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A Crossmodal Multiscale Fusion Network for
Semantic Segmentation of Remote Sensing Data
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Abstract—Driven by the rapid development of Earth observation
sensors, semantic segmentation using multimodal fusion of remote
sensing data has drawn substantial research attention in recent
years. However, existing multimodal fusion methods based on con-
volutional neural networks cannot capture long-range dependen-
cies across multiscale feature maps of remote sensing data in differ-
ent modalities. To circumvent this problem, this work proposes a
crossmodal multiscale fusion network (CMFNet) by exploiting the
transformer architecture. In contrast to the conventional early, late,
or hybrid fusion networks, the proposed CMFNet fuses information
of different modalities at multiple scales using the cross-attention
mechanism. More specifically, the CMFNet utilizes a novel cross-
modal attention architecture to fuse multiscale convolutional fea-
ture maps of optical remote sensing images and digital surface
model data through a crossmodal multiscale transformer (CM-
Trans) and a multiscale context augmented transformer (MCA-
Trans). The CMTrans can effectively model long-range depen-
dencies across multiscale feature maps derived from multimodal
data, while the MCATrans can learn discriminative integrated
representations for semantic segmentation. Extensive experiments
on two large-scale fine-resolution remote sensing datasets, namely
ISPRS Vaihingen and Potsdam, confirm the excellent performance
of the proposed CMFNet as compared to other multimodal fusion
methods.

Index Terms—Combined squeeze-and-excitation (CSE), cross
attention, crossmodal multiscale fusion, transformer.

I. INTRODUCTION

S EMANTIC segmentation of remote sensing data is one of
the most important tasks in geoscience research. The goal is

to classify surface objects based on remote sensing data. Driven
by the rapidly growing remote sensing devices and platforms, the
amount of remote sensing data has grown exponentially over the
past few decades, which provides the field with a wealth of mul-
tisource and multimodal data [1], [2] such as hyperspectral im-
agery (HSI), multispectral imagery (MSI), visible images (VIS),
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and light detection and ranging (LiDAR). Since each data source
characterizes one modality of the surface objects, better semantic
segmentation is expected by fusing different modalities derived
from multiple data sources. However, multimodal data generated
by different sensors exhibits vastly distinct characteristics such
as heterogeneous statistical properties and noise levels across
modalities [3], [4]. Thus, it remains very challenging to extract
the salient features from different data sources before combining
these features to obtain a better segmentation performance.

Conventional methods, such as component substitution, geo-
statistical analysis, and sparse representation, are hindered by
their ad hoc complex feature extraction methods and fusion
rules [5], which incurs missing details and degraded accu-
racy [6]. Recently, machine learning techniques have been suc-
cessfully applied to a wide range of remote sensing applications,
such as random forest [7], support vector machine [8], [9], and
convolutional neural networks (CNNs) [10], [11]. In particular,
many CNN-based methods have been proposed for semantic
segmentation to fuse multisource remote sensing data [12]–[14].
For instance, the authors in [15] and [16] reported CNN-based
fusion methods for infrared images and VIS, whereas EndNet
was proposed in [12] to fuse HSI and LiDAR data. In particular,
the fully convolutional networks (FCNs) reported in [10] is the
first end-to-end CNN structure with proven effectiveness. In
the FCN, an encoder extracts features by gradually decreas-
ing the resolution of the feature map, while a decoder learns
from the high level or more abstract features, and subsequently,
improves the segmentation results by progressively expanding
the receptive domain. By exploiting its translation equivalence
and locality, the FCN demonstrated impressive performance.
However, the FCN suffers from blurred edges and imprecise
segmentation due to its simple upsampling operation in res-
olution restoration and disregard of the spatial relationship
between pixels. To circumvent these problems, U-Net [11]
proposed a symmetric expanding path for more accurate seg-
mentation. However, these methods overlooked the potential
benefits offered by multimodal data sources. To apply multi-
modal data in semantic segmentation, FuseNet was proposed
to extract and fuse features from different modalities in the
encoder stage [17]. By further enhancing early and late fusion
in FuseNet, vFuseNet showed that early fusion can improve the
learning of stronger multimodal features at the cost of poor noise
susceptibility. Furthermore, late fusion based on the residual cor-
rection strategy is demonstrated to improve semantic labeling,
which facilitates the recovery of critical errors on challenging
pixels [18].
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Despite their many advantages, these CNN-based fusion
methods are handicapped by the problem of field of perception.
It is worth noting that these feature maps generated by different
convolutional layers possess various levels of resolution and
characteristics. More specifically, the feature map generated by
the shallow layer has a higher resolution but smaller perception
field. As a result, such a feature map mainly contains detailed
local features. In contrast, increasing the depth of the CNN can
provide feature maps with higher level abstraction while losing
detailed information. Thus, it is challenging for CNN-based
methods to compensate semantic gaps among feature maps
through crossmodal feature fusion using convolution operations.
Furthermore, since CNNs neglect long-range dependencies
across multiscale feature maps of remote sensing data in differ-
ent modalities, they cannot fully exploit the inherent dependence
relationships among multimodal data and learn discriminative
integrated representations for semantic segmentation.

