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Abstract—In this work, we introduce Sen4AgriNet, a Sentinel-
2-based time series multicountry benchmark dataset, tailored for
agricultural monitoring applications with machine and deep learn-
ing. Sen4AgriNet dataset is annotated from farmer declarations
collected via the land parcel identification system (LPIS) for harmo-
nizing country-wide labels. These declarations have only recently
been made available as open data, allowing for the first time the
labeling of satellite imagery from ground truth data. We proceed to
propose and standardize a new crop type taxonomy across Europe
that addresses common agriculture policy (CAP) needs, based on
the Food and Agriculture Organization (FAO) indicative crop clas-
sification scheme. Sen4AgriNet is the only multicountry, multiyear
dataset that includes all spectral information. It is constructed to
cover the period 2016–2020 for Catalonia and France, while it can
be extended to include additional countries. Currently, it contains
42.5 million parcels, which makes it significantly larger than other
available archives. We extract two subdatasets to highlight its
value for diverse deep learning applications—the object aggregated
dataset (OAD) and the patches assembled dataset (PAD). OAD
capitalizes zonal statistics of each parcel, thus creating a power-
ful label-to-features instance for classification algorithms. On the
other hand, PAD structure generalizes the classification problem
to parcel extraction and semantic segmentation and labeling. The
PAD and OAD are examined under three different scenarios to
showcase and model the effects of spatial and temporal variability
across different years and different countries.1

Index Terms—Benchmark satellite dataset, crop harmonization
taxonomy, crop type classification, deep learning.

I. INTRODUCTION

OVER the past years, Copernicus Sentinels (1 & 2) and
NASA’s Landsat satellites have been consistently collect-

ing images harmonized in the1 spectral, temporal, and spatial
dimensions. The free and open distribution of such an imagery
archive has enabled, among others, the consistent and robust
monitoring of agricultural activities. Furthermore, the recent de-
velopments in Artificial Intelligence (AI) algorithms and models
has propelled the adoption and implementation of novel machine
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learning (ML) techniques, paving the way for a more efficient
modeling of the complex agricultural ecosystems and the gener-
ation of expertise to support smart farming, common agriculture
policy (CAP) implementation, and agricultural insurance.

One of the major problems faced by researchers in this field
is the absence of country-wide labeled data that are harmonized
along space and time. Specifically in the EU, the CAP has placed
a stepping stone to overcome this issue by legally establishing
paying agencies in each EU country which are responsible
for distributing subsidies to farmers. In order to fulfill their
objectives, paying agencies systematically collect the cultivated
crop type and parcel geometries for every farmer and record
it via the land parcel identification system (LPIS) [1] in a
standardized way for each country. Unfortunately, public access
to these farmer declarations has been restricted for several years,
thus making it almost impossible to get country-wide ground
truth data. However, since 2019 and for the first time, these
datasets are gradually becoming open (e.g., France, Catalonia,
Estonia, Croatia, Slovenia, Slovakia, and Luxemburg). This
change offers a significant opportunity for the earth observation
(EO) community to explore novel and innovative data-driven
agricultural applications, by exploiting this abundance of new
LPIS information.

In principle, this fusion of the LPIS data sources has tremen-
dous potential but there are still some barriers to overcome.
First of all, the LPIS system of each country is customly
configured to utilize the local language of the crop types and
the specific taxonomy structure of the crops that matches the
local subsidies policy implementation. This nonstandardization
of the labels prohibits the spatial generalization of deep learning
(DL) models, and thus, needs to be carefully handled to achieve
a common representation consistent among countries. On top
of these contextual/semantic barriers, parcels are mapped in
the corresponding national cartographic projection which in all
cases is different from the cartographic projection of the satellite
images and pose an additional challenge on the preparation of a
consistent, proper and at scale DL-ready dataset.

In this work, we introduce, present, and use Sen4AgriNet,
a unique benchmark EO dataset for agricultural monitoring
with the following key characteristics. 1) It is pixel based
to capture spatial parcel variability. 2) It is multitemporal to
capture the crop phenology phases. 3) It is multiannual to
model the seasonal variability. 4) It is multicountry to model
the geographic spatial variability. 5) It is object-aggregated to
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Fig. 1. Taxonomy of Sen4AgriNet potential applications.

further incorporate ground truth data (parcel geometries) in the
process. 6) It is modular since it can be enlarged with parcels
from more EU countries or expanded in a straightforward way to
include additional sensor and non-EO data (e.g., meteorological
data). A preliminary version of Sen4AgriNet was introduced
and discussed in [2]. This article provides an extended version
for Sen4AgriNet, provides additional technical details on its
construction, and includes a series of new experiments on top of
the dataset. In Fig. 1, we provide a diagram presenting potential
applications for Sen4AgriNet, highlighting the major challenges
for which the dataset can be used to address. Starting from crop
type classification and parcel extraction with their variants, the
dataset can also be used for yield modeling applications, where
strategic plans for efficiency and sustainability can be investi-
gated, as well as damage/risk assessment tasks for successful
planning of relief and regeneration actions.

The Sen4AgriNet contains approximately 225 000 five-year
multitemporal Sentinel-2 patches coregistered with open LPIS
data for regions in Spain and France with a total size of 10 TB.
The dataset is splitted into two distinct subdatasets: the patch
aggregated dataset (PAD) and the object aggregated dataset
(OAD). PAD contains the original patches of Sentinel-2, i.e., the
raster reflectance bands as time series. OAD is built on top of
PAD, by aggregating raster values at parcel level, thus producing
one sample per parcel which contains all the averaged spectral
values with statistics for all bands and available time stamps.

The motivation for creating this dataset is based on the ex-
isting issues and challenges that the agriculture remote sensing
domain has faced over the last years, despite the access to open
satellite data archives. Namely, we aim to provide an outlet for
standardized label nomenclature, connection of crop types to
operational usage of the results (e.g., EU CAP) and enhancement
of the generalization ability of the trained classifiers. Our main
contributions can be summarized as follows.

1) We develop and deliver Sen4AgriNet, a benchmark dataset
tailored for ML/deep learning (DL) that can be used for a
variety of EO-based applications, such as crop type classi-
fication, parcel extraction, parcel counting, and semantic
segmentation.

