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Abstract—A thermal hydraulic disaggregation of soil moisture
(THySM) algorithm was implemented to downscale NASA’s soil
moisture active passive (SMAP) enhanced soil moisture (SM) prod-
uct to 1 km over the continental United States (CONUS). This
algorithm was developed by combining thermal inertia theory with
a soil hydraulic-based approach that considers fine-scale SM spatial
distribution driven by both heat fluxes and hydraulic conductivity
in soils. Relative soil wetness values were estimated using land
surface temperature and normalized difference vegetation index
for the thermal inertia model and using soil properties for the
hydraulic model. The relative soil wetness values at 1 km from both
models were then combined by using weighting functions whereby
the spatial distribution of SM was governed more by thermal fluxes
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during times of strong heat transport and infiltration during mois-
ture abundant soil conditions. THySM values were evaluated using
in situ SM measurements from SMAP Core Validation Sites (CVS),
the US Department of Agriculture Soil Climate Analysis Network,
and the National Oceanic and Atmospheric Administration Cli-
mate Reference Network over CONUS. THySM shows higher accu-
racy than the SMAP / Sentinel-1 (SPL2SMAP_S) 1 km SM product
when compared to in situ measurements. The accuracy of THySM is
0.048 m3/m3 based on unbiased root mean square error (ubRMSE),
outperforming SPL2SMAP_S by 0.01–0.02 m3/m3. The ubRMSE of
THySM 1 km SM over the SMAP grassland/rangeland-dominated
CVS sites is better than 0.04 m3/m3, which meets the SMAP mission
SM accuracy requirement applied at 9 and 36 km.

Index Terms—Agriculture, hydrology, microwave remote
sensing, soil moisture active passive (SMAP), soil moisture.

I. INTRODUCTION

SOIL moisture (SM) plays an important role in soil water
and heat transport at the land surface that influences many

hydrometeorological and biospherical processes [1]. Accurate
SM information improves flood and drought predictions [2], [3],
and provides a critical indicator for determining agricultural field
activities (e.g., planting, fertilizer application, and irrigation)
and valuable information for yield and production forecasts for
food security [4]–[8]. Manual measurements of SM are often
constrained to small domains due to the cost and intensive labor
involved; however, low-frequency microwave remote sensing
technology, particularly at frequencies of 1–10 GHz, can provide
surface SM estimates in an efficient way over large domains due
to the high sensitivity of microwave measurements to changes
in soil water content.

Satellite-based remote sensing missions such as the European
Space Agency’s Soil Moisture and Ocean Salinity (SMOS)
[9], since 2010, and the more recent National Aeronautics and
Space Administration’s (NASA) Soil Moisture Active Passive
(SMAP) [10], since 2015, provide global SM products every 2–3
days at a spatial resolution of ∼36 km. These missions operate
microwave radiometers at an L-band frequency of 1.41 GHz,
which is optimal for SM monitoring due to its higher sensitivity
to water change deeper in soils, greater cloud and vegetation
penetration capability, and higher roughness tolerance compared
to other higher frequency instruments such as C- and X-band
sensors [11], [12]. SMAP SM products have been used suc-
cessfully in both hydrologic and agricultural applications [6],

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3789-594X
https://orcid.org/0000-0002-1913-0353
https://orcid.org/0000-0002-2596-8670
https://orcid.org/0000-0002-0448-7616
https://orcid.org/0000-0001-7431-9004
https://orcid.org/0000-0002-6532-2663
https://orcid.org/0000-0003-1354-1677
https://orcid.org/0000-0001-9021-8705
https://orcid.org/0000-0002-8081-8018
mailto:pang-wei.liu@nasa.gov
mailto:rajat.bindlish@nasa.gov
mailto:peggy.e.oneill@nasa.gov
mailto:bf3fh@virginia.edu
mailto:vlakshmi@virginia.edu
mailto:zhengwei.yang@usda.gov
mailto:zhengwei.yang@usda.gov
mailto:michael.cosh@usda.gov
mailto:tarabongio@gmail.com
mailto:chandra.holifield@usda.gov
mailto:patrick.starks@usda.gov
mailto:john.prueger@usda.gov
mailto:david.bosch@usda.gov
mailto:mark.seyfried@usda.gov
mailto:mark.williams2@usda.gov


LIU et al.: THERMAL HYDRAULIC DISAGGREGATION OF SMAP SOIL MOISTURE OVER THE CONTINENTAL UNITED STATES 4073

[13]–[16]. While SMAP provides wide spatial coverage and
high revisit frequency, SMAP’s coarse spatial resolution may
not be able to provide detailed SM information that adequately
accounts for heterogeneity in the domain and permits accurate
estimation of terrestrial hydrometeorological processes. Previ-
ous studies suggest that flood/drought prediction and assessment
may be improved by utilizing high-resolution SM information
[17]–[19]. SMAP SM products at ∼36 km spatial resolution is
also much coarser than the average size of agricultural fields in
the United States (US), which is in the order of 1 km [20]. The
spatial resolution of SMAP is therefore inadequate for field-scale
agricultural management since the spatial distribution of SM in
agricultural regions at this scale can be heterogeneous due to
varying crop types, crop growth stages, and soil properties.

Various methodologies have been proposed to enhance the
spatial resolution of radiometer-retrieved SM through disaggre-
gation. Soil moisture disaggregation is based on the assumption
that the spatial distribution of SM within a satellite footprint
can be correlated to geophysical variables [e.g., evapotranspi-
ration, land surface temperature (LST), vegetation indices, soil
textures, topography] at a fine scale. After building relationships
between the soil water variability and geophysical parameters,
the disaggregation process is conducted by maintaining the
mean of disaggregated SM within a coarse scale matched to the
satellite-based measurement. Disaggregation algorithms can be
categorized as model-based, satellite-based, and geoinformation
data-based approaches [21]. Model-based approaches typically
incorporate SM at a coarse scale with either statistical [22]–[24]
or physical models [25]–[29] running at a fine scale to constrain
and optimize SM estimates. One of the promising approaches is
to assimilate the radiometer-retrieved SM at a coarse scale into
a land surface model (LSM) running at a fine scale to improve
SM estimates [27], [29]. These approaches require abundant
geophysical and climate input information to drive models and
extensive computational force when seeking estimates at a 1 km
resolution across a large domain.