To cope with the aforementioned challenges, some pioneering
attempts have been made by utilizing the transformer architec-
ture [19]. The transformer architecture was originally developed
for natural language processing (NLP) before being success-
fully applied to the field of computer vision [20]. Empowered
by its distinct multihead self-attention blocks, the transformer
architecture is capable of capturing long-range dependencies
between each pair of elements in the feature map. In contrast
to the convolutional layer whose perceptual field is limited by
its kernel size, the perceptual field of the self-attention blocks is
naturally global in theory. This remarkable characteristic enables
the transformer architecture to better extract and fuse features
of different abstraction levels as compared to the convolutional
CNN-based networks.

Inspired by the aforementioned discussions, this work pro-
poses a crossmodal multiscale fusion network (CMFNet) by
exploiting both CNN and the transformer architecture. More
specifically, the transformer architecture is utilized for multi-
modal fusion while its fusion output is further processed by
a decoder as residual connections. Our experimental results
confirm that such a joint design of fusion and residual connec-
tion can substantially enhance the segmentation performance
by exploiting crossmodal multiscale data sources. The main
contributions of this work are summarized as follows.

1) A novel transformer-based crossmodal network with mul-
tiscale skip fusion is first devised to reduce the decoding
ambiguity by fusing complementary multimodal informa-
tion. It is demonstrated that the crossmodal multiscale
skip fusion can implement the residual function while
achieving multimodal fusion simultaneously.

2) After establishing a cross-modal attention (CMA) layer,
we propose a crossmodal multiscale transformer (CM-
Trans) for semantic segmentation. The proposed CMTrans
can effectively model long-range dependencies across
multiscale feature maps of remote sensing data in differ-
ent modalities. The resulting fused features are further
enhanced by multiscale context augmented transformer
(MCATrans) based on a cross-scale attention mechanism
to learn more discriminative and distinguishable inte-
grated representations for semantic segmentation.

3) By combining CMTtrans and MCATrans, we propose the
CMFNet to perform the crossmodal and multiscale fusion
network for semantic segmentation. To our best knowl-
edge, the proposed CMFNet is the first transformer-based
architecture for the crossmodal multiscale fusion in the
field of remote sensing.

In the sequel, the relevant work of semantic segmentation in
remote sensing is first reviewed in Section II before Section III
elaborates the proposed frame and modeling method in detail.
After that, Section IV describes our experiment setup and analy-
ses on the experimental results. Finally, the Section V concludes
this article.

II. RELATED WORK

Generally speaking, semantic segmentation is one of the
most fundamental tasks in understanding an image. Driven by
the rapid development of digital signal processing technology,
intensive research on semantic segmentation has been carried
out on digital photography, medical images, and remote sensing
images [21].

A. Modality Fusion

In general, modality is defined as the form in which informa-
tion is represented. For instance, image, text, voice, and video
are the most common modalities under intensive investigation.
Furthermore, multimodality refers to the combination of two or
more modalities. To fuse information of different modalities,
many multimodal fusion techniques have been developed in
the literature, such as feature extraction, feature alignment, and
feature fusion for various applications such as visual question
answering [22]–[24], sentiment analysis [25], medical image
processing [26], [27], and remote sensing [21], [28]. More
recently, it was shown in MulT [29] that the cross-attention
mechanism can provide a latent crossmodal adaptation that
fuses crossmodal information by directly attending to low-level
features in other modalities.

B. Modality Fusion in Remote Sensing Segmentation

In remote sensing, images of different resolutions and chan-
nels are called multimodality. In particular, equipped with so-
phisticated remote sensing acquisition technology, the remote
sensing community have full access to a wide range of multi-
modality data such as HSI, MSI, VIS, and LiDAR. Driven by
the recent advances in machine learning, many machine learning
approaches have been developed to fuse multimodal data in the
literature. In particular, the encoder–decoder architecture has
been shown very effective in fusing multimodal data. According
to where the fusion takes place, these encoder–decoder methods
can be classified into three approaches, namely data-level fusion,
early fusion, and late fusion. For instance, ResUNet-a fuses the
RGB and depth images by directly concatenating the images
in the data level before feeding the concatenated data into
encoders as shown in Fig. 1(a) [13]. In contrast, FuseNet utilizes
a dual-branch encoder backbone to encode the RGB-Infrared
(IR) and the digital surface model (DSM) data individually
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Fig. 1. Comparison of four fusion approaches. (a) Data-level fusion: To stack
the data directly before encoding. (b) Early fusion: Fusion taken place in different
encoder layers separately in different scales. (c) Late fusion: Fusion performed
after decoding, also called the decision fusion. (d) Proposed multiscale skip
fusion: To fuse multiscale data before feeding into the decoders as residual
connection.

before fusing these encoded features as the input to a single
decoder as shown in Fig. 1(b) [17]. This fusion approach is
known as the early fusion. Finally, Fig. 1(c) shows a typical
example for the late fusion, e.g., vFuseNet [18]. In the late
fusion, each modality is individually encoded and decoded
followed by fusion of the decoder outputs. In sharp contrast to
the three existing approaches, the proposed CMFNet develops
a completely different approach to fuse crossmodal features. As
shown in Fig. 1(d), the proposed fusion approach first carries
out crossmodal multiscale information fusion before combining
the fused information with the decoder feature as a residual
connection that is referred to as the multiscale skip fusion in
the sequel.