2) We introduce a unified crop taxonomy based on the Food
and Agriculture Organization (FAO) indicative crop clas-
sification (ICC) scheme, to directly address CAP needs.

3) We construct and deliver two reduced versions of
Sen4AgriNet, one tailored for pixel-based and one for
object-based applications.

4) We conduct a series of baseline experiments to assess for
the first time the generalization capabilities of state-of-
the-art DL methods across space (different countries) and
time (different cultivation years).

5) We open up for reuse Sen4AgriNet, our trained models
and our code for generating DL analysis ready datasets.

The rest of this article is organized as follows: initially we
review similar existing datasets in EO designed for ML/DL ap-
plications. Then the methodology for developing Sen4AgriNet
is presented, including the proposed taxonomy and its main
classes structure. Third, we present the experimental designs
and DL model architectures used to test different generalization
scenarios in the context of the pixel and object-based datasets.
Finally, the results of the experiments are presented and their
implications are briefly discussed.

II. REMOTE SENSING DATASETS FOR ML APPLICATIONS

The concept of creating reference datasets in remote sensing
problems targeted at AI algorithms to solve scientific questions
has recently gained traction in the community. Most of the
existing datasets focus on problems related to land use/land
cover classification exploiting preexisting open data sources.
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One of the first attempts in this domain is BigEarthNet [3],
a large-scale benchmark archive of 125 Sentinel-2 tiles corre-
sponding to acquisitions over ten European countries from June
2017 to May 2018. These tiles were atmospherically corrected
with sen2cor [4] and splitted into 590 326 nonoverlapping
image patches to better address computer vision problems.
For each created patch the multiple corresponding land cover
classes were subsequently exported via the CORINE Land Cover
(CLC) database [5] and added as label annotations, establishing
BigEarthNet a good fit for multiclass, multilabel image classifi-
cation applications.

A similar approach to BigEarthNet is presented in [6] (Eu-
rosat), where a multiclass annotation dataset with all 13 spectral
bands of Sentinel-2 is proposed. Eurosat consists of ten land
cover classes with 27 000 labeled and geo-referenced image
patches. A more specialized dataset named so2Sat is presented
in [7]. It focuses on urban areas and classes across the planet
combining both Sentinel-1 and Sentinel-2 image patches. Key
asset of the dataset is the manual labeling process which was
designed and performed by 15 domain experts.

More relevant from a domain scope to our proposed dataset
is the “CV4A Kenya Crop Type Competition” dataset [8]. It
combines the temporal aspect of satellite image acquisition with
crop types. The dataset uses both the multitemporal coverage of
satellite images and the spatial distribution of farm holdings. Key
shortcoming of this dataset are the small number of agricultural
parcels, the small number of different crop type classes, and the
fact that the included satellite and label data cover a single year
and no multiannual data are recorded.

Another relevant to the agricultural domain dataset is reported
in [9]. The BreizhCrop dataset is used for the supervised classi-
fication of field crops from satellite time series and consists of
combined labeled data and Sentinel-2 top-of-atmosphere as well
as bottom-of-atmosphere time series in the region of Brittany,
north-east France, spanning throughout 2017. Key characteristic
of the dataset is the object-based approach, i.e., each parcel is
represented as one observation (spatial aggregation) with several
features (Sentinel-2 reflectances over different timesteps).

In [10], a large-scale land-cover dataset with Gaofen-2 (GF-2)
satellite images was created. The Gaofen Image Dataset (GID)
focuses on land cover classes, with special remarks on the
coverage size and spatial distribution resolution. GID consists
of two parts: a large-scale classification set and a fine land-cover
classification set. The large-scale classification set contains 150
pixel-level annotated GF-2 images, and the fine classification
set is composed of 30 000 multiscale image patches coupled
with 10 pixel-level annotated GF-2 images. The training and
validation data with 15 categories is collected and relabeled
based on the training and validation images with five categories,
respectively.

A recently published dataset that resembles the one presented
in this study is PASTIS [11], which includes time series of
multispectral images obtained from the Sentinel-2 satellite con-
stellation. It contains the ten nonatmospheric bands resampled to
the highest spatial resolution of 10 m and the labels expand over
18 crop types. However, contrary to Sen4AgriNet, PASTIS pro-
vides single-year observations in a single country, thus limiting
the variance and diversity of the data.

TABLE I
LIST OF STATE-OF-THE-ART REMOTE SENSING DATASETS FOR ML

APPLICATIONS

Sen4AgriNet is the only dataset that cumulatively supports both pixel- and object-based
aggregations, spans across different countries and multiple years, its input satellite data
are time-series, and contains several millions of annotations.
The proposed Sen4AgriNet dataset is marked in bold.

From the reported datasets, most of them do not take into
account the time series of satellite image acquisition, while
the majority also focuses on annotating tags instead of masks,
which constrains the usage of the dataset in simple classification
scenarios (see Table I). For example image segmentation, object
detection, parcel counting, etc., are applications that cannot be
tackled with this kind of aggregation. In addition, removing the
temporal aspect of satellite time series restricts Deep Learning
models from learning the temporal/seasonal dynamics of the
classes. Of course, the temporal dynamics in classes are not
always applicable, e.g., in land cover types and urban structures.
On the contrary, crop type classes show significant spectral and
spatial changes over time, thus it is essential to include the time
aspect for such applications.

Adding to the complexity of the problem, crop types have vari-
able spectral and spatial response at different geographic areas
and cultivation techniques, which are usually strongly connected
to the geographic regions. Phenology stages, different seeding
dates and agricultural practices, and varying meteorological
conditions are just a few parameters that affect the spectral signa-
tures of the satellite data, even for the same crop type. Therefore,
constructing efficient, accurate, and robust DL models requires
a domain adaptation (DA) strategy. The Sen4AgriNet dataset
was designed in order to foster the development of such ML
approaches.

