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Identification of Soil Texture Classes Under
Vegetation Cover Based on Sentinel-2 Data With

SVM and SHAP Techniques
Yanan Zhou, Wei Wu, Huan Wang, Xin Zhang, Chao Yang, and Hongbin Liu

Abstract—Understanding the spatial variability of soil texture
classes is essential for agricultural management and environment
sustainability. Sentinel-2 data offer valuable vegetation informa-
tion as proxies for soil properties inference. However, the appli-
cations of them in soil texture classification are still limited. This
study investigated the usefulness of Sentinel-2 data for predicting
soil texture class using an interpretable machine learning (ML)
strategy. Specifically, multitemporal Sentinel-2 images were used
to get exhaustive vegetation cover information. Basic digital ele-
vation map (DEM) derivatives and stratum were extracted. Three
support vector machines with different input parameters (purely
DEM derivatives and stratum, purely Sentinel-2, and Sentinel-2
plus DEM derivatives and stratum) were developed. Moreover, in
order to improve the transparency in black box ML models, the
novel SHapley Additive exPlanations (SHAP) method was applied
to interpret the outputs and analyze the importance of individual
variables. Results showed that the model with all variables provided
desirable performance with overall accuracy of 0.8435, F1-score
of 0.835, kappa statistic of 0.7642, precision of 0.8388, recall of
0.8355, and area under the curve of 0.9451. The model with purely
Sentinel-2 data performed much better than that with solely DEM
derivatives and stratum. The contributions of Sentinel-2 data to
explain soil texture class variability were about 17%, 41%, and
28% for sandy, loamy and clayey soils, respectively. The SHAP
method visualized the decision process of ML and indicated that
elevation, stratum, and red-edge factors were critical variables for
predicting soil texture classes. This study offered much-needed in-
sights into the applications of Sentinel-2 data in digital soil mapping
and ML-assisted tasks.

Index Terms—Machine learning (ML), sentinel-2, shapley
additive explanations (SHAP), soil texture classes.

I. INTRODUCTION

SOIL texture controls soil water holding capacity, perme-
ability, solute movement and aeration [1], and then drives

soil physical, chemical, biological, and hydrological processes
that are closely related to plant growth and soil erosion [2], [3].
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Soil texture also determines the suitability of soil for agricultural
production [1]. Thus, understanding explicitly spatial variability
of soil texture is necessary for ecosystem services, environment
sustainability, and smart agricultural management [4], [5].

Compared with the time-consuming and expensive field sur-
veys, digital soil mapping (DSM) has been developed for pre-
dicting soil properties due to its reliability and high efficiency
[6]–[14]. Remote sensing images are attractive and essential data
in DSM because of high revisit rate, resolution and availability
at a range of scales, timeliness, low cost, and convenience
[6]–[14]. In terms of soil texture, most scholars use remote
sensing to obtain texture information based on spectroscopy
about the reflection of bare soil pixels [7], [11]–[14]. These
researches rely heavily on the availability of bare soils and are
confined to the cropland under fallow or seedbed conditions
[7], [11], arid and semi-arid regions with sparse vegetation [12],
or areas with bare soils identified by time series multispectral
images [13], [14]. Given that satellites images (e.g., Landsat,
MODIS) can also characterize vegetation properties as proxies
for soil attributes inference [9], [15], some works have started to
reach soil texture using remote-sensed vegetation indices with
other auxiliary variables (e.g., topography, stratum) in densely
vegetated areas (e.g., forest system, tropical hillslope environ-
ment) [9], [16]–[18]. These studies demonstrate that the addition
of satellite covariates representing vegetation properties could
improve soil texture prediction accuracy [16] and multitemporal
optical images recording abundant crop growth information are
useful for identifying soil texture classes [9]. In the subtropi-
cal monsoon climate zone, intense cultivation is universal and
hence it is difficult to capture signals of exposed soils. More
exhaustive vegetation information is needed to map soil texture
spatial variation. Sentinel-2, the new earth observation satellites
open freely to users, are promising in crop identification, veg-
etation types classification and biomass mapping due to their
higher spatiotemporal resolution (10 or 20 m, 5-day revisit
cycle) and richer spectral channels (thirteen bands) [19]–[21].
Therefore, we hypothesized that Sentinel-2 data could offer
detailed vegetation cover information to express soil texture
variability.