C. Vision Transformer

CNN-based networks have become the dominant solution to
semantic segmentation tasks. However, the major drawback of
these networks is their limited local receptive fields. Recently,
the transformer architecture empowered with the self-attention
mechanism has been found effective in providing a global
perceptual field in NLP [19]. The self-attention mechanism
explores the relationship of input tokens by exploiting three
weight matrices, namely query Q, key K, and value V. As
a result, the self-attention mechanism can capture long-range
dependencies by recalibrating feature maps to characterize the

beneficial information across channels and spatial dimensions.
Inspired by the success of the transformer architecture in NLP,
the seminal work [20] proposed ViT using a standard transformer
encoder by converting the image into a sequence of patches.
ViT is one of the first networks capable of utilizing global
self-attention for image processing. After ViT, a number of
transformer-based methods have been successfully developed
for semantic segmentation. For instance, TransUNet [30] utilizes
a transformer-based encoder and an U-Net decoder for medical
image segmentation, whereas the transformer architecture was
used in TransBTS for feature enhancement in [31]. In addition,
DSCT [32] proposed a method extracting contextual information
using the swin transformer [33] as the backbone in conjunction
with a densely connected feature aggregation module designed
to recover resolution and generate segmentation maps. Similar
to DSCT, Swin-Unet [34] is also designed based on the swin
transformer, targeting at replacing the entire network with trans-
former structures for medical image segmentation. However,
these existing works mainly focused on applying the transformer
architecture as a feature extractor or an augmented module on
data of the same level or modality. Thus, it remains an open
research question on how to use the transformer architecture to
exploit the long-range dependence relationships across different
levels and modalities.

In [35], TransFuser was proposed to fuse multilevel feature
maps using multiple transformers in different levels for au-
tonomous driving. However, such a structure of multiple trans-
formers incurs prohibitively expensive computational complex-
ity, which makes TransFuser impractical for applications such
as semantic segmentation of high-resolution remote sensing
images. To overcome the computational complexity problem,
UCTransNet proposed an end-to-end network equipped with a
multiscale channel-wise cross fusion transformer and recurrent
neural networks [36]. It was shown that multiscale features
are essential for resolving complex scale variations in medi-
cal image segmentation [36]. However, as UCTransNet only
explores single-modal and low-resolution medical images, it is
impractical for the multimodal high-resolution remote sensing
images. Finally, most existing transformer-based segmentation
methods focus on improving the encoding performance using a
U-Net [11] scheme. For instance, [30], [35], [37] either simply
embed the transformer into the encoder or use the transformer to
fuse separate branches, which results in increased computational
complexity due to the intensive computation required by the
transformer.

III. METHODOLOGY

In this work, we consider cross-attention and cross-
transformer multimodal data fusion for high-resolution remote
sensing images. For presentational simplicity, we use dual-
modal data, namely the RGB and the DSM images, to elaborate
the proposed network calledCMFNet in the sequel. It should be
emphasized that CMFNet can be extended to multimodal data
of more than two data sources in a straightforward manner.

CMFNet first separately extracts RGB features and DSM
features using two branches of VGG-16 [38]. Recalling that
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Fig. 2. Illustration of the proposed CMFNet. The proposed CMTrans fuses feature maps of different modalities by simultaneously exploiting multiscale crossmodal
information. MCATrans uses the cross-scale attention mechanism to enhance the extracted features from the main modality, i.e., the RGB images. Finally, a CSE
block is used to fuse the highest level features. The output of MCATrans is fed into the decoder of the corresponding scale before the pixel-level classification is
performed.

VGG-16 has a five-layer encoder, we designate the first four
layers to extract multiscale features from each branch before
the crossmodal and multilevel features are fused by CMTrans.
After that, MCATrans is proposed to refine the multiscale fusion
of multimodal features and filter the representations propagated
through our multiscale skip fusion strategy. Finally, the output
of the fifth encoder, i.e., the features of the richest semantic
information, is fused through a channel reweighting module
called combined squeeze-and-excitation (CSE). This design
allows CMFNet to achieve a good performance with reduced
computational complexity. In the following, we will first pro-
vide an overview of the proposed CMFNet framework before
elaborating on the details of each key component.

A. Network Architecture

Fig. 2 depicts the framework of the proposed network. As
previously explained, we use RGB and DSM images as the
two modalities of input data in the following discussions while
stipulating the RGB images as our main modal and DSM data as
the assisted modality. Given RGB imagesX ∈ RH×W×3 and the
corresponding DSM depth data Y ∈ RH×W×1, a dual-branch
encoder first extracts multilevel features from each modality.
Motivated by the fact that semantic segmentation of remote sens-
ing images requires dense pixel-wise classification, the proposed

CMFNet adopts the encoder–decoder architecture reported in
the literature. Furthermore, SegNet reported in [39] is chosen as
the backbone of the proposed network as its output is of the same
resolution as its input, which is a very convenient property to
avoid performance degradation incurred by direct upsampling.
In addition, the encoder in SegNet consists of classical con-
volutional layers from VGG-16 [38]. A dual-branch encoder
architecture is proposed to process each input data source. More
specifically, two VGG-16 branches are used to extract RGB
features and DSM features, respectively. Assuming that the
original images is of size H ×W , the down-sampled feature
maps produced by the ith encoder layer are of size H