III. CROP TYPE CLASSIFICATION WITH DEEP LEARNING

Several DL approaches have been recently proposed for the
classification of crop types on optical satellite imagery, out-
performing established methods based on computer vision or
traditional ML techniques, e.g., [12]. For example, in [13] an
ensemble of 1-D and 2-D convolutional neural networks (CNN)
is employed in order to discern 11 types of land cover from
Sentinel-2 and Landsat-8 images over Ukraine. The predictions
are further refined by fusing auxiliary information such as parcel
boundaries, statistical data, vector geospatial data, and more. In
[14], a more sophisticated architecture is proposed (FG-Unet)
which is based on the popular U-Net model [15], extended with
a second branch for independent classification of every image
pixel enabling the model to produce coarser polygon boundaries.
The input of this method is a window of three Sentinel-2 images
over France captured at three different time steps.
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A number of publications have also explored 3-D convolu-
tions to simultaneously handle the spatial, spectral, and temporal
components of the input images. For example, in [16], the
convolutional layers of a VGG model are replaced with their
3-D equivalents in order to classify GaoFen-1/2 image pixels
into nine land cover classes. Similarly, in [17], MODIS imagery
along with normalized difference vegetation index (NDVI) and
enhanced vegetation index (EVI) indices are fed to a simple
CNN architecture with 3-D convolutions for the detection of
winter wheat.

On a different note, several studies have regarded the problem
of crop type/land cover classification as a time-series classi-
fication problem and have proposed architectures specifically
designed to exploit the temporal aspect of the input data. Such
models perform either in an N-to-N scheme producing a predic-
tion for every input time step, or in an N-to-1 scheme producing
a single prediction after examining the whole input sequence.
Here, we will only consider the latter case as it is similar
to the approach followed in this work. Previous studies have
incorporated recurrent neural networks (RNNs) in their pipeline,
such as the long short-term memory (LSTM) model [18], which
are fed pixel vectors of multiple time steps [19]–[22]. In [23],
a 2-branch model is proposed (DuPLO) whose first branch is
a CNN spatial feature extractor, whereas the second branch is
a gated recurrent unit (GRU) [24] temporal feature extractor.
The outputs of both branches are then fused and fed to a final
classification layer which makes a prediction for the central pixel
of the input window.

Another popular technique for handling spatiotemporal data is
the TempCNN model, a custom deep neural architecture which
performs convolution simultaneously on the spectral and tempo-
ral dimensions, thus managing to extract useful information for
the phenological stages and the spectral signature of the different
land cover types. This model was first introduced in [25] for For-
mosat imagery classification and then subsequently used in [26]
in comparison with LSTM, DuPLO, multiscale ResNet [27],
and transformer [28] for Sentinel-2 input data. The transformer
was also explored by [29] in a pipeline which includes three
multilayer perceptrons (MLPs) for feature extraction and final
classification.

Lastly, a number of studies have also employed convolutional
recurrent layers which are essentially RNNs performing 2-D
convolutional operations internally. An example of such method
is shown in [30] where a convolutional gated recurrent unit
(ConvGRU) takes an input sequence of Sentinel-2 images both
in correct and reverse order and produces a classification map
for 17 crop classes. A more recent module was proposed in
[31], named Stackable Recurrent Cell (STAR), and then ex-
tended with convolutional layers in [32] (MS-ConvSTAR) for
hierarchical crop type classification on Sentinel-2 imagery. This
model achieves faster and more stable convergence than the
LSTM/GRU equivalents.

IV. DOMAIN ADAPTATION

When there is a significant divergence between the train and
test data distributions, a model trained on the former will likely

fail to generalize on the latter, and thus, performance will be
greatly degraded. A popular approach which attempts to tackle
this problem is domain adaptation (DA), a special branch of
transfer learning which aims to alleviate the variation between
the source (train set) and target (test set) data distributions caused
by data shift, concept drift, and multimodal domain shift often
observed in remote sensing data [33]. Data shift describes the
spectral differences between images captured under different
conditions, i.e., different atmospheric effects, sun positions,
sensor angles, etc. Concept drift refers to the variation of the
intrinsic class characteristics over time and/or space. For exam-
ple, the same crop displays different spectral signatures as the
plant develops, since leaf characteristics, and biomass-to-soil
ratios can vary both over time (seasonal, phenotypical changes)
and space (regional agricultural policies). Finally, multimodal
domain shift arises when multiple sensor types are utilized and
differences in bands, resolution, etc., are observed. In the present
study, multimodal domain shift is not an issue to be handled since
all images were acquired by the Sentinel-2 satellite, but the other
two challenges of data drift and concept shift are relevant. In par-
ticular, data drift can possibly be observed throughout the whole
dataset since atmospheric and illumination conditions are unsta-
ble and may vary across time, whereas concept shift is prevalent
both in a single examined time series and across regions.

Through DA techniques a model trained on the source do-
main can be carefully transferred to the target domain without
suffering from the effects of the aforementioned distribution
variations. There are three major types of DA depending on
the availability of ground truth labels in the target domain: 1)
supervised DA; 2) Unsupervised DA; 3) semisupervised DA
[34]. In supervised DA, target data are fully labeled, but labels
may be fewer and/or different than those of the source data.
In unsupervised DA, no ground truth labels are available for
the target data, whereas in semisupervised DA few labeled
instances may be present in the otherwise unlabeled target data
set. Several DA approaches have been proposed over the years
and can be categorized into three families. Discrepancy-based
DA methods attempt to fine-tune the model by minimizing
some criterion between the source and target distribution. This
criterion can be based on the target labels (e.g., [35]–[37]), the
statistical shift between the distributions (e.g., [38]–[40]), the
architecture of the model (e.g., [41]–[43]) or the geometrical
properties of the distributions (e.g., [44]). Adversarial-based DA
methods employ a domain discriminator to assess whether the
generated features correspond to the source or the target domain,
thus encouraging domain confusion and the production of more
robust features (e.g., [45]–[47]). Finally, reconstruction-based
DA aims to achieve feature invariance either by translating the
target to the source domain (e.g., [48], [49]) or by mapping
both source and target domains to a common latent space (e.g.,
[50], [51]).

Specifically for the task of crop type classification, a number
of methods have been proposed for cross-region adaptation, such
as [52] and [53] which take as input a time series of images and
output a single segmentation map. A method published recently
in [54] additionally accounts for the phenology shift observed
for a single crop between different geographical regions and
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with a time shift estimation procedure and a semisupervised
learning scheme it manages to boost the performance of the
model proposed in [29].