Satellite-based approaches utilize remotely sensed observa-
tions from either active microwave [30]–[35] or optical/thermal
sensors [36]–[46] to correlate to subgrid SM variation for the
disaggregation. Given wide spatial coverage and regular revisits
of many satellites, this approach is considered more applicable
for large domains at near-field-size resolutions. The relationship
between soil moisture and the variables from satellite obser-
vations can be built by more physically based theory or data
driven-based approaches. For example, SMAP applies radar
backscattering coefficients from the European Union’s Coper-
nicus Sentinel-1 satellites to disaggregate SMAP brightness
temperature (TB) based on the high correlation between radar
backscattering coefficient and radiometric brightness tempera-
ture for a given soil moisture condition. Then, SM is retrieved
from fine scale TB to provide the SMAP/Sentinel-1 Level 2 SM
product (SPL2SMAP_S) at 3 and 1 km [34], [35]. However,
the temporal availability of this data product is reduced by
∼70% due to Sentinel-1’s narrower swath and less frequent
(6–12 days) satellite revisits compared to SMAP [47]. In con-
trast, approaches using optical/thermal sensors were developed
based upon the triangle method, which correlates a tripartite

relationship between LST, vegetation content, and SM [48],
[49]. Merlin et al. [37], [38] developed the DISaggregation
based on Physical And Theoretical scale CHange method that
utilized evaporation/evapotranspiration information as a proxy
for the disaggregation, while Fang et al. [41]–[43] developed a
thermal inertia model that was based on a physical relationship
between changes of LST to SM for the disaggregation. Although
optical/thermal data-based approaches have demonstrated their
usefulness in SM disaggregation, there are often data gaps using
this approach when cloud cover limits the sensor’s view of the
land surface [47].

In addition to more physically based approaches, data-driven
approaches using machine learning (ML) algorithms have been
developed for disaggregating SM due to their ability to capture
the nonlinear relationship between SM and multiple variables
[50]–[55]. For example, Srivastava et al. [50] implemented
artificial neural network, support vector machine , and relevance
vector machine algorithms with moderate resolution imaging
spectroradiometer (MODIS) LST to disaggregate SMOS SM
to demonstrate the effectiveness of the ML approaches on SM
disaggregation. Nowadays, additional ML algorithms have been
proposed. Liu et al. [55] compare six of the most common ML
algorithms for SM disaggregation and found that the random
forest (RF) algorithm may be the most suitable approach in the
ML family due to its flexibility for randomization and capability
for ensemble approach.

Unlike satellite-based approaches that use dynamic remotely
sensed observations, geoinformation data-based methods uti-
lize static geophysical variables for the disaggregation process
that are independent of the cloud cover and can provide data
gap filling. Geoinformation data-based methods correlate SM
spatial distribution to topography [56], [57] and soil attributes
[58]–[60]. Across various hydroclimates and spatial scales, Gaur
et al. [61] conducted a spatial statistical analysis which found
that soil texture heterogeneity was the most dominant geophys-
ical factor affecting water distribution, particularly at scales of
0.8–1.6 km. Based upon these findings, Gaur and Mohanty [60]
proposed a nomograph approach for SM disaggregation that
correlates the heterogeneity using semivariograms of SM change
to that of soil texture, in which a scaling parameter linking these
two factors is a function of soil texture variability and normalized
soil wetness at the coarse scale. This approach requires intensive
SM measurements at fine scales to build the model; thus, it is
considered applicable only in regional or catchment domains.
Montzka et al. [59] utilized a first-order stochastic model for
gravity-driven flow derived from the Mualem–van Genuchten
(MG) equation [62] that provides a closed form equation to esti-
mate subgrid SM variation as a function of the standard deviation
of soil properties and mean SM within the coarse scale. Soil
moisture disaggregation was conducted by using field capacity
(FC) as the proxy to allocate water content distribution in the
near-surface soil within a satellite footprint [59]. Using a more
physically based function enables this soil hydraulic approach
to be implemented in a large domain; however, geoinformation
data-based approaches only consider water movement effects
in soils, which may underestimate the impacts of surface heat
transport and vegetation cover on land surface processes.
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Notably, model-based, satellite-based, and geoinformation
data-based methodologies have their strengths and weaknesses,
and the disaggregation technique developed depends upon ap-
plication goals and requirements. It is crucial to develop an SM
disaggregation methodology that is able to combine approaches
based upon different hypotheses to provide complementary
information. In this study, we developed a thermal hydraulic
disaggregation of soil moisture (THySM) algorithm to combine
the thermal inertia and soil hydraulic approaches. The goal
of this study is to improve the spatio-temporal resolution of
SMAP SM for better applicability to hydrology and agriculture
in the continental US (CONUS). We developed weighting func-
tions, based on effective land surface heat transport rate and
soil water capacity rate, to allocate contributions from the two
disaggregation approaches that vary over different hydroclimatic
conditions. More importantly, inclusion of the soil hydraulic
approach compensates for the data gaps due to the occurrence
of clouds that block LST and normalized difference vegetation
index (NDVI) retrievals from satellite sensors which limits the
use of the optical/thermal-based approach. Specific objectives
of this study were to: 1) develop and implement THySM over
CONUS; 2) validate THySM results using dense and sparse in
situ soil moisture networks; and 3) compare the performance
of THySM with SMAP/Sentinel-1 SM products at 1 km res-
olution. The study demonstrates the feasibility of THySM to
provide consistent high spatio-temporal resolution soil moisture
at reasonable accuracy for future applications.

II. SOIL MOISTURE DISAGGREGATION MODELS

A. Thermal Inertia Model

Thermal inertia is conceptually based on the hypothesis that
lower heat fluxes in wet soils result in smaller LST change during
the day, while dry soils experience larger LST changes. Using
thermal inertia theory, Fang et al. [41] developed an approach
that correlates SM to the change of LST to estimate soil wetness
distribution. A linear relationship between SM and the LST
difference (θ – ΔTS) is formulated in the following equation:

θ (i, j) = a0 + a1ΔTs (i, j) (1)

where θ and ΔTs represent the mean daily SM and the max-
imum difference of LST during a day at the location of (i, j),
respectively, and a0 and a1 are two model parameters obtained
using regression [41]–[43].

In our study, LST and SM from the Noah land surface model
in the North American Land Data Assimilation System Phase
2 (NASA-GSFC NLDAS-2) [63] were used to build the θ –
ΔTS relationship. Based on their corresponding NDVI, LST
and SM data were grouped in 0.1 increments from 0–1 (ten total
groups) to represent different vegetation conditions. Although
the optimal grouped value for NDVI may vary in different areas
under various landcover conditions, the use of a constant value at
0.1 maintains computational efficiency for implementation in the
CONUS domain, and its applicability has been demonstrated for
such a domain [43], [47]. The NDVI values were obtained from
the NASA Land Long Term Data Record datasets (NASA-GSFC
LTDR) [64]. A regression between SM and LST was conducted

on a per-pixel basis and under different levels of vegetation
to generate a look-up table. Soil moisture at 1 km was then
estimated using high-resolution LST and NDVI from MODIS,
as well as the look-up table. LST from MODIS aboard the
Aqua satellite was used because it more likely provides the
maximum LST difference due to its overpass times at 1:30
A.M./P.M. Disaggregation was conducted to maintain the mean
SM at the SMAP satellite measurement scale using the following
equation:

θd (i, j) = θ (i, j) +

[
Θ− 1

N

∑
n

θ (i, j)

]
(2)

where θd and Θ are the disaggregated and SMAP soil moisture,
respectively. This approach has previously been implemented
for both watershed and continental domains [41]–[43], [47],
[65], [66].

