gradually. Fig. 27 show the results in three
different datasets using four unsupervised methods. There are
similar change tendencies for different methods. When h is
small, the changes will lead to an obvious improvement of Kappa
values because of the deepening of filtering. However, the Kappa
values hardly change as h becomes larger, and they no longer
improve significantly as the fused DI is too smooth after a strong
filtering. When h is between 0.4 and 0.8, the peak values of the
Kappa coefficient are obtained.

Overall, the parameter h takes more important role in the final
results. According to the above analysis, the small value of h is
more suitable for the proposed method. Especially, when h is
less than 1, the high values of the Kappa coefficient are obtained.
Meanwhile, it should be noted that the value of h shall not set
to be less than 0.3 or the performance of the proposed method
will drop dramatically. In other words, the proposed method is
strong robust when h is between in 0.3 and 1, no matter how it
changes in this range.



LI et al.: CHANGE DETECTION IN MULTITEMPORAL SAR IMAGES BASED ON SFA 3021

Fig. 27. Relationship between the threshold parameter h and the Kappa
coefficient of unsupervised methods in (a) Sendai dataset I, (b) Gulf of Mexico
dataset, and (c) Poyang Lake dataset I.

IV. CONCLUSION

In this article, we proposed a new multitemporal SAR image
change detection method called NSCT-NLM. We first introduce
the SFA algorithm into SAR image change detection. The key
idea is to highlight the changed pixels by suppressing the differ-
ence between unchanged pixels. However, it is vulnerable to the
influence of noise. To overcome the deficiencies of SFA, a novel

contourlet fusion method is then adopted. It should be noticed
that fusion rules are not just based on individual pixels, the local
region information is also involved. In this novel fusion method,
the powerful feature extraction of SFA and the better antinoise
of LR are both made full use. The integration of SFA and LR can
make up for each other and improve the quality of the fused DI.
Meanwhile, the introduction of NLM eliminates the interference
from the strong speckles. The experiments are first conducted on
two public SAR datasets. The results demonstrate that the pro-
posed method is more effective than those comparison methods,
including other unsupervised methods and even deep-learning-
based methods. Then, we perform the additional experiments
on three self-made datasets, which contain the different types of
changes. The qualitative and quantitative results both show that
our proposed method has well generalization ability and strong
robustness. Especially, it has a greater potential on those SAR
images with low imaging quality.
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