V. METHODOLOGY

A. Harmonized Crop Type Taxonomy

The ICC [55] scheme was developed by the United Nations
FAO organization. It is an approach to produce a harmonized
vocabulary and taxonomy for crops and plants that are used
in food production. The CAP in Europe is an example that
requires such normalization among the crop labels, since each
country member uses different naming systems and languages.
Therefore, Sen4AgriNet adopts and customizes an extended
version of FAO ICC in order to create a universally applicable
crop label nomenclature.

A harmonized crop type taxonomy which is designed to
be used for satellite crop type classification should not con-
tain solely crop classes, since agricultural parcels coexist with
other unrelated classes in satellite images. Therefore, additional
classes are needed to annotate pixels (or objects) that are present
in the satellite imagery, but are out of scope from the agricultural
domain context. In addition, in order to promote the adoption of
the dataset under the CAP regulatory framework, relevant land
use classes need to be added. To this end, we created this version
of Sen4AgriNet by including some major land use classes from
CLC [5], and a few additional classes to complete the semantic
concepts (“fallow land” subclass, “barren land” subclass and “no
data available” subclass). CLC classes related to agriculture and
forestry were not included, since they are properly and in detail
covered by FAO ICC.

FAO ICC [55] has 4 hierarchies (“Group,” “Class,” “Sub-
class,” “Order”) with corresponding numeric ordering. From the
160+ entities in the hierarchy, the fourth one (“Order”) contained
only 15 entities. In order to reduce the complexity of any future
classification attempts and different label groupings, the “Order”
level was removed by upgrading the corresponding entities to
“Subclass” level and removing their parent “Subclass.” Adopt-
ing and customising this FAO/CLC crop classification scheme
to create Sen4AgriNet provides the following benefits.

1) Single language (English) is used and naming for all
classes across all participating countries.

2) Classes are normalized among different datasets.
3) Hierarchical class structure is adopted. Depending on the

application different levels of classes can be used.
4) Additional nonagricultural classes are used to model RS

spectral signatures to support agricultural applications.
The presented custom FAO/CLC classification scheme has

a total of 9 groups, 168 classes, and subclasses. The 161
classes/subclasses are crop related, 4 are some major CLC
classes (as subclasses in this hierarchy), 2 are the fallow and
barren lands, and 1 is the no data subclass. Please refer to Fig. 2
for a visualization of the proposed taxonomy.

B. Crop Type Labels—LPIS

The LPIS datasets that are used to create the Sen4AgriNet
dataset undergo a tailored process before using them to annotate

Sentinel-2 imagery. Initially, the crop type classes are translated
from the local language (Spanish/Catalan and French) into En-
glish and mapped to the semantically normalized FAO ICC crop
classification scheme. This is a laborious and manual procedure,
but essential in order to harmonize the different labels among
different LPIS systems. The current version of Sen4AgriNet
contains the following.

1) The LPIS data for the region of Catalonia provided by
the “Agricultura, Ramaderia, Pesca i Alimentació” with
an Open Data Commons Attribution License from 2016
to 2020 [56], with a total of 2.5 M parcels.

2) France LPIS data provided by the French Paying Agency
with an Open Data Commons Attribution License from
2016 to 2019 [57], with a total of 40 M parcels.

Fig. 3 presents an example of the annotated Sen4AgriNet
dataset, highlighting also the spatial and temporal variability
of the crops and background classes. The first two patches in
Fig. 3 depict the same patch at different years (2019 and 2020),
while the next two patches are different patches for the same year
and region. The background and other crops classes in the tax-
onomy are distinguished on purpose. Background refers to any
noncrop-related label, while other crops is a label representing
crops that either can not be matched to the existing taxonomy or
are unknown. A more detailed view with visual examples about
how data loading works can be found at [58]. Please note that
the aforementioned code repository explains both how instances
of the same patch transform through time and how empty-data
months are treated. Additionally, code examples are provided to
assist individuals with custom logic writing.

C. Dataset Structure

The core Sen4AgriNet dataset is used to generate two sub-
datasets, the object aggregated dataset (OAD), and the patches
assembled dataset (PAD). These subdatasets are reduced in
size to allow the training of DL models without worrying
about the availability of computing resources becoming a
bottleneck.

We first construct the PAD subdataset, and then, based on this,
we subsequently build the OAD subdataset. PAD was built using
an automated procedure that downloads and processes Sentinel-
2 images. This process is tile oriented per available year of LPIS
data. Overall, the available LPIS data from France and Catalonia
extend 55 Sentinel-2 tiles. All Sentinel-2 L1C images with less
than 10% cloud coverage are selected for download and each
image is split into 900 nonoverlapping patches. A single patch
contains 366 × 366 images for the 10-m bands, 183 × 183 for
the 20-m bands and 61 × 61 for the 60-m bands. The size of the
patches was chosen in order to have integer division of the size
of the tile with all 3 different spatial resolutions of Sentinel-2.

As a next step, the patches that correspond to the same location
but have different dates are stacked into a single netCDF file.
The netCDF format was chosen because it is self-describing
(compared to other formats like geotiff, jpeg2000, etc.), portable,
flexible, and is a popular standard for storing geospatial data.
Sen4AgriNet consists of thousands of patches/files, thus man-
aging this huge volume of data is a major concern. Further-
more, since we run many different experiments on Sen4AgriNet
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Fig. 2. Proposed Sen4AgriNet crop categorization taxonomy structure, inspired by FAO and based on the customization of the ICC [55] model.

Fig. 3. Representative patches from the proposed dataset. (a) Catalonia 2019 (31TCG), (b) Catalonia 2020 (31TCG), (c) France 2019 (31TDK), (d) France 2019
(31TDK). Note that (a) and (b) refer to the same patch on different years, whereas (c) and (d) refer to different patches from the same year and region.

dataset, the self-descriptiveness flexibility of netCDF allows
each experiment to be documented within the corresponding
experimental dataset, without the need for auxiliary or explicit
documentation tools.

After creating the patches, the labels need to be imported.
For each patch the corresponding 366 × 366 LPIS with the
Sen4AgriNet taxonomy applied was rasterized to match the
specific pixels in that patch. Using this approach each patch
includes a total of 13 ∗ ntime + 2 variables in the netCDF file.
Each “spectral” variable contains all the ntime data acquisi-
tions (depending on the region ntime varies from 30 to 50
timestamps for one year). The remaining two variables con-
tain the rasterized LPIS masks. The first mask is a mask of
integers corresponding to the crop codes of the taxonomy. The
second mask is a 64-b integer that contains the parcels code
number and is mainly useful for individual parcel extraction
problems.