B. Soil Hydraulic-Based Model

The soil hydraulic-based disaggregation was conducted using
FC as a proxy to allocate the SM distribution within the scale of
satellite measurements, as shown in the following equation:

θs (i, j) = Θ + σθ (Θ) · FC (i, j)− FC
σFC

(3)

whereθ s andΘ are the disaggregated SM using the soil hydraulic
approach and SMAP SM, respectively [59]. FC and σFC are
the mean and standard deviation of FC at the SMAP scale,
respectively. The FC at fine scale was used because it can be
considered as the water holding capability of soils and represents
water content variability under natural drainage conditions. The
FC was estimated using MG’s soil water retention and hydraulic
conductivity models with soil texture properties [62]. σθ(Θ) is
the standard deviation of SM at the SMAP scale, which rep-
resents the spatial variability of soil moisture within an SMAP
footprint.

Spatial variability of SM within a satellite-based observation
scale is typically found to be highly correlated to the mean
of SM [62], [67], [68] and may be dominated by subgrid het-
erogeneity of soil properties within the satellite footprint [60],
[61], [69], [70]. In hydrology, various numerical models, such as
Brooks–Corey and MG models [71], [72], have been proposed to
describe soil water retention and hydraulic conductivity curves
for one-dimensional unsaturated gravitational flow and transport
based upon Darcy’s law [62], [73]. Physically based formula-
tions to describe a two-dimensional (2-D) SM variation to its
corresponding mean,σθ(θ̄), can be derived from these models as
functions of soil hydraulic properties using a stochastic analysis
in a heterogeneous 2-D space [62], [73], [74]. In the study, we
used the formula developed from the MG model to represent
the spatial variability of SM within a satellite-based observation
scale (detailed mathematical formulation described in [62]),
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which is as follows:

σ2
θ

(
h̄
)
=

b20

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b21σ
2
α + b22

[
σ2
fρf

(1+a2ρf )a2
+ a1σ

2
αρα

(1+a2ρα)a2
+ a3σ

2
nρn

(1+a2ρn)a2

]
+ b23σ

2
n + b24σ

2
θs

+ 2b1b2

(
− a1σ

2
αρα

1+a2ρα

)
+2b2b3

(
− a3σ

2
nρn

1+a2ρn

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(4)

where σθ(h̄) is the standard deviation of SM at its mean pres-
sure head, h̄, within a satellite observable scale and σ and
ρ represent the standard deviation and vertical correlation length
of parameters f , α, and n , respectively. Subscripts f , α, and
n are natural log-transformed saturated hydraulic conductivity
(ln(Ks)) and two shape parameters of the MG model, respec-
tively. The vertical correlation lengths in surface soil are fixed
at 10 cm [62]. Coefficients a1, a2, a3, and b0, b1, b2, b3, and
b4 are functions of mean values of h, α, and n listed in [59]
and [62]. Hydraulic parameters f , α, and n were estimated
from pedotransform equations using soil texture and chemical
properties, including clay and silt fractions, bulk density, pH
in H2O, cation exchange capacity, and organic carbon content
[75]. Coefficients and pedotransform equations are listed in the
Appendix.

The σθ(h̄) in (4) can be transformed to σθ(θ̄) by converting
mean pressure head to mean SM using the following equation:

θ̄ =
(
θs − θr

) ( ᾱh̄

1 +
(
ᾱh̄
)n̄
)(

n̄
(
ᾱh̄
)n̄

+ 1

n̄
(
ᾱh̄
)n̄

)
+ θr (5)

where θs and θr are saturated and residual SM at the SMAP
resolution, respectively. θs was set at soil porosity calculated
from the bulk density dataset, and the θr was set at a constant
0.02 m3/m3, matching to the lowest available SM value from
SMAP [76].

The soil hydraulic-based downscaling approach was devel-
oped based on a simple bucket theory in which the SM distri-
bution relies on various magnitudes of infiltration due to het-
erogeneous soil textures. These processes may dominate water
transport in the near surface soil when water content is high and
thermal flux is weak as during winter seasons, cloudy days, and
days with high SM content. While the approach is independent
of cloud cover, it may underestimate the impacts of thermal
fluxes and vegetation in regions with high surface temperature
and water deficient domains.

C. Thermal Hydraulic Disaggregation Approach

In the study, a THySM algorithm was developed. The THySM
approach combines thermal inertia and soil hydraulic ap-
proaches leveraging their individual strengths and compensating
for their limitations. Weighting functions based on the effective
land surface heat transport rate (WT ) and soil water capacity
rate (WS) are used for the combination, formulated as follows:

θTH = θd · WT

WT +WS
+ θs · WS

WT +WS
(6.1)

WT =
LH+ SH

{|LH|+ |SH|+ |GH|}90PRC

(6.2)

Ws =

{
θs/FC; 0 < θs < FC
1; θs ≥ FC

(6.3)

where θTH is the disaggregated SM using the proposed thermal
hydraulic (TH) approach, LH, SH, and GH are cumulated latent,
sensible, and ground heat fluxes, respectively, the subscript
90PRC represents the 90th percentile of total energy flux over
CONUS, and FC is the field capacity at 1 km. The heat flux
values used to develop the WT weighting function are provided
by NLDAS-2. Although uncertainties may exist in these heat flux
variables, estimates from NLDAS-2 have provided reasonable
results that captured the spatial and seasonal dynamics of heat
fluxes [77].

Estimation of the land surface heat transport rate, WT (6.2),
assumes that during times of large heat transfer between the
land surface and the atmosphere the SM estimate relies more
on the thermal inertia approach because SM distribution may be
primarily driven by heat flux processes in the soil and vegetation.
In the WT numerator, LS and SH are the two components of land
surface heat fluxes that control the dynamics of the atmospheric
boundary layer and largely govern water transport from the soil
surface to the air [78]. LH, SH, and GH values at 1 A.M.–1
P.M. and 1 P.M.–1 A.M. were obtained from NLDAS-2 (based on
the MODIS Aqua satellite’s overpass times) for disaggregating
SMAP SM from A.M. and P.M. half orbits, respectively. In the
WT denominator, the summation of absolute values of LH,
SH, and GH represents the total energy fluxes on the land
surface, regardless of their direction, and the 90th percentile
of total energy flux during 2015–2020 over CONUS was used
as a reference value for high heat energy condition. The 90th
percentile was selected to avoid the extreme values that may
result from imprecision in the NLDAS-2 model. Note must be
taken that the weighting function from heat flux variables is used
to indicate the magnitude of impact on spatial SM distribution
due to heat transport, instead of directly deriving SM. This
approach relies on the relative magnitude of the heat fluxes and
not on the absolute value. THySM disaggregation methodology
preserves the absolute coarse resolution soil moisture estimated
from remote sensing observations. Therefore, the disaggregated
SM from the SMAP product is unique as compared to modeled
and data assimilation estimates. In addition, the usage of public-
released modeled products ensures stable and consistent data for
operational purposes.