2i−1 × W
2i−1 ,

where i is the layer index with i = 1, 2, . . . , 5.
After the encoding process, the multilevel feature maps de-

rived from the main modality and the assisted modality are fed
into a novel network called CMTrans for crossmodal feature
fusion. Details about the proposed CMTrans will be elaborated
in the next section. The output of CMTrans contains a group
of fused feature maps based on the main modal data, i.e., the
DSM-assisted RGB image-based feature maps. These features
are further enhanced by a cross-scale attention-based trans-
former called MCATrans whose output is fed into the decoder for
upsampling and classification. More specifically, the proposed
decoder layer consists of convolutional blocks, normalization
(Norm) layers, RELU blocks, and upsampling block. Based on
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the final output of encoder and multiscale skip fusion of the
corresponding scales, the decoder first restores the complete
spatial resolution while converting the encoded features into the
final labels. In particular, the highest-level features produced
by the fifth encoders from both branches are fused with CSE,
and subsequently, fed into the first layer of decoder D5. The
outputs from the MCATrans are added to the last four decoding
layers for multiscale skip fusion as shown in Fig. 2. During the
decoding process, the sparse feature maps are densified by the
convolutional blocks, which results in higher resolution feature
maps. This densification process continues until the resolution of
the resulting feature maps reaches the resolution of the original
input images.

B. CMTrans and MCATrans

CMTrans is a novel cross-attention-based transformer de-
signed to fuse the multimodal features by modeling long-
range dependencies across feature maps in different modali-
ties. Specifically, cross-scale feature interactions are exploited
to enhance the fusion performance. In contrast, MCATrans is
designed as a cross-scale attention-based transformer to capture
global contextual information and learn discriminative represen-
tations.

For the input image of size 256× 256, we can obtain mul-
tiscale feature maps from two modalities with dimension Ci ×
256
2i−1 × 256

2i−1 , where Ci = 64 ∗ i is the channel dimension at the
ith scale with i = 1, 2, 3, 4. Tokenization is first performed by
flattening the extracted features into sequences of 2-D patches
using a convolutional layer of kernel and stride sizes equal to
mi ×mi with mi =

32
2i . As a result, the 2-D feature patches

of all levels are downsampled to 16× 16× Ci through multi-
scale feature embedding. After tokenization, eight tokens of two
modilities are attained, including four for main modal RGB data
denoted by Ri ∈ RP×Ci and four for assisted modal DSM data
denoted by Di ∈ RP×Ci , where P = 256 and i = 1, 2, 3, 4.

1) CMTrans: The eight tokens of the two modalities are first
fed into the CMA layer followed by a multilayer perceptron
(MLP). We propose to employ a residual structure to reuse the
features and facilitate the network training. The proposed CMA
layer receives ten inputs, including eight tokens Ri and Di as
queries and two concatenated token R∑ and D∑ as key and
value, respectively. R∑ and D∑ of dimension P × C∑, where
C∑ =

∑
Ci are constructed by concatenating the four Ri and

Di tokens, respectively. It is worth noting that the crossmodal
fusion at each scale is improved by exploiting multiscale features
of other modalities.

To take full advantage of the multihead attention, we split
these tokens into four nonoverlapping copies of Ci

4 channels

each. For instance, Ri is divided into four R̃(j)
i ∈ RP×Ci

4 for
the queries of the ith layer after splitting, where j = 1, 2, 3, 4.
It should be noted that key and value are also divided into
four copies, and each copy contains nonoverlapping informa-
tion of the same number of channels at different scales and

R̃
(j)∑ ∈ RP×

C∑
4 . Since the operations for all four heads are

Fig. 3. Illustration of the proposed CMA layer.

identical, we will omit the superscript (j) in the following dis-
cussions for the sake of notational simplicity. Finally, denoting
the multilevel query, concatenated key and value for each head

asQi, Q̃i ∈ RP×Ci
4 andK, K̃,V, Ṽ ∈ RP×

C∑
4 , respectively,

the update equations for these variables are given by

Qi = RiWQi
,K = R∑WK,V = R∑WV (1)

Q̃i = DiWQ̃i
, K̃ = D∑WK̃, Ṽ = D∑WṼ (2)

where WQi
,WQ̃i

,WK,WV,WK̃, and WṼ are different
weights. Note that different heads have different query weights,
i.e., WQi

and WQ̃i
, but share the same key and value weights,

i.e., WK, WV, WK̃, and WṼ.
The update process is illustrated in Fig. 3. With Qi, Q̃i,

K, V, K̃, and Ṽ, the similarity matrix Si is computed by the
query associated with the RGB modality and the key associated
with the DSM modality. Meanwhile, the similarity matrix S′

i

is computed by the query associated with the DSM modality
and the key associated with the RGB modality. Finally, the
cross-attention value of main modalityCAi assisted by the DSM
modality is weighted by Si, while the cross-attention value of
assisted modality CA′

i is weighted by S′
i. The computation of

the crossmodal fusion by cross attention in the CMA layer can
be expressed as

CAi = SiṼ
� = Φ

(
Q�

i K̃√
C∑

)
Ṽ�

= Φ

(
W�

Qi
R�

i D
∑WK̃√

C∑

)
W�

Ṽ
D�∑ (3)
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CA′
i = S′

iV
� = Φ

(
Q̃�

i K√
C∑

)
V�

= Φ

(
W�

Q̃i
D�

i R
∑WK√

C∑

)
W�

VR�∑ (4)

where Φ(·) and (·)� denote the softmax function and matrix
transpose, respectively. Note that the similarity matrix Si and
S′
i in (3) and (4), respectively, represent the weighting matrix

of all channels, while the output CAi and CA′
i ∈ RP×Ci are

feature maps derived with channel weighting. It is worth noting
that the attention for each point on the feature map is computed
and taken into account at the global scale. After the computation
of the cross attention, a simple MLP and residual operation are
applied. In our experiments, cross-attention modules are stacked
for N times. During this stage, CAi and CA′

i computed in
the previous round would be used for the next calculation. The
resulting output can be expressed as follows:

CAn
i = CAi +MLP

(
Qi +CAn−1

i

)
(5)

CA′n
i = CA′

i +MLP
(
Q̃i +CA′n−1

i

)
(6)

where the superscript (·)n denotes the CMA layer index with
n = 1, 2, 3, 4. The Norm layer shown in Fig. 2 is omitted in
the aforementioned equations for notational simplicity. The
procedures from (3) to (6) are repeated for four times to build
a four-layer transformer. Finally, the four outputs of the main
modal CAi of size P × Ci are reconstructed by the reconstruc-
tion module to generate Fi whose size is Ci × 256

2i−1 × 256
2i−1 , for

i = 1, 2, 3, 4. In short, the reconstruction is the reverse process
of multiscale feature embedding. After performing the fusion at
CMTrans, we obtain crossmodal features at four scales.

2) MCATrans: The output Fi of CMTrans is the feature fu-
sion of four scales after the cross attention. These fusion features
are then augmented to present more discriminative and distin-
guishable integrated information for semantic segmentation. To
this end, we propose a cross-scale attention-based transformer
called MCATrans to extract the global-context from the fusion
feature space. MCATrans shares similar structures as CMTrans
discussed previously, except that the CMA layer in CMTrans
is replaced by the CSA layer as illustrated in Fig. 4. After
that, the correlation information in CSA is calculated based on
Qi,K, and V from the main modality as follows:

Ai = SiV
� = Φ

(
Q�

i K√
C∑

)
V� (7)

where Qi,K, and V are computed from Fi using the same
approach shown in (1) for i = 1, 2, 3, 4.

Note that the correlation of any two points on the feature map
is incorporated in the computation in (7). Thus, this correlation
information enables MCATrans to capture detailed local and
global information through the gradient backpropagation.

After the attention computation, an MLP and residual oper-
ation are applied in a manner similar to (5), except that CAi is
replaced byAi in (7). After that, the result is restored to the orig-
inal size by the reconstruction module. Finally, the four outputs

Fig. 4. Illustration of the proposed CSA layer.

Fig. 5. Illustration of the CSE module.

are combined with the corresponding decoder features derived
from decoder layers D1 to D4 using element-wise summation,
which results in the final full-resolution prediction.

C. Combined Squeeze-and-Excitation (CSE)

To fuse high-level features efficiently through enhancing the
most informative channels, we propose a CSE structure consist-
ing of two squeeze-and-excitation (SE) modules reported in [40]
as shown in Fig. 5. In principle, SE can retain and enhance
important feature information due to its global reception. More
specifically, the first global average pooling is applied as a
channel descriptor based on the channel attention mechanism
followed by a 1× 1 convolutional layer with the same number
of channels as that of the input. After that, a Sigmoid activation
function is utilized to normalize the weight vector to [0, 1]. Upon
obtaining the weight vector, the outer products of the weight
vector and the input feature maps in two branches are computed.
Finally, the fused feature map X is derived by adding the results
from the RGB and DSM branches. Since the CSE module is
only applied to the fifth scale, its inputs include X5 and Y5. For
notational simplicity, we will omit the subscript 5 and use X ,
Y , and C in the following discussions. The fused feature map
X can be expressed as follows:

X = X ⊗ σ (τ(X)) + Y ⊗ σ (τ(Y )) (8)
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where τ(·) denotes the operation of global pooling and 1× 1
convolution, whereas ⊗ and σ(·) stand for the outer product
operator and the Sigmoid function, respectively. Through this
fusion mechanism, we can enhance the most informative fea-
tures from the fifth layer of the largest number of channels. This
enhancement is shown to help derive complementary informa-
tion from the auxiliary modal DSM in our experiments.

D. Loss Function

The output of the last decoder layer is an image of the same
resolution as the original image. For each pixel denoted by p,
a prediction vector [zp1 , . . . , z

p
k, . . . , z

p
K ] is generated where zpk

is the probability that pixel p belongs to the kth class with k =
1, 2, . . . ,K withK being the total number of classes. We denote
by {ypk} the ground-truth labels for pixel p with only one entry
being one and others zero. We propose to train the classifier by
minimizing the following loss function:

loss =
1

P

P∑
p=1

K∑
k=1

ypk log

⎛
⎜⎜⎜⎜⎜⎝

exp(zpk)
K∑
l=1

exp(zpl )

⎞
⎟⎟⎟⎟⎟⎠ (9)

where P is the total number of pixels in the input image.

IV. EXPERIMENTS AND DISCUSSION

A. Datasets

In this section, we use two well-known ISPRS 2-D semantic
labeling datasets, namely Potsdam and Vaihingen, to validate
the effectiveness of our proposed crossmodal multiscale fusion
network. The Potsdam semantic labeling dataset contains 38
patches of 6000× 6000 pixels, each consisting of a true or-
thophoto and a DSM with a ground sampling distance (GSD) of
5 cm. The Potsdam dataset provides near-infrared, red, green,
and blue channels as well as DSM. In our experiments, we split
the 24 patches with eroded boundary data provided by ISPRS
into training and testing sets as follows.