Based on the DSM framework [22], various statistical tech-
niques have been used to predict soil properties including mul-
tiple linear regression [23], geostatistical methods [24], and
machine learning (ML) modelings [25]–[28]. In most cases, ML
algorithms show better prediction performance because they
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can learn nonlinear interactions iteratively from data without
potential loss of related information [29], such as random forest
(RF) [25], classification and regression tree [26] and support
vector machine (SVM) [27], [28]. SVM is famous for robust
generalization performance in ML algorithms [27], [28]. It seeks
the best compromise between the complexity of the model
and fitting precision based on the structure risk minimization
principle and has a well-established theoretical fundamental.
Therefore, SVM is often favored in DSM [27], [28].

Although ML algorithms could handle the nonlinear relation-
ship between target and predictor variables, the interpretabil-
ity of them remains a challenge due to inherent “black box”
property. The best explanation for a simple model is the model
formula itself, but it is not feasible for ML algorithms. Thus, the
goal of current interpretation strategies for ML algorithm is not
to explain the logical concept underlying the black box, but to
give the reasonable reasons for the estimated value of a special
instance [30]. Traditional variables contribution methods (e.g.,
permutation, gini) tend to evaluate the global importance of vari-
ables to understand model outputs, which are not individualized
for each prediction, causing local inconsistency [31]. Recently,
a new SHapley Additive exPlanations (SHAP) approach was
proposed to estimate the contribution of an individual variable
by comparing the performance of the model with and without
the variable [32]. Interestingly, the contribution of variables in
each instance is also calculated. Therefore, both local and global
importance of input variables are generated for the response [33].
As a tool for providing better explanations for model outputs,
SHAP approach has broad application prospects for predicting
natural and social phenomena [34]–[37]. To our knowledge,
there are no reports in the literature about the application of
SHAP method into DSM framework.

Therefore, the main objectives of the current study were
to 1) explore the potential of Sentinel-2 data for identifying
soil texture classes by using retrieved vegetation properties
under vegetation cover conditions and 2) analyze the critical
factors affecting soil texture class variation with SHAP method.
Specifically, three SVMs with different input parameters [purely
digital elevation map (DEM) derivatives and stratum, purely
Sentinel-2, and Sentinel-2 plus DEM derivatives and stratum]
were evaluated to investigate the contribution of Sentinel-2 data
to explain soil texture class spatial distribution, in consideration
of the impacts of other environmental factors (e.g., terrain,
geology) on soil texture class variability.

II. MATERIALS AND METHODS

A. Study Area

The study area is located in southwestern China (see Fig. 1).
It is a small basin (6790 ha) in the Three Gorges region of
the Yangtze River. The climate is subtropical monsoon humid.
The study site is often covered by clouds. The average annual
temperature is 15 °C ranging from 6 °C (January) and 36 °C
(August). The mean precipitation is 1224 mm with 70% occur-
ring in May to September. The topography is mainly mountains,
with elevation varying between 146 and 1625 m and slope
ranging between 0° and 62°. Main land use types are forest
and dry farmland accounting for 48.6% and 18.4% of the total
area, respectively. Others are paddy field, water, grassland, and

building. The dry farmland is under a rotational tillage farming
system, with winter rapeseed (Brassica napus L.), corn (Zea
mays L.), and sweet potato (Ipomoea batatas L.) for a long time.
Corn is sown in April and reaped in July. Sweet potato is seeded
in June and harvested in October. Winter rapeseed is planted
in October and matures in the following April. Agricultural
techniques and varieties are the same for each crop.

The soil parent materials over the study area come from two
strata, namely, the Daye Formation deposited in the late Triassic
and the Xujiahe Formation in the early Triassic [38]. The Xujiahe
Formation is composed of numerous types of rock, including
siltstone, fine sandstone, mudstone, etc. The Daye Formation is
dominated by marls and thinly-bedded limestone. According to
FAO soil classification, soils developed from the two geological
units are classified as Regosols (the Xujiahe Formation) and
Entisol (the Daye Formation), respectively [39]. Most soils are
neutral with pH ranging from 5.4 to 8.6 and organic matter
varying between 6.3 and 42 g/kg, respectively.

B. Soil Data

A total of 943 soil samples (0–20 cm) were collected from dry
farmland in September 2012. According to the requirements of
NY/T 1634–2008 Technical Regulations for National Cultivated
Land Fertility Survey and Quality Evaluation, sampling loca-
tions were carefully selected considering the natural condition
over the study area, such as geological substrate, topographic
characteristics, and soil types. At each sampling point, 10 sub-
samples were randomly collected within a radius of 10 m around
the point and then thoroughly mixed as the final sample. The soil
texture classes were estimated by experienced technicians using
the “Fingerprobe” method, which is regarded as an appropriate
alternative to the determination of soil texture in the laboratory
[40]–[42].