We must note here that the size of the resulting dataset is huge.
A single Sentinel-2 tile stack that is transformed into patches for
a one year span, results in∼ 900 patches in total and has volume
ranging between 6 and 44 GBs.

The OAD part is built on top of PAD by aggregating to the
parcel level. The pixels contained within each individual parcel
are aggregated via the mean and standard deviation functions
to two single numbers. This is repeated for each available
timestamp within the netCDF variable. The final result is a CSV
file containing the individual parcels as rows and the aggregated
timestamps for spectral bands as columns.

France’s and Catalonia’s parcels are mainly present in 55
Sentinel-2 tiles (see Fig. 4). The total size of the Sen4AgriNet
dataset is estimated to be 10 TB for the 2016–2020 time span,
which corresponds to a total of 225 000 patches.

VI. EXPERIMENTS

In this work, we extend the experiments presented in [2] by
using new DL architectures and new subdatasets. We expand
the geographic and temporal coverage beyond using Catalonia’s
part of the Sen4AgriNet dataset for the year 2020 [2], by also
including years 2019 and 2020 for the entire region of Catalonia
and part of France. We sample 5000 patches from the entire
dataset with label stratification, resulting in a reduced dataset of
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Fig. 4. France and Catalonia (Spain) LPIS dataset overlaid with Sentinel-2
tiles.

Fig. 5. Mean NDVI of different crops across space and time.

size ∼ 140 GB. In order to limit the timesteps for the input time
series, we aggregated the data into 12 time-bins by calculating
the median of each month, and used a fixed window including the
medians of months 4 (April) through 9 (September) for model
training. Only bands red, green, blue, and near-infrared were
selected due to their higher spatial resolution.

As a second step, the number of labels was constrained in
order to ensure proper number of available observations for
training/validating/testing. The label distributions from each
region (pixel-wise) were extracted. The common labels between
regions were isolated, the cumulative sum of the labels was
computed and then all common labels forming the 99.9% of the
data were selected. This resulted in 11 classes (from a 168 total):
wheat, maize, sorghum, barley, rye, oats, grapes, rapeseed, sun-
flower, potatoes, and peas. Based on this, the train-validation-test
ratio is fixed to 60%–20%–20% for all experiments.

The spatiotemporal variability of the dataset is evident if
we examine the observed mean NDVI of the selected crops.
Fig. 5 showcases how the mean NDVI changes over time for

TABLE II
LIST OF SCENARIOS APPLIED IN THE EXPERIMENTS FOR PAD AND OAD

wheat, sorghum, oats, and peas across the different years and
regions. We can see that in Catalonia a similar trend emerges
for both years (albeit somehow shifted in time), whereas in
France a significantly different crop behavior is observed. This
deviation is justified by both the different climatic conditions and
agricultural practices between the different regions. However,
crop classification is primarily based on the recognition of the
unique growth patterns of the crops, therefore, such divergences
pose a serious challenge on the design of a robust classifier.

The goal of these experiments is to train DL architectures for
crop type classification (OAD) and cropland mapping (PAD) to
shed some light into the effects of temporal and spatial crop
variability on our models. Our approach is to create challenging
scenarios and test the spatio-temporal generalization perfor-
mance of state-of-the-art DL models. In Table II are the three
basic scenarios we have identified.

1) Scenario 1: We use all 5000 patches together, and create
a random split. Data from Catalonia 2019 and 2020, and
from France in 2019 are used.

2) Scenario 2 (spatial generalization): We use the patches
from Catalonia 2019 and 2020 for training, and test on the
patches from France 2019.

3) Scenario 3 (spatio-temporal generalization): We use the
patches from France 2019 for training and test on the
patches from Catalonia 2020.

Due to the different representation of the parcels in the two
subdatasets, different approaches need to be followed in each
case. The first approach is based on PAD and considers the labels
as rasterized pixel-based maps rather than polygons. Therefore, a
semantic segmentation pipeline is employed and detailed pixel-
level crop type maps are extracted. By further including the
geometry of the parcels additional problems can be defined, such
as parcel extraction, parcel counting, etc.

The second approach, based on OAD, considers the parcels
as objects and the raster time series are aggregated per object
via zonal statistics (mean, standard deviation, skewness, etc.),
thus providing parcel-based insights to the model. This proves
rather useful when the parcel geometries are already known
(e.g., farmers declarations from EU paying agencies) and the
need to simultaneously identify parcels and crop types becomes
obsolete. Of course, when the initial geometries are not available
then PAD trained models are the solution. Finally, OAD trained
models can be used as input to the PAD dataset if the specific
DL architecture utilizes pixel-based input (e.g., LSTM).

For the evaluation of our experiments, we use the accuracy,
precision, and F1 scores. Due to high class imbalance, we weigh
all metrics with the samples of each class. Also, the correspond-
ing confusion matrices of each experiment and scenario are
plotted, normalized across predictions.
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Fig. 6. Scenario 1. Visual evaluation of the U-Net, ConvLSTM, and ConvSTAR PAD predictions for two different image patches.

A. Sen4AgriNet—PAD Experiment

In the first set of experiments, we employed three popular
models for image segmentation: U-Net [15], ConvLSTM [59],
and ConvSTAR [32]. First, a 3-layer U-Net (∼ 1.9 m trainable
parameters) with LogSoftmax activation and a weighted neg-
ative log-likelihood loss was employed as a simple and robust
baseline for semantic segmentation. Then, a 3-layer ConvLSTM
with an encoder–decoder structure (∼ 9m trainable parameters)
and LogSoftmax activation at the last layer was trained. Inter-
mediate layers utilize LeakyReLU activations, while the loss
function is a weighted negative log-likelihood loss. Second, a
3-layer ConvSTAR model (∼ 260 k trainable parameters) was
also used in comparison, since it is considered more robust and
shows more stable convergence. Similar to ConvLSTM, a final
LogSoftmax activation was added for the final pixel classifica-
tion and the loss function of choice was the weighted negative
log-likelihood. Due to time constraints, both models adopt the
architecture proposed in their corresponding publications.