1) Training set (18 patches): 6_10, 7_10, 2_12, 3_11, 2_10,
7_8, 5_10, 3_12, 5_12, 7_11, 7_9, 6_9, 7_7, 4_12, 6_8,
6_12, 6_7, 4_11.

2) Test set (6 patches): 2_11, 3_10, 4_10, 5_11, 6_11, 7_12.
Note that only the red, green, and blue channels are used in

our experiments.
Furthermore, the Vaihingen dataset is composed of 33 images

of an average size of 2494× 2064 pixels and a GSD of 5 cm.
However, only near-infrared, red, and green channels together
with DSM are provided in the dataset. We split the 16 patches
with eroded boundary data provided by ISPRS into training set
with 12 patches and testing set with four patches. Specifically,
ID:1, 3, 23, 26, 7, 11, 13, 28, 17, 32, 34, 37 are used for the train-
ing set, while ID: 5, 21, 15, 30 the test set. Information from
all three available channels is treated in a manner similar to
RGB. For comparison purposes, the same training set and test
set described previously are used on other existing methods.

B. Evaluation Metrics

The performance of our proposed CMFNet is evaluated in
terms of the classification accuracy on the test dataset as well as
standard statistical indices, including the overall accuracy (OA),
the mean intersection over union (mIoU), and the F1 score (F1).
These indices are defined as

OA =

∑P
k=1 TPk∑P

k=1 TPk + FPk + TNk + FNk

(10)

mIoU =
1

P

P∑
k=1

TPk

TPk + FPk + FNk
(11)

F1 = 2× Q×R

Q+R
(12)

where TPk,FPk,TNk, and FNk indicate the true positive, false
positive, true negative, and false negative, respectively, for an
object actually belonging to the kth class. Furthermore, Q and
R are given by

Q =
1

P

P∑
k=1

TPk

TPk + FPk
(13)

R =
1

P

P∑
k=1

TPk

TPk + FNk
. (14)

C. Experimental Setting

Our experiment platform was implemented with PyTorch on
a single NVIDIA Tesla V100 GPU with 16-GB RAM. Due to
the large size of the original data images, we used the sliding
window to dynamically collect the training dataset. The span
of the sliding window also defines the size of the overlapping
area between two successive patches. During training, a suitable
stride can extract more training samples and increase the perfor-
mance. In contrast, a smaller step size in the testing stage enables
us to average the classification results over the overlapping
areas, which helps reduce boundary effects and improve the
overall classification accuracy. Based on the aforementioned
consideration, we used a 256-pixel stride for training and a
32-pixel stride for testing.

All models were trained using the stochastic gradient descent
(SGD) algorithm with a learning rate of 0.01, momentum of 0.9,
weight attenuation of 0.0005, and batch size of 10. The weights
of the encoder were initialized with those from VGG-16 trained
on ImageNet, while the weights of the decoder were randomly
initialized as suggested in [41].

D. Performance Comparison

We benchmark the performance of our proposed method
against that of seven representative deep learning methods,
namely PSPNet, MAResU-Net, vFuseNet, FuseNet, ESANet,
TransUNet, and SA-GATE. Designed for complex scene under-
standing, PSPNet [42] is an efficient multiscale pyramid scene
parsing network by exploiting its characteristic global pyramid
pooling features. Furthermore, MAResU-Net proposed in [43]
performs semantic segmentation with a reduced computational
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TABLE I
EXPERIMENTAL RESULTS ON THE VAIHINGEN DATASET

Bold values are the best, while underlined values the second best.

Fig. 6. Qualitative performance comparisons on the Vaihingen test set. (a) RGB images. (b) Ground truth. (c) PSPNet. (d) MAResU-Net. (e) vFuseNet.
(f) FuseNet. (g) DSM. (h) ESANet. (i) TransUNet. (j) SA-GATE. (k) Proposed CMFNet.

complexity by adopting a linear attention mechanism (LAM).
TransUNet [30] utilizes the transformer architecture to enhance
the feature map processed by the CNN, whereas the proposed
CMFNet uses the transformer architecture mainly for cross-
modal fusion. SA-GATE [44] presents that depth data are gener-
ally noisy and designs separation-and-aggregation gate to fuse
RGB and DSM (RGB-D) data. ESANet [45] shows an efficient
RGB-D segmentation approach by two enhanced ResNet-based
encoders utilizing an attention-based fusion module. In our
experiments, both PSPNet and MAResU-Net only consider the
main modal information, i.e., the RGB images. In contrast, other
methods take into account crossmodal RGB-D data.