The weighting function using the soil water capacity rate, WS

(6.3), for the soil hydraulic approach is based on the assumption
that water distribution in wet soils is more strongly driven by
gravitational flow as compared to in dry soils. Soil moisture was
normalized by its FC to determine a relative level of wetness.
The WT and WS were constrained between 0 and 1 and were
normalized (6.1) to combine the contributions from thermal
inertia and hydraulic approaches. When both thermal inertia and
hydraulic-derived SM were available, weighting functions were
applied to apportion the impacts of thermal flux, vegetation,
and infiltration on SM distribution. During cloudy days when
thermal inertia-derived SM was not available, only the soil
hydraulic-based approach was used to fill the gaps where the
surface temperature values are not available.
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Fig. 1. Study region and in situ stations used for evaluating the statistical performance of soil moisture products in CONUS.

III. STUDY REGION AND DATASETS

A. Study Region

This study implemented the THySM approach to enhance
the spatio-temporal resolution of SMAP SM in CONUS and
then evaluated its performance. Ancillary datasets used to build
and implement the disaggregation processes are from land sur-
face models and remotely sensed products. Measurements used
for evaluation were obtained from nationwide in situ stations
managed by the US Department of Agriculture (USDA), the
National Oceanic and Atmospheric Administration’s (NOAA)
U.S. Climate Reference Network (USCRN), and the University
of Texas at Austin (TxSON core site). USDA sites included both
the Soil Climate Analysis Network (SCAN) and instrumented
watersheds operated by the Agricultural Research Service. Fig. 1
illustrates the CONUS study region and geographical distribu-
tion of the in situ stations. Details of the datasets are described
in Section III-B and summarized in Table I.

B. Datasets

1) Data for Thermal Hydraulic Disaggregation: Soil mois-
ture from the SMAP Passive Enhanced Level 2 product [76],
[79], hereafter referred to as SMAP_PE, was disaggregated in
the study. The SMAP_PE retrievals provide SM in the near-
surface (0–5 cm) at a spatial resolution of 33 km, posted on a 9
km version of the Equal-Area Scalable Earth grid (EASE GRID
2.0). The SMAP’s revisit period is 2–3 days at 6 A.M. or 6 P.M.
local solar time (roughly ∼1.5 days if both A.M. and P.M. orbits
are used, allowing global SM monitoring at a temporal repeat of
∼1.5 days).

Soil moisture (0–10 cm) and skin temperature estimates from
the Noah LSM from NASA GSFC NLDAS-2 [63] were used
to build a relationship between SM and surface temperature
changes [42], [43]. The model-driven datasets provide long-term
continuous data from 1979–2018 that were used to ensure a
robust model and to create a reliable look up table for the thermal
inertia disaggregation approach. NLDAS-2 SM and temperature

were grouped based on vegetation level corresponding to 0.1 in-
crements of NDVI data from the NASA-GSFC LTDR Advanced
Very High Resolution Radiometer dataset [64] in building the
long-term relationship [42], [43].

LST and NDVI at a 1 km spatial resolution from MODIS
aboard the Aqua satellite (MYD11A1) [80] and on the Terra
satellite (MOD13A2) [81], respectively, were used to implement
the thermal inertial algorithm to disaggregate SMAP SM. Given
the Aqua overpass times of 1:30 A.M./P.M. local solar time,
MYD11A1 data are more likely able to provide the nearly
maximum LST change during a day. The cloud cover effect on
NDVI may be lower for the Terra satellite (local overpass time of
10:30 A.M./P.M.) compared to Aqua. In addition, the MOD13A2
provides NDVI at a 16-day temporal resolution. Therefore, when
the LST is available, matching NDVI values are obtained by
linear interpolation in time between the two nearest available
datasets.

Soil physical (sand and clay fractions; bulk density) and
chemical properties (pH in H2O; cation exchange capacity;
organic carbon content) at 1 km were used to implement the
soil hydraulic-based approach [59]. The soil physical property
dataset is a blended product identical to that used for the SMAP
SM retrieval algorithms. Soil chemical properties were obtained
from the SoilGrids database (https://soilgrids.org) managed by
the International Soil Reference and Information Center [59].
Land surface energy balance components including latent, sen-
sible, and ground heat were obtained from the Noah LSM in
NLDAS-2 to estimate the effective land surface heat transfer
rate for weighting SM from the thermal inertia approach. These
datasets were validated using in situ measurements and provide
reliable heat flux information in CONUS [77].

2) Data for THySM Evaluation: In situ SM datasets ob-
served at a soil depth of 5 cm from a number of SMAP Core
Validation Sites (CVS), USDA SCAN, and NOAA USCRN
were used to evaluate the performance of the THySM algo-
rithm over CONUS. The CVS are intensively monitored areas
approximately the size of a single SMAP footprint with multiple
SM stations [82], [83] (see Fig. 1). Detailed descriptions of
the selected areas and their experiments have been reported

https://soilgrids.org
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TABLE I
DATASETS USED IN THE STUDY

Note: ∗A “daily” temporal resolution refers to the availability of data somewhere in CONUS each day.

previously [82], [84]–[89]. Table II summarizes the SM stations
and climate and geophysical conditions at the CVS used in
the current study. In addition, in situ SM data from sparse
networks including SCAN [90] and USCRN [91] were used
to evaluate the performance of the THySM algorithm across
diverse conditions over CONUS. These sparse networks provide
in situ SM observations distributed throughout CONUS and have
been used to validate existing satellite SM missions [34], [85],
[92]–[97].

IV. RESULTS AND DISCUSSION

A. Weighting Functions for THySM

Fig. 2 shows normalized WT and WS, as used for THySM in
(6.1), in different seasons across CONUS. Values over 2015–
2020 were averaged in January, April, July, and October to
represent winter, spring, summer, and fall seasons, respectively.
As expected, normalized WT values were lowest during winter,
generally <0.2, across CONUS when the thermal fluxes were
weaker [see Fig. 2(a)]. During this period, infiltration processes
in near-surface soils dominate the spatial heterogeneity and are

weighted higher [see Fig. 2(e)]. The THySM approach com-
pensates for the underperformance of thermal-based approaches
during winter or cold seasons [37], [42]. Normalized WT values
increased gradually throughout spring and summer when heat
fluxes started to control water transport near the soil surface. In
particular, higher normalized WT values were observed in the
Western US because climate-hydrological conditions are hot and
dry in this region. In the Eastern US, even though strong heat
fluxes occur in summer, the relatively wetter soils will exhibit
non-negligible gravitational flow. During fall, the normalized
WS transitions to dominate water transport processes.