Input patches were divided into nonoverlapping subpatches
of size 61 × 61 for faster computation, so the input is a
6 × 4 × 61 × 61 time series (TxCxHxW, T: timesteps, C:
channels, H: height, W: width). Specifically for the U-Net model,
images from different timesteps were concatenated along the
channels dimension resulting in an input of shape 24 × 61 × 61
(T*CxHxW). During training, we masked all nonparcel or un-
known pixels and let the models learn only from the known 11
labels. Similarly for the inference stage, all evaluation metrics
were calculated on the known parcel labels only. Finally, the
Adam optimizer with an initial learning rate of 0.001 was used
and a learning rate reduction scheme was employed on validation
loss plateaus.

1) Scenario 1: In the first scenario, where all regions and
years are randomly sampled both in the training and test datasets,
ConvLSTM performed significantly better than the other two

TABLE III
RESULTS ON ALL SCENARIOS FOR PAD

Best results are marked in bold.

models in all three summary metrics (see Table III). The con-
fusion matrices (see Fig. 11) and the visual inspection of the
predictions (see Fig. 6) support the high valued summary met-
rics. An interesting observation from the confusion matrices (see
Fig. 11) is that all models seem to confuse the same crop types,
with barley, rye, oats, and wheat being the most characteristic
case. This is somewhat expected since they are all cereal crops
with similar phenology.

2) Scenario 2: In the second scenario, all models were eval-
uated for their adaptation from one region to another. As shown
in the results, all architectures achieve lower accuracy metrics
with significantly reduced precision and F1 scores. Again, the
corresponding confusion matrices (see Fig. 11) show similar
misclassification patterns between the three models, with wheat,
rapeseed, and sunflower being the most correctly classified
crops. Fig. 7 shows a selection of patches to visually appreciate
correct and wrong classifications of the models, with respect to
the ground truth.

3) Scenario 3: In the third scenario, all metrics were consid-
erably degraded and all architectures showcased similar perfor-
mance. From the confusion matrices (see Fig. 11), only maize
and rapeseed display the highest accuracy. Similarly, in Fig. 8
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Fig. 7. Scenario 2. Visual evaluation of the U-Net, ConvLSTM, and ConvSTAR predictions for two different image patches.

Fig. 8. Scenario 3. Visual evaluation of the U-Net, ConvLSTM, and ConvSTAR predictions for two different image patches.

misclassifications are widespread to all parcels in the selected
patches.

B. Sen4AgriNet—OAD Experiment

In the object-based set of experiments, three architectures
were utilized in order to evaluate model performance for the
three different scenarios. The same patches as in the PAD
section were selected in order to limit the number of differ-
entiating factors among the two sets of experiments and focus

on understanding the generalization performance of the two
approaches.

The first architecture is a network consisting of three bidi-
rectional LSTM [18] layers with a hidden layer of size 1024,
alongside one linear layer (applied to the last hidden state), an
ReLU, and a final classification linear layer. The entire model
includes ∼ 60 m trainable parameters.

Since their first introduction, transformer networks [28] are
considerably valued as an extraordinary opponent to the LSTM
networks. Thus, the second DL architecture is a transformer-
encoder classifier that was designed to be tested against the well
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Fig. 9. UMAP visualizations for the examined datasets. (a) Distribution of the selected crops in all regions and years, (b) distribution of data across the three
different datasets, (c) and (d) distribution of the train and test data in the three scenarios. Better viewed in colour.

Fig. 10. Pixel distribution of the selected crop classes across the different scenarios. Vertical axis is in logarithmic scale.

known LSTM. Instead of calculating an embedding space, the
precomputed parcel statistics are used as input. The dimension-
ality of the encoder-transformer type network uses a 26 features
input (2 statistics for each band channel) and 2 heads, as heads
should divide the number of features. For the forward function,
a customized positional encoder was utilized. This positional
encoder features the vanilla sine and cosine functions proposed
by the authors of [28] for encoding each token position. After

encoding the position, the transformer encoder is applied and
then a final sequence of two linear layers is used. The final model
contains a total of ∼ 270 k trainable parameters.

Other hyperparameters such as the number of encoder layers
and the hidden dimension size are kept the same as in the
LSTM runs (3 layers, 1024-D hidden size). Both experiments
use the Adam optimizer with initial learning rates 0.001 and
0.0001, respectively, as well as a step learning rate scheduler
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Fig. 11. PAD results. The first row shows the U-Net results, the second one the ConvLSTM results whereas the third the ConvSTAR results. Each column
corresponds to a different scenario.

of 0.1 every 5 epochs. The cross entropy is used as the loss
function.

Finally, a quite famous deep learning architecture in the
remote sensing field is being marshaled. TempCNN [25], [9]
with a total of ∼ 719 k trainable parameters, where convolution
stages are designed to capture the time aspect of the OAD dataset.

Results obtained from model will be compared against each
other for every test scenario.

1) Scenario 1: In the first scenario, the three different archi-
tectures (LSTM, transformer, TempCNN) were evaluated. All
architectures displayed quite similar performance as shown in
the metrics Table IV, both in the overall classification evaluation
and in the individual classes (confusion matrices). The Tem-
pCNN architecture achieves slightly better results. As seen in
the corresponding confusion matrices [see Fig. 12(a)–(g)] most
of the crop type categories are classified correctly. Though, a
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Fig. 12. OAD results. The first row shows the LSTM results whereas the second row the transformer-encoder classifier results. The third row illustrates results
obtained for the TempCNN architecture. Each column corresponds to a different scenario.

specific misclassification pattern among some classes is ob-
served in both architectures. Rye is mostly confused with wheat,
barley, and oats, while oats are confused with rye, barley, and
wheat. On the contrary, wheat is hardly confused with other
classes. This behavior can be first attributed to the fact that wheat,
rye, barley, and oats are crops with very similar spectral and
temporal signatures. Second, wheat is a dominant class (39.4%),
while the other three classes together account for 27.6% of the
training data.