As listed in Table I, the proposed CMFNet improved the
classification accuracy for all classes as compared to our baseline
FuseNet, which confirmed that the proposed crossmodal and
multiscale mechanism successfully extracted the complemen-
tary information between modalities and effectively utilized the
multiscale information. Compared with existing state-of-the-art
methods, the CMFNet outperformed on two classes, namely
building and imprevious surface. In particular, on the Vaihingen
dataset, the CMFNet provided the most significant improvement
on low vegetation class with an increase of 1.28% as compared
to the existing method MAResU-Net. Furthermore, the classifi-
cation accuracy for buildings has been improved by 0.89%. This
improvement can be explained by the fact that the RGB images
fail to capture the elevation information that is available in the

DSM images. As a result, elevation information contained in
the DSM images, if exploited effectively, can greatly improve
the quality of the features for classes of noticeable elevation
values. For instance, buildings generally have a uniform and
large DSM value, whereas the low vegetation a low DSM value.
Thus, the improvement on these two classes are particularly
impressive. In terms of the overall performance, the proposed
CMFNet achieved OA of 91.40%, F1-score of 89.48%, and
mIoU of 81.44%, which stands for an increase of 0.89%, 0.94%,
and 1.55% as compared to the corresponding performance of
FuseNet, respectively. These results confirmed that the proposed
CMFNet achieved a better generalization performance. Fig. 6
shows a visualization example of the results obtained by all
eight methods under consideration. The rectangle area highlights
the performance difference. Clearly, it can be observed that the
proposed CMFNet is able to identify complex edges of buildings
with smoother results while providing an accurate classification
over shadow areas, which is often very challenging for RGB
image-based methods.

Experiments on the Potsdam dataset have also shown similar
results. As shown in Table II, the classification accuracy rates for
buildings, trees, and impervious surfaces were 97.63%, 87.40%,
and 92.84%, respectively, which amounts to an increase of
0.15%, 2.26%, and 0.20% as compared to FuseNet. The corre-
sponding OA, F1 score, and mIoU values were 91.16%, 92.10%,
and 85.63%, respectively, which corresponds to increases of



MA et al.: CMFNET FOR SEMANTIC SEGMENTATION OF REMOTE SENSING DATA 3471

TABLE II
EXPERIMENTAL RESULTS ON THE POTSDAM DATASET

Bold values are the best while underlined values the second best.

Fig. 7. Qualitative performance comparisons on the Potsdam test set. (a) RGB images. (b) Ground truth. (c) PSPNet. (d) MAResU-Net. (e) vFuseNet, (f) FuseNet.
(g) DSM. (h) ESANet. (i) TransUNet. (j) SA-GATE. (k) Proposed CMFNet.

Fig. 8. Convergence behavior during training on Vaihingen.

0.58%, 0.50%, and 0.77%, respectively, over FuseNet. Fig. 7
illustrates an example showing the performance comparison of
all methods. In particular, it is observed that nonbuildings that
were difficult to be identified using the RGB images could be
much more accurately classified by the proposed crossmodal and
multiscale mechanism. In sharp contrast, vFuseNet and FuseNet
misclassified such nonbuilding objects as buildings and complex
background.

Finally, Figs. 8 and 9 show the convergence behaviors of the
six crossmodal methods among the eight methods investigated,

Fig. 9. Convergence behavior during training on Potsdam.

namely, FuseNet, vFuseNet, ESANet, TransUNet, SA-GATE,
and the proposed CMFNet in terms of loss defined in (9) on
Vaihingen and Potsdam, respectively. Inspection of Figs. 8 and 9
suggests that the proposed CMFNet achieved comparable or
even better convergence performance as compared to those
existing methods. This is because that effective crossmodal and
multiscale information fusion through the transformer structure
helped the proposed CMFNet to more efficiently characterize
surface objects by exploiting crossmodal feature fusion.
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TABLE III
ABLATION STUDY ON THE VAIHINGEN DATASET

E. Ablation Study

To verify the effectiveness of each module in CMFNet, ab-
lation experiments are carried out by removing certain mod-
ules. As shown in Table III, three sets of ablation experiments
are designed based on CMFNet. In the first row, CMTrans is
disassembled into two single-modal multiscale transformers,
i.e., two MCATrans modules. This control group is used to
exhibit the performance gain due to crossmodal information
extraction by CMTrans. Furthermore, since the complexity of
the model remains unchanged in this design, it is proved that
the improvement in the CMFNet performance is not due to
the increase of model parameters. In the second row, CMTrans
is decomposed into four single-scale crossmodal tranformers.
In this group, the crossmodal information of different scales
is fused separately. The results of this experiment proves our
point of view, that is, learning different scales of crossmodal
information simultaneous is vital in data fusion. MCAtrans
is removed in the third row to show that the global context
enhanced is also helpful. Complete ablation experiments show
that each module in the CMFNet has its own unique role, and we
design our network based on the characteristics of crossmodal
and multiscale information.

F. Scale Analysis

In this section, we compare the performance of transformer-
based networks with structural variations. More specifically,
we consider the following three methods. The first method
uses the CSE module to fuse feature maps of all five scales
before adding the resulting maps as a skip connection to the
corresponding decoding layer. This method is referred to as
“Pure CSE” in the sequel. In the second method, simultaneous
crossmodal fusion of five scales is performed with CMTrans
and MCATrans. We call this method “Pure Trans”. Finally, the
third method is called “Trans1-3 + CSE4-5” that uses two CSE
modules to fuse high-level features, namely the fourth and fifth
levels while using CMTrans and MCATrans to fuse the first
three low-level features. Note that the proposed CMFNet uses
CMTrans and MCATrans to perform crossmodal and multiscale
fusion on the features of the first four levels, while a single CSE is
employed for the benefit of reduced computational complexity.
In other words, CMFNet has the “Trans1-4 + CSE5” structure.
The experimental results are shown in Table IV.