Fig. 3 shows the time series of normalized WT and WS

during 2015–2020 for two examples of 1 km x 1 km pixels near
the center of South Fork, Iowa, and Walnut Gulch, Arizona.
These two watersheds were selected as examples due to their
differences in climate-hydrological conditions and landscapes,
where the South Fork watershed is humid and dominated by
cropland, and Walnut Gulch is drier (with about half of South
Fork’s annual rainfall) and dominated by open shrubland (see
Table II). In the South Fork watershed, normalized WS values
dominated during fall, winter, and early-spring. High values
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TABLE II
CORE VALIDATION SITE INFORMATION, CLIMATE, AND GEOPHYSICAL CONDITION

Fig. 2. Maps of normalized heat transport rate (WT) averaged over (a) January, (b) April, (c) July, and (d) October, and normalized water capacity rate (WS)
averaged over (e) January, (f) April, (g) July, and (h) October in CONUS. These months are used to represent the winter, spring, summer, and fall seasons,
respectively.
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Fig. 3. Time-series variation of WT and WS in (a) South Fork, Iowa, and (b) Walnut Gulch, Arizona. Precipitation measurements were obtained from in situ rain
gauges of CVS stations located in the selected pixels.

of WS were observed from December to February because of
cold soils resulting in low latent and sensible heat fluxes. As
a result, THySM relied heavily on the soil hydraulic approach
during this period. Normalized WT increased as temperatures
warmed during spring. Even though WT tended to dominate
WS during summer, their separation was not obvious, with
WT = ∼0.55 versus WS = ∼0.45. This pattern is likely due
to the rainy season in this region extending from spring to
early fall, which maintains elevated SM levels resulting in
higher WS.

Similar to the South Fork watershed, normalized WS in Walnut
Gulch dominated THySM during the winter. Because heat fluxes
were non-negligible during winter in Walnut Gulch, the normal-
ized WT did not reach as low as in the South Fork watershed.
Normalized WT started to increase beginning in mid-January,
intersected with normalized WS in March, and then dominated
the process with a value near 0.8 when hot and dry conditions
began in May. The rainy season in the region starts in July;
thus, the difference between WT and WS converged during
July–October when SM was maintained at a relatively high level.
During the rainy season, normalized WT values were ∼0.6, but
within one day of rainfall WS was higher than WT indicating
that the soil hydraulic approach dominated the disaggregation
process during these periods following rainfall.

The weighting functions, WT and WS derived from heat
flux variables and FC, respectively, were used to leverage the
impacts of heat transport and water infiltration on the spatial
SM distribution and for the SM disaggregation process. Such
an approach is unique from modeled and data assimilation SM
estimates.

B. Assessment of Thermal Hydraulic Behavior of Soil
Moisture

1) Spatial Analysis of THySM: The disaggregation process
using the THySM approach was applied in the CONUS domain
from April 1, 2015 to March 31, 2020, representing the first five
years of the SMAP mission. Fig. 4 shows a comparison of SM
maps between SMAP_PE and SMAP_THySM for descending
(AM) half orbits in the Little Washita watershed in Oklahoma
from August 27 to September 10, 2017. The region is dominated
by soil types of loam and silty loam in the northwest and east
of the region and by sandy loam and sand in the central and
southern parts of the watershed [see Fig. 4(a)]. Rainfall occurred
on August 25, 2017, followed by a two-week period with no
additional precipitation. Due to a 2–3 days revisit frequency,
both SMAP_PE and SMAP_THySM showed soil drying
(∼0.30–∼0.10 m3/m3) during this period [Fig. 4(b1)-(b7) and
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Fig. 4. (a) Soil texture classification map for Little Washita watershed, Oklahoma, where four soil classes including loam, silty loam, sandy loam, and sand are
presented; sand is the predominant soil texture in the central part of the watershed while loams dominate in the west and east of the watershed. (b1) to (b7) SMAP
Enhanced retrieved soil moisture during the drydown period on August 27, 28, 30, and September 2, 5, 7, and 10, 2017. (c1) to (c7) SMAP THySM retrieved soil
moisture corresponding to the same days as the SMAP Enhanced product. Compared to the SMAP Enhanced soil moisture products, the SMAP THySM results
more closely represent the soil moisture drydown patterns reflecting the geographical distribution of the soil texture classes [for example, compare (a) to (c4)]. As
expected, sandier soils dry down at a faster rate than loamy soils.

(c1)–(c7)]. Overall, SMAP_THySM revealed detailed SM pat-
terns as compared to SMAP_PE. For SMAP_THySM, retrieved
SM was relatively higher in the west and east of the watershed,
where soils are mainly loams and silty loams. In contrast, con-
ditions were drier in the central part of the watershed, which
is dominated by sandy loam and sandy soils [98]. The higher
resolution SMAP_THySM SM time-series images in Fig. 4
reflect the control imposed by soil texture on the timing of soil
drying [i.e., sandier soils have lower water holding capacity than
loam and silty loam soils, see Fig. 4(c4) for September 2, 2017
and compare to Fig. 4(a)]. Spatial SM patterns due to soil textural
differences were not observable with SMAP_PE data due to
its coarser spatial resolution. Spatial patterns of SM caused by
different soil textures in the Little Washita watershed have been
documented previously [98]–[100], with SM variation patterns
shown in the high-resolution SMAP_THySM images reinforc-
ing these findings. The SM observed from SMAP Sentinel-1,
hereafter referred to SMAP_SP, was not included in this analysis
because its lower temporal revisit frequency limits its ability to
observe short-term temporal SM dynamics.

A second analysis including spatial distribution of SMAP_SP
SM was conducted for Walnut Gulch, Arizona. Fig. 5
shows a comparison between optical images, SMAP_PE,
SMAP_THySM, and SMAP_SP on May 14, 2018 and July 1,
2018, during dry and wet seasons, respectively. Land cover in
the watershed is mostly open shrublands and grasslands [see
Fig. 5(a)], and is located between Mount Glenn and Mule

Mountain in the north and south [see Fig. 5(e)], respectively,
which consist of closed shrublands with denser vegetation.
The San Pedro River also traverses this region to the west
[see Fig. 5(e)]. Overall, both high-resolution SM maps from
SMAP_THySM and SMAP_SP present more discernable SM
features compared to the coarser resolution SMAP_PE product.
The SMAP_THySM images show relatively wet SM patterns
along the river and mountain areas, with SM patterns more
easily observed during the rainy season in July because soils in
these areas have better capability to hold water. Similar patterns
can be observed with SMAP_SP, although higher variability
of SM distribution was observed (partially due to noise in the
Sentinel-1 radar backscatter, which potentially contributes to a
wet bias in the SMAP_SP data). Additionally, a few data gaps
occurred in SMAP_SP because the disaggregated brightness
temperature in these pixels did not meet the retrieval quality
criteria.