2) Scenario 2: In the second scenario, the training was
performed on Catalonia for both available years and tested
on France 2019 labeled data. Impressively, the LSTM model

significantly outperformed both the TempCNN and the trans-
former on all metrics (see Table IV). In the transformer and Tem-
pcNN confusion matrices [see Fig. 12(e) and (h)] high misclas-
sification rates among the classes is apparent. In this scenario the
LSTM architecture presented the same pattern with scenario 1,
while the transformer performance was severely degraded. The
adaptation of LSTM can be attributed to the fact that time is
encoded as part of the feedback process, while transformers
handle data as a sequence. This subtle difference on the time
representation can have significant impact on the classification
performance (transferring from one region to another), because
the phenological cycles do not simply shift across time, but are
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TABLE IV
RESULTS ON ALL SCENARIOS FOR OAD

Best results are marked in bold.

also stretched or shrunk down depending on the soil-climate
conditions of the area.

3) Scenario 3: In the third scenario, training was performed
on France 2019 data and tested on Catalonia 2020 data. Similarly
to the previous scenario, the LSTM model performed better
than the transformer and TempCNN models, though not with
the same performance gap (see Table IV). This degradation in
performance can be attributed to the fact that in this scenario
the training samples are drawn from a different distribution
with respect to the test samples. The variation includes two
components: the first component is that the growing season
across the regions is different for the same crops (mainly due
to different climatological conditions). The second component
is that different years have slightly different starting dates for
crop cultivation. Jointly, these factors may significantly affect
the classification performance.

VII. DISCUSSION

Agricultural monitoring mainly includes tasks like crop type
classification, parcel extraction and counting, and crop phenol-
ogy evolution. Consistent acquisition of satellite multispectral
time series of images are the stepping stone toward a complete
agricultural monitoring process. The opening to the public of
various LPIS systems, which contain crop type declarations and
parcel geometries, bundled with the availability of consistent
satellite measurements and advances in DL architectures en-
abled the creation of Sen4AgriNet. The first part of the challenge
in order to materialize the dataset was the harmonization of the
contextual information contained in the different LPIS. This
challenge was solved by adapting a crop type classification
structure inspired by FAO. The second part of the challenge was
to build the dataset for multiple countries, bundling thousands
of images with the corresponding labels in order to create a Ma-
chine Learning ready dataset. The challenge was met by creating
a custom pipeline that automatically identifies the Sentinel-2
images that need to be downloaded from ESA’s Scihub [60]
and/or AWS Sentinel-2 bucket [61], downloads them, splits them
to nonoverlapping patches, stacks the different time stamps, and
finally attaches the labels. This procedure runs in an end to end
fashion until the generation of the complete standalone netCDF4
files.

A subsequent step involves the creation of appropriate splits
for training, validation and test, which is a nontrivial task. We
implemented a stratified sampling procedure, based on the loca-
tion, the class, and cultivation year of the parcels in our dataset,

selecting those that have a significant number of observations
and are common in both countries. However, this balanced
selection of parcels in our splits, which is different for each
experimental scenario, is not necessarily mapped to a balanced
selection of pixels instead of parcels. In Fig. 10, we show the
pixel distribution of the different crop classes, for the three
splits and for the three scenarios. Interestingly, in scenario 1
the balance parcel distribution is also mapped in the pixels
distribution. In scenarios 2 and 3 though, this is not the case. For
example, in scenario 2, the number of wheat pixels are two orders
of magnitude less in the train set than in the test set. The inverse
is observed in scenario 3. These discrepancies are due to the
different agricultural practices between Catalonia and France.
In Catalonia agriculture is more fragmented and the average
parcel area is less in hectares compared to France. Therefore,
balancing the splits based on parcel number is a good selection
for the OAD set, while balancing the splits based on pixel count
is a good selection for the PAD set.

Investigating the generalization potential of DL models vis-
à-vis the three different scenarios and the two different datasets,
there are a couple of observations. First, in scenario 1, the
probability density functions of the train and the test set should
be nearly identical, since in both sets the samples experience the
same spectral, spatial, geographic, and temporal variability. This
does not apply for scenarios 2 and 3. In scenario 2, the temporal
variability is captured but not the geographic/climatic. In sce-
nario 3 both the yearly and the climatic variability information
is lost. Therefore, the probability density functions of the train
and the test sets differ significantly. This explains the observed
degradation in performance for both PAD (see Table III) and
OAD (see Table IV) datasets. In order to fortify this observation,
different UMAP [62] visualizations are provided in Fig. 9 which
were computed using the OAD data. In Fig. 9(a), a sample of the
selected crops from all regions and years is visualized and we can
see that most crops form distinct clusters, with some observed
and anticipated confusion between those with similar phenology,
e.g., wheat and rapeseed, oats and barley, etc. Fig. 9(b) provides
a visualization of the three different scenarios, where we observe
a partial overlap between data from both years in Catalonia and a
clearer divergence between Catalonia and France clusters. This
indicates that both the temporal and more importantly the spatial
diversity in Sen4AgriNet result in different data distributions.
Finally, in Fig. 9(c)–(e) the deviations between the train and test
sets of the different scenarios are illustrated. As expected, the two
splits in scenario 1 are heavily overlapping, in contrast to those
in scenarios 2 and 3 where separate clusters are formed with
some minor overlap, due to the different year and/or location
used in the train and test splits.

Second, the OAD-based experiments provide better results
with respect to PAD, for all scenarios, especially for the second
and third scenario. The enhanced classification performance
and better generalization of the OAD was expected. OAD
aggregates several pixels for each parcel and the mean and
standard deviation of this aggregation are included as input
features. On the contrary, the PAD architectures used pixel
based processing, thus, the spatial heterogeneity is not well
captured. In principle, our object based analysis smooths out
the probability distributions in the spatial and temporal domain,
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removing high-frequency components. In the extreme case of
training on 2019 France data and testing on 2020 Catalonia
data (scenario 3), this translates to bringing the two data dis-
tributions closer. However, PAD and OAD solve different DL
problems and direct comparison is not entirely fair. OAD’s
increased classification accuracy comes at the expense of spatial
resolution, while it completely misses out on capturing inter-
parcel variability. Finally, it is understood that the main obstacle
in further improving the generalization capacity of a trained
model is the inclusion of additional regions and with higher
yearly coverage, to capture the characteristics of nondominant
classes with more observations and extract more meaningful
features.