Table IV shows that the synergy of the transformer and CSE
is effective only if they are used properly as designed in the
proposed CMFNet. For instance, choosing a proper scale for
fusion can have a major impact on the performance. Specifically,
as features become more abstract and globally significant after
multiple layers of processing, CSE is more suitable for the fusion

TABLE IV
SCALE ANALYSIS ON THE VAIHINGEN DATASET

Fig. 10. Comparison of heatmaps generated before and after fusion. (a) Level-
4 features. (b) Level-3 features. (c) Level-2 features. (d) Level-1 features. The
first column is the remote sensing image of the validation set, whereas the second
and third columns are the heatmaps before and after adding the features to their
corresponding decoders, respectively. Finally, the last column is the ground truth.
Note that the level-1 heatmaps have the highest resolution with many scattered
pixels of high scores indicated by their bright colors.

of these high-level features. In contrast, a nature global view
derived from transformers is more suitable for simultaneous
processing of multiscale information in low-level layers.

G. Visualization Via Gradient-Based Localization

To shed light on the performance improvement achieved by
the proposed CMFNet, we used Grad-CAM [46] to visually
inspect the output of each decoder layer. Grad-CAM was origi-
nally developed to visualize the output of the intermediate steps
leading to the final result in image classification. However, unlike
the task of image classification that labels each image with one
single class, semantic segmentation for remote sensing images
is performed in a pixel-by-pixel manner.

To address this difference, we propose to modify the Grad-
CAM method for semantic segmentation applications in order
to visualize the rationale behind the classification decision of
CMFNet of a given pixel. More specifically, we propose to
visualize and compare the features before and after the fusion
of different layers for points of interest. Fig. 10 shows the
features of different levels to classify pixels as buildings or not.
Inspection of Fig. 10 shows that the third-column illustration
has higher score points, which suggests that the CMFNet could
better identify pixels belonging to buildings by fusing multiscale
and crossmodal features.

Finally, Fig. 11 compares the heatmaps from FuseNet and
the proposed CMFNet. In Fig. 11, the images on the first row
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Fig. 11. (a) and (b) Heatmaps of the FuseNet encoder and CMFNet encoder.
(c) and (d) Heatmaps of the FuseNet decoder and CMFNet decoder. The
heatmaps in the first and second rows show the heatmaps generated by the
two networks to determine if a pixel belongs to cars or not. In contrast, the
third and fourth rows depict the heatmaps generated by the two networks to
decide if a pixel belongs to buildings or not. Note that a higher score indicated
by brighter colors suggests higher likelihood for the pixel belonging to the class
under consideration.

(from left to right) are the original remote sensing image and the
ground truth, respectively. Furthermore, Fig. 11(a) and (b), i.e.,
the first and second rows, show the heatmaps of different levels
generated by the FuseNet decoders and the CMFNet decoders,
respectively, when these two networks tried to determine if each
pixel should be classified as cars or not. For reference, we
marked a black dot on the car on the street. Note that pixels
in brighter colors have higher scores and are more likely to be
classified as cars. From Fig. 11(a) and (b), it is observed that
the CMFNet was able to extract better features as the decoding
process progressed. In contrast, Fig. 11(c) and (d) illustrates
the heatmaps of different levels when FuseNet and CMFNet
tried to decide if each pixel should be classified as buildings
or not. Again, the CMFNet was able to generate more accurate
features to identify those pixels belonging to buildings more
rapidly. These visualization results confirmed that the proposed
crossmodal multiscale fusion architecture can generate better
features more effectively and efficiently, which leads to better
segmentation performance.

To illustrate the capability of CMTrans and MCATrans to cap-
ture detailed local information, we examined the local prediction
labels in Fig. 12. Visual inspection of Fig. 12(a), (c), (e), and (f)
suggests that the CMFNet could accurately identify the building
edges by comparing the results against the corresponding RGB
images. In particular, the CMFNet could accurately detect cars
covered by plants, as shown in Fig. 12(b). Furthermore, the
CMFNet can predict smoother boundaries even for blurred edges
in Fig. 12(d). Fig. 12 confirmed that the CMTrans and MCATrans
can better identify local objects by computing point-to-point
correlation on feature maps before effectively exploiting the
information at the global scale.

Fig. 12. From top to bottom, each row shows the RGB, ground truth, and
prediction, respectively. (a)–(c) Some detailed information in the results of
Potsdam. (d)–(f) Vaihingen.

V. CONCLUSION

In this work, a novel network architecture called CMFNet
has been proposed for high-resolution semantic segmentation
of remote sensing imagery by exploiting cross-attention and
crossmodal transformers. In particular, CMA layers, CMTrans,
and MCATrans have been developed to fuse features of different
scales from multimodal data. As a result, the CMFNet can
effectively model long-range dependencies across multiscale
feature maps of remote sensing data in different modalities
and learn discriminative integrated representations for semantic
segmentation. Furthermore, a novel residual method has been
established to reduce ambiguous features by connecting the
output of the crossmodal and multiscale feature fusion to the
decoders. Extensive simulation results on the well-known IS-
PRS Vaihingen and Potsdam datasets have confirmed that the
proposed CMFNet can provide the most accurate segmentation
performance. Finally, Grad-CAM-based visualization has been
utilized to provide intuitive interpretation on the effectiveness
achieved by CMFNet in feature extraction.
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