The spatial SM distributions of SMAP_THySM and
SMAP_SP were evaluated by comparing data to in situ SM
measurements from CVS to understand their spatial repre-
sentativeness. Spatial unbiased root mean square deviations
(ubRMSDSpt) of SMAP_THySM and SMAP_SP compared
to in situ measurements were calculated on a daily basis
(7) whenever the high-resolution SM products were avail-
able. For example, there are 29 in situ stations in Walnut
Gulch, and the ubRMSDSpt was calculated using the 29 in situ
measurements and their corresponding 1 km SM pixels on the
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Fig. 5. (a) Optical image of Arizona and location of Walnut Gulch. Soil moisture maps in m3/m3 of (b) SMAP Enhanced at 9 km, (c) SMAP THySM at 1 km,
and (d) SMAP Sentinel-1 at 1 km on May 14, 2018 [dry day], and (e) optical image zoomed in to Walnut Gulch; soil moisture maps of (f) SMAP Enhanced at 9
km, (g) SMAP THySM at 1 km, and (h) SMAP Sentinel-1 at 1 km on July 1, 2018 [wet day].

TABLE III
MEAN AND STANDARD DEVIATION (SD) OF DAILY UNBIASED ROOT MEAN SQUARE DEVIATION IN THE SPATIAL DOMAIN (UBRMSDSpt) OF CONCURRENT 1 KM

SMAP_THYSM AND SMAP_SP SM TO IN SITU SOIL MOISTURE FOR THE CVS DURING APRIL 1, 2015 TO MARCH 31, 2020

days when SMAP_THySM and SMAP_SP were both available.
The equation for spatial unbiased root mean square deviations
is as follows:

ubRMS DSpt =

[
N∑
i=1

(
θt,i − θ̂t,i

)
/N

]1/2
(7)

where θ represents the unbiased SM from either SMAP_THySM
or SMAP_SP, and θ̂ is the in situ SM. Biases were considered
station/location dependent and were corrected using time-series
measurements from April 1, 2015 to March 31, 2020 at each
station before the calculation, i and t represent the ith in situ
station at the CVS on day t, and N is the sample number on day
t. The ubRMSDSpt calculation was restricted by 1) requiring at

least five available samples on the day for calculation, and 2)
omitting data whenever soil temperature was lower than 4 °C to
avoid freezing soils.

Fig. 6 shows histograms of ubRMSDSpt of SMAP_THySM
and SMAP_SP for eight CVS. The ubRMSDSpt of
SMAP_THySM generally occurs in the lower end of the
histograms (smaller ubRMSDSpt) for most sampling days
during the study period. Table III lists the mean and stan-
dard deviation (SD) of daily ubRMSDSpt at each CVS
when both SMAP_THySM and SMAP_SP were available.
SMAP_THySM shows smaller mean ubRMSDSpt in the range
of 0.035–0.061 m3/m3 at all CVS compared to SMAP_SP in the
range of 0.041–0.076 m3/m3, indicating a better representative
SM distribution from SMAP_THySM in these watersheds. In
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Fig. 6. Histograms of ubRMSDSpt of concurrent SMAP_THySM and SMAP_SP SM compared to in situ SM in SMAP Calibration / Validation Sites of (a)
Walnut Gulch, AZ, (b) Reynolds Creek, ID, (c) Little Washita, OK, (d) Fort Cobb, OK, (e) Little River, GA, (f) South Fork, IA, (g) St. Joseph, IN, and (h) TxSON,
TX. The blue and pink bars represent SMAP_THySM and SMAP_SP, respectively, and the darker grey-brown color shows the overlap shadow of the two bars.

TABLE IV
MEAN AND STANDARD DEVIATION OF DAILY UNBIASED ROOT MEAN SQUARE DEVIATION IN THE SPATIAL (UBRMSDSpt) OF ALL 1 KM SMAP_THYSM SM TO IN

SITU SOIL MOISTURE FOR THE CVS DURING APRIL 1, 2015 TO MARCH 31, 2020

addition, the larger SD of ubRMSDSpt over the study period
for SMAP_SP compared to SMAP_THySM indicates more
uncertain estimates of SM that may result from noise in the
radar measurements due to the complex scattering mechanisms
of active signals in the terrain [101]. Table IV lists the mean
and SD of daily ubRMSDSpt of SMAP_THySM in CVS given
all available data (i.e., not just those days when SMAP_SP
observations were also available), which represents the overall
spatial performance of SMAP_THySM. Note that there are 4 to
9 times more days of SMAP_THySM coverage (see Table IV)
compared to concurrent SMAP_THySM and SMAP_SP cover-
age (see Table III), illustrating one of the limitations of relying on
only SMAP_SP data. The mean daily ubRMSDSpt at the Walnut
Gulch, Little Washita, Fort Cobb, Little River, and TxSON
sites is less than or close to 0.04 m3/m3. The relatively larger
mean daily ubRMSDSpt (greater than or close to 0.05 m3/m3)

at Reynolds Creek, South Fork, and St. Joseph sites may be
due to complex topography and seasonally varying agricultural
activities in these regions.

2) SMAP_THySM Evaluation Using Core Validation Sites:
In addition to spatial comparisons, performance statistics for
SMAP_THySM were generated and compared with SMAP_SP
using metrics of unbiased Root Mean Square Error (ubRMSE)
and Correlation Coefficient (R) calculated at each 1 km SM
pixel and its corresponding in situ station from April 1, 2015 to
March 31, 2020. The ubRMSE and R of SMAP_THySM and
SMAP_SP were subsequently averaged over all stations in a
CVS. Fig. 7 compares the validation results of SMAP_THySM
and SMAP_SP products for descending (A.M.) and ascending
(P.M.) half orbits for the SMAP CVS. Metrics for SMAP_PE are
also included in Fig. 7 as references to evaluate the performance
of the disaggregation approaches used for SMAP_THySM and
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TABLE V
EFFECTIVE SAMPLE NUMBERS FOR CALCULATING PERFORMANCE STATISTICS FOR SMAP ENHANCED, SMAP_THYSM, AND SMAP SENTINEL-1 PRODUCTS AT

SMAP CALIBRATION/VALIDATION SITES DURING APRIL 2015 – MARCH 2020

Fig. 7. Unbiased RMSE and Correlation Coefficient of SMAP_PE,
SMAP_THySM and SMAP_SP soil moisture products for (a) AM and (b) PM
half orbits at Calibration / Validation Sites.

SMAP_SP. It should be noted that the SMAP_PE product is at
a spatial resolution of 33 km posted on a 9 km EASE2 Grid,
and the statistical values were obtained from the latest SMAP
assessment report, which covers the identical period as the cur-
rent study [97]. Effective sample numbers used for calculating

these statistics are listed in Table V. Statistics for SMAP_PE
were not calculated for the St. Joseph watershed in the SMAP
assessment report since St. Joseph, while a candidate cal/val site,
is not a core validation site because the in situ stations are not
uniformly distributed in space within the SMAP 33 km domain
in the area. Even though both Sentinel-1A and -1B satellites are
used for the SMAP_SP product, their low revisit frequencies
(∼6–12 days) and narrow swath result in low data availability in
the SMAP_SP product compared to SMAP_THySM, as shown
in Table V.