Regarding the PAD experiments, top accuracy was achieved
as anticipated in the first scenario where regions and years are
mixed, allowing the models to learn all temporal crop variations
for both Catalonia and France. The most challenging classes to
distinguish in scenario 2 are cereal-based crops, such as wheat,
maize, sorghum, barley. This is attributed to their similar spectral
content in the satellite time series. Finally, the third scenario
experienced the worst performances, especially for ConvSTAR,
which seems to be unable to discern the different classes with
the sole exception of maize and rapeseed. Overall, U-Net shows
more stable performance and manages to outperform the other
two models in the most difficult scenarios (2 and 3) while
achieving competitive results in the first scenario. This implies
that the recursive nature of the ConvLSTM and ConvSTAR
models does not offer much improvement in the studied cases.
In addition, although ConvSTAR has considerably fewer train-
able parameters and converges faster, this seems to inevitably
come at the expense of accuracy. Lastly, ConvLSTM and U-Net
employ a more complex encoder–decoder architecture, whereas
ConvSTAR is a simple structure of three stacked ConvSTAR
cells. According to the results of the different scenarios, this
encoder–decoder scheme seems to be more efficient and achieve
more robust results. ConvLSTM and U-Net manage to predict
more compact crop areas with less internal variability, whereas
ConvSTAR is more prone to predict multiple classes in a single
parcel (see Figs. 6–8). The experiments suggest that ConvSTAR
could benefit from an encoder–decoder architecture similar to
ConvLSTM or a more thorough hyperparameter tuning. More
complex models like DuPLO [23], BCDU-Net [63] or Tem-
pCNN [25] may be more robust to geographical/temporal dif-
ferences and are left as a future plan for experimentation. As a
last thought, further exploration and finetuning of the models’
hyperparameters could potentially boost the accuracy of the
predictions and help produce higher quality classification maps.

On the OAD experiments, all model architectures have unique
structures. This results in different training challenges; RNN
networks and transformers are notorious for their high training
time requirements. The training time required for each epoch
is quite lower for the transformer-encoder classifier due to
1) the tremendous difference in the number of total trainable
parameters and 2) the limited parallelism in the nature of LSTM
networks. However, despite the lower training time of trans-
former, in all training runs the LSTM model seemed to converge
a lot faster requiring fewer epochs. Training time is not a issue
when dealing with CNN-based models, as parallelism is quite

ubiquitous. This enables for far better training times, and thus,
quicker convergence of the overall architecture.

Concerning the OAD reported results, the tests indicate
that LSTM seems to perform better than the transformer. The
transformer-encoder classifier seems to match the results of
the LSTM in the first scenario, but it degrades dramatically
in scenario 2. Transformers are considered as especially “data
hungry” models, therefore using more data from Sen4AgriNet
core dataset would provide a boost in the metrics. Finally,
scenario 3 seems to be the middle ground for OAD, which
was unexpected. This may be attributed to the “bidirectional”
element of the LSTM cells which results in better performance
since it enables them to learn in both directions.

The above analysis for the experiments conducted in this
study suggests that direct application of a trained DL model
in a different setting hinders performance and greatly affects the
generalizability of the model, thus some adjustment is required
beforehand. The discrepancies in the label distributions, along
with the intrinsic spatiotemporal variation observed between
train and test sets in the different scenarios, provide an ideal
setting for the exploration of DA techniques. Especially for
scenarios 2 and 3, the direct knowledge transfer between source
and target domains results in a significantly degraded perfor-
mance and low quality predictions. In addition, the interested
researcher can further design new scenarios with different types
of spatiotemporal variation, e.g., by varying only the temporal
dimension for the same region or by employing different sets of
labels for train and test. In any case, careful adaptation of the
model from one domain to another will certainly bridge this data
distribution gap and improve performance and generalizability.

Last but not least, the extension of Sen4AgriNet to other types
of segmentation tasks is straightforward. Apart from the seman-
tic segmentation task presented in this study, instance segmenta-
tion and panoptic segmentation problems can also be addressed.
In our case, instance segmentation refers to the localization of a
parcel with a surrounding box and the pixels belonging to this
parcel and specific crop type, managing to differentiate between
adjacent parcels with the same crop. Panoptic segmentation
extends the tasks of instance and semantic segmentation by
including labeling of the surrounding environment, e.g., forests,
water bodies, wetlands, etc. Sen4AgriNet comes with a total of
168 labels including noncrop related classes which can serve as
the broad “stuff” category in panoptic segmentation terminol-
ogy, whereas parcel boundaries can assist the identification of
each individual object in an image for both tasks. We believe
that the proposed dataset will encourage further research in this
area and provide the required momentum for the development
of more models and approaches, especially as far as panoptic
segmentation is concerned where research studies focused on
remote sensing are few and far between (e.g., [11] and [64]).

VIII. CONCLUSION

The lack of harmonized labeled data among the paying agen-
cies, which operationally gather country-wide labels every year,
initiated the creation of Sen4AgriNet. Inspired by the FAO ICC
nomenclature and adapted from the CAP and the remote sensing
perspective, we proposed in this work the Sen4AgriNet crop type
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classification scheme. We build the benchmark dataset by lever-
aging the availability of Sentinel-2 multitemporal, multicountry
labeled data exploiting the recent opening up of LPIS parcel
data. We construct a dataset that consists of 225 000 patches with
corresponding pixel-based crop type maps. Based on this, we
extracted two Sen4AgriNet subsets (PAD and OAD) for tackling
different sets of classification problems, for unknown and known
parcel geometries, respectively. The experiments were divided
into three different scenarios to investigate the impact of diverse
agricultural practices, climatic zones, phenology phases, crop
spectral signatures across different regions and cultivation years.
As expected, the changes of the probability distribution func-
tions experienced when moving between geographic regions
for training and testing DL models, has a significant impact
on classification performance and limits the models’ capacity to
adapt and generalize.

We believe that Sen4AgriNet can be regarded as a labeled
benchmark dataset, tailored for CAP and the use of Sentinel-2
imagery that come at no cost, and can spur numerous DL-based
applications for crop type classification, parcel extraction, parcel
counting, and semantic segmentation. More importantly, the
dataset can be extended to include other input data sources,
including Sentinel-1 synthetic aperture radar data, and mete-
orological data, allowing a new family of applications on early
warning risk assessment and agricultural insurance.
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