Overall, the ubRMSE and R values of SMAP_THySM at
different CVS range from ∼0.03 to 0.06 m3/m3 and ∼0.6 to
0.8, respectively, outperforming those of SMAP_SP (∼0.04 to
0.08 m3/m3 and ∼0.6 to 0.7, respectively; see Fig. 7). Similar
results were observed for both A.M. and P.M. half orbits. Both
SMAP_THySM and SMAP_SP had higher ubRMSE by about
0.015 and 0.023 m3/m3, respectively, compared to SMAP_PE
at a resolution of 33 km. This suggests that errors from the
higher resolution ancillary datasets and models may be prop-
agated through the disaggregation process and hence increase
uncertainties in the fine resolution products [38].

Table VI summarizes the performance statistics of
SMAP_THySM using all available samples during the study
period. These results are especially relevant and important for
the product end users. The statistical metrics obtained from A.M.
and P.M. half orbits performed similarly in ubRMSE for all the
CVS with differences less than 0.002 m3/m3, except for South
Fork. The ubRMSE statistics for Walnut Gulch, Little Washita,
Fort Cobb, and TxSON were less than or equal to 0.04 m3/m3,
which satisfies the SMAP mission SM accuracy requirement
applied at 9 and 36 km. These areas are classified as open
shrubland and grassland with relatively simplistic landscapes.
In contrast, the ubRMSE values in intensive agricultural areas
such as South Fork and St. Joseph reached as high as 0.066
m3/m3. This larger error may be due to the SMAP Single
Channel Algorithm’s use of static vegetation and roughness
parameters based on a simple land cover lookup table which
is not sufficiently robust to represent changing vegetation and
roughness conditions during the growing season. This results in
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TABLE VI
PERFORMANCE STATISTICS UNBIASED ROOT MEAN SQUARE ERROR (UBRMSE), ROOT MEAN SQUARE ERROR (RMSE), BIAS, AND CORRELATION COEFFICIENT

(R) FOR SMAP THYSM PRODUCTS FOR BOTH AM AND PM HALF ORBITS DURING APRIL 1, 2015—MARCH 31, 2020 AT SMAP CVS (ALL DATA USED)

higher errors in SMAP_PE for many agricultural areas, which
can then be propagated through the disaggregation algorithm
into the disaggregated SM retrieved at 1 km. In addition, the
high ubRMSE observed in Reynolds Creek (∼0.06 m3/m3) may
be due to its complex hilly topography especially for a semi-arid
region dominated by snowfall.

Table VII shows performance metrics for SMAP_THySM
and SMAP_SP for the CVS when concurrent SM data were
available for a comparison between the two products. Similar
to the behavior of SMAP_THySM, the ubRMSE values of
SMAP_SP were 0.059–0.085 m3/m3 in the Reynolds Creek,
South Fork, and St. Joseph watersheds, relatively higher than
those in other CVS with ubRMSE of 0.042–0.054 m3/m3 for
both A.M. and P.M. half orbits. Because the SMAP_SP algorithm
was developed based on a linear relationship between L-band
brightness temperature and C-band backscattering coefficient,
errors may be introduced due to radar noise, different scattering
physics observed by the SMAP radiometer and Sentinel-1 radar,
and mismatched overpass times between SMAP and Sentinel-1.
These potential differences cannot be accurately modeled by
the linear relationship used in the algorithm [47]. Therefore,
additional errors may deteriorate performances of SMAP_SP
in these complex landscape regions. Overall, SMAP_THySM
showed lower ubRMSE values in all CVS by 0.007 to 0.015
m3/m3 than those from SMAP_SP for both A.M. and P.M. half
orbits. In addition, the R values of SMAP_THySM were higher
in all CVS by 0.03 to 0.14 compared to those of SMAP_SP.
These results suggest that the thermal hydraulic disaggregation
algorithm is capable of providing a more stable and reliable high
resolution SM product than that from SMAP_SP.

3) THySM Evaluation Using Sparse Networks: In situ SM
measurements from the USDA-SCAN and NOAA-CRN sparse
networks were also used to evaluate the performance of
SMAP_THySM. These selected stations, identical to those
quality-controlled and used in [94], are well distributed over
the CONUS for various landscapes and can compensate for
the smaller spatial coverage of SMAP CVS. Statistical per-
formances of SMAP_THySM and SMAP_SP are presented

and compared using scatter plots with their ubRMSE and
R values in Figs. 8 and 9 for A.M. and P.M. half orbits,
respectively. Biases in SMAP_THySM and SMAP_SP were
removed at each station using time-series measurements be-
fore plotting. Land covers of the corresponding pixels at
1 km were based on the MODIS International Geosphere-
Biosphere Programme classification system used by the SMAP
mission.

Seventy-three of 145 sparse network in situ stations cor-
responding to 1 km SM pixels were classified as grassland,
while 26 stations were classified as shrubland, 26 stations as
cropland, and 20 stations as crop/natural vegetation mosaic.
In all, these sparse network stations provide tens of thousands
of samples for SMAP_THySM evaluation and are considered
representative of their land cover categories across CONUS.
SMAP_THySM values classified as grassland and shrubland
performed better than cropland and crop/natural vegetation mo-
saic with ubRMSEs of ∼0.048 and ∼0.040 m3/m3, respectively,
and Rs of ∼0.78 and ∼0.58, respectively. Similar to the CVS
results, the sparse network pixels classified as cropland and
crop/natural vegetation mosaic had greater ubRMSE (∼0.06
m3/m3). Based on the scatter density plots, SM values con-
centrated at ∼0.05–0.13 m3/m3 (yellow regions; see Figs. 8
and 9) for grassland and shrubland, while the SM values have
a greater dynamic range between ∼0.10 and 0.40 m3/m3 in
the cropland and crop/natural vegetation mosaic areas. Re-
sults indicate higher dynamic soil moisture conditions in the
agricultural areas, which may result from different vegetation
dynamics and field practices. Therefore, these results further
imply that complex vegetation and distribution negatively im-
pact the performance of the SM retrieval and disaggregation.
The statistical metrics of SMAP_THySM are summarized on
Table VIII for both A.M. and P.M. half orbits during the study
period.

The scatter density plots of SMAP_SP are also shown in
Fig. 9(e)–(h). Although similar trends can be observed in scat-
ter plots of SMAP_SP and SMAP_THySM, a more scattered
distribution of points were observed in the plots of SMAP_SP.
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TABLE VII
PERFORMANCE METRICS UNBIASED ROOT MEAN SQUARE ERROR (UBRMSE), ROOT MEAN SQUARE ERROR (RMSE), BIAS, AND CORRELATION COEFFICIENT

(R) FOR CONCURRENT SMAP THYSM AND SMAP_SP PRODUCTS FOR AM AND PM HALF ORBITS DURING APRIL 1, 2015–MARCH 31, 2020 AT SMAP CVS

TABLE VIII
PERFORMANCE METRICS UNBIASED ROOT MEAN SQUARE ERROR (UBRMSE), ROOT MEAN SQUARE ERROR (RMSE), BIAS, AND CORRELATION COEFFICIENT (R)
FROM SMAP THYSM SOIL MOISTURE FOR BOTH AM AND PM HALF ORBITS COMPARED TO CORRESPONDING IN SITU SOIL MOISTURE FROM USDA SCAN AND

NOAA CRN STAIONS WHERE LANDCOVERS WERE CLASSIFIED AS GRASSLAND, SHRUBLAND, CROPLAND, AND CROP OR NATURAL VEGETATION DURING APRIL

1, 2015–MARCH 31, 2020 (ALL DATA USED)

Table IX lists the statistical values of SMAP_THySM and
SMAP_SP using concurrent samples for A.M. and P.M. half
orbits. As expected, SMAP_THySM outperformed SMAP_SP
for both A.M. and P.M. half orbits in ubRMSE by ∼0.01–0.025

m3/m3 and in R by ∼0.1. The comparison of statistical met-
rics between SMAP_THySM and SMAP_SP using sparse net-
works presents similar performance as that using CVS. This
suggests that the THySM approach for disaggregating SMAP
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Fig. 8. Scatter density plots of in situ soil moisture from USDA SCAN and NOAA CRN compared to corresponding SMAP_THySM soil moisture at AM half
orbits for pixels classified as landcover of (a) grassland, (b) shrubland, (c) cropland, and (d) crop and natural vegetation, and to corresponding SMAP_SP soil
moisture at AM half orbits for pixels classified as landcover of (e) grassland, (f) shrubland, (g) cropland, and (h) crop and natural vegetation. Biases in SMAP_
THySM and SMAP_SP were corrected before plotting.

Fig. 9. Scatter density plots of in situ soil moisture from USDA SCAN and NOAA CRN compared to corresponding SMAP_THySM at PM half orbits for pixels
classified as landcover of (a) grassland, (b) shrubland, (c) cropland, and (d) crop and natural vegetation, and to corresponding SMAP_SP at PM half orbits for pixels
classified as landcover of (e) grassland, (f) shrubland, (g) cropland, and (h) crop and natural vegetation. Biases in SMAP_THySM and SMAP_SP were corrected
before plotting.

soil moisture introduced less error as compared to the radar-
based disaggregation approach. In addition, SMAP_THySM
had approximately 7–10 times the amount of data availability
compared to SMAP_SP, suggesting that SMAP_THySM has
better applicability both in terms of accuracy and temporal
frequency.

V. CONCLUSION

This study developed and implemented a THySM approach to
disaggregate the SMAP Enhanced soil moisture (SM) product
(33 km resolution, 9 km grid posting) to 1 km over the con-
tinental US. The thermal hydraulic algorithm was developed
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TABLE IX
UNBIASED ROOT MEAN SQUARE ERROR (UBRMSE), ROOT MEAN SQUARE ERROR (RMSE), BIAS, AND CORRELATION COEFFICIENT (R) FROM CONCURRENT

SMAP THYSM AND SMAP SENTINEL-1 (SP) SOIL MOISTURE PRODUCTS FOR AM AND PM HALF ORBITS COMPARED TO CORRESPONDING IN SITU SOIL

MOISTURE FROM USDA SCAN AND NOAA CRN STAIONS WHERE LANDCOVERS WERE CLASSIFIED AS GRASSLAND, SHRUBLAND, CROPLAND, AND CROP OR

NATURAL VEGETAION DURING APRIL 1, 2015–MARCH 31, 2020

by combining thermal inertia theory with a soil hydraulic-
based approach to consider SM distribution at fine spatial
scale driven by both heat fluxes and infiltration under various
vegetation conditions. Inclusion of the soil hydraulic approach
compensates for the data gaps due to cloudy weather occurring
from use of the optical/thermal-based disaggregation approach
alone.

SMAP_THySM at 1 km presents a more detailed SM pattern
compared to the SMAP Enhanced SM product posted on a
9 km EASE GRID and shows lower ubRMSDSpt than the
SMAP Sentinel-1 (SMAP_SP) 1 km product over the CVS
sites. The lower ubRMSDSpt indicates that SMAP_THySM had
better spatial representativeness to SM distribution in watershed
domains than SMAP_SP. Statistical time-series evaluation of
SMAP_THySM resulted in a relatively low ubRMSE of ∼0.04
m3/m3 in most grassland, rangeland, and shrubland sites, which
meets the SMAP mission SM accuracy requirement applied at
9 and 36 km. However, THySM ubRMSE values in agriculture
and croplands were relatively higher at ∼0.06 m3/m3, indicating
challenges for high-resolution SM retrieval and disaggregation
in these complex vegetative areas. Overall, SMAP_THySM
outperformed SMAP_SP 1 km products in terms of accuracy
and data availability, leading to advantages in hydrological
applications. Presently, THySM has been ingested in the USDA
NASS’s Crop Condition and Soil Moisture Analytics (Crop-
CASMA on https://nassgeo.csiss.gmu.edu/CropCASMA/) and
is publicly available on https://portal.nccs.nasa.gov/datashare/
thysm/THYSM_PM_DAILY/.

APPENDIX

Coefficients a1 , a2, a3, and b0, b1, b2, b3, and b4 used for (4)
are functions of mean values of h, α, and n listed in [59] and

[62]

a1 =

(
5
2 − 1

2n̄

) (
ᾱh̄
)n̄

1 +
(
ᾱh̄
)n̄ n
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2n̄

) (
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ᾱh̄
)n̄

+ 1− n̄

h̄
−
[
n̄
(
ᾱh̄
)n̄

+ 1
] (

ᾱh̄
)n̄

1 +
(
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(
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The hydraulic parameters f , α, and n in equations (A1) and
(A2) are natural log-transformed saturated hydraulic conduc-
tivity (ln(Ks)) and two shape parameters of the MG model,
and were estimated from pedotransform equations using soil
texture and chemical properties, including clay (Cl) and silt (Si)

https://nassgeo.csiss.gmu.edu/CropCASMA/
https://portal.nccs.nasa.gov/datashare/thysm/THYSM_PM_DAILY/
https://portal.nccs.nasa.gov/datashare/thysm/THYSM_PM_DAILY/
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f = ln
[
10(0.0402+0.2612×pH+0.4457×T/S−0.0233×Cl−0.0127×Si−0.0104×CEC)

]
(A3.1)

α = 10(−0.4335−0.4173×BD−0.0476×OC+0.2181×T/S−0.0158×Cl−0.0121×Si) (A3.2)

n = 10(0.2224−0.3019×BD−0.0556×T/S−0.0053×Cl−0.0031×Si−0.0107×OC) + 1 (A3.3)

fractions, bulk density (BD), pH in H2O (pH), cation exchange
capacity (CEC), and organic carbon content (OC) [75] (A3.1-
A3.3) shown at the top of this page. where T/S is the top- and
subsoil distinction parameter, which is set at 1 for topsoil [75].
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