Soil texture could be divided into very fine classes (twelve) ac-
cording to the United States Department of Agriculture (USDA).
However, soil texture is always classified into three or four
groups in practice [43]–[45]. In the current study site, three
general classes of soil texture, namely, sandy, loamy, and clayey
textures were identified [44].

In order to evaluate the accuracy about the estimated textural
classes by Fingerprobe method in field, the particle sizes of
43 samples were analyzed using “Robinson” pipette method.
Then the corresponding textural class was identified by soil
texture calculator1 (see Fig. 15). The result showed that the
overall accuracy (OA) and kappa statistic of general classes
using Fingerprobe method were 76.7% and 0.604, respectively
(more details in Table IV). Thus, the data were suitable for
further study.

The number of samples was 54, 502, and 387 for sandy,
loamy, and clayey textural classes, respectively. For the Xujiahe
Formation, the number of samples was 4, 258, and 83 for sandy,
loamy, and clayey textural classes, respectively. For the Daye
Formation, the number of samples was 50, 244, and 304 for
sandy, loamy, and clayey textural classes, respectively.

1[Online]. Available: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/
soils/survey/?cid=nrcs142p2_054167

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167
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Fig. 1. Location, stratum, and sampling sites of the study area.

C. Predictor

The predictor variables used in this study included stratum
[26], [43], DEM derivatives, and spectral indictors originated
from Sentinel-2 imageries. The stratum was a categorical
variable, which was processed by one-hot-encoded, and others
were continuous variables. The variable values were extracted
into the soil samples using the ArcGIS 10.6 software. Each
variable was processed by min-max normalization according to
its respective ranges.

1) Geological and Topographical Factors: The Shuttle
Radar Topography Mission DEM with 30 m resolution2 was

2[Online]. Available: https://earthexplorer.usgs.gov/

used to provide consistent, high-quality elevation data [46].
This dataset was coregistered to the Sentinel-2 imageries and
resampled to 10 m spatial resolution using nearest method
based on ArcGIS 10.6 software. Then, the four basic DEM
derivatives including elevation, slope, aspect, and topographic
wetness index (TWI) were extracted by using SAGA GIS 7.2.0
software (see Fig. 2). Stratum was obtained from a geological
map with a scale of 1:50000 (see Fig. 1).

2) Remote Sensing Data: There are few suitable images
due to the frequent cloud over our study area. In order
to minimize the noise of surface moisture resulting from
rainfall [47], images that are away from rainfall dates are consid-
ered. Finally, only five cloud-free images covering spring (April
16th, 2019), summer (August 29th and September 20th, 2018),

https://earthexplorer.usgs.gov/
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TABLE I
SPECIFIC LIST OF REMOTE SENSING VARIABLES

Note: Superscript number 1 denotes vegetation radiometric indices and 2 denotes soil radiometric indices. Superscript # denotes abbreviated bands not explained in the table: B3
is band 3 (visible light band, green band), B4 is band 4 (visible light band, red light band) and B8 is band 8 (near-infrared band).

TABLE II
NUMBER OF SAMPLES FOR EACH SOIL TEXTURE CLASS BEFORE

AND AFTER SMOTE

TABLE III
EXAMPLE OF CONFUSION MATRIX

Fig. 2. Maps of (a) elevation, (b) aspect, (c) slope, and (d) TWI.

autumn (October 18th, 2018), and winter (December 12th, 2019)
were downloaded from European Space Agency (ESA3). Each
image covered individually the study area and included thirteen
spectral bands in the VNIR–SWIR spectral domain with 10–60
m spatial resolutions. Atmospheric and topographic corrections
were performed on these images through the Sen2cor plug-in

3[Online]. Available: https://scihub.copernicus.eu/dhus/#/home

Fig. 3. Images of Normalized Difference Vegetation Index (NDVI) in different
time phases over the study area.

unit provided by ESA. For each image, six spectral bands with
20 m spatial resolution were resampled to 10 m by bilinear inter-
polation method and three spectral bands with 60 m resolution
were eliminated. These Sentinel-2 images were then clipped to
cover the study area. All operations were done with Sentinel
Application Platform (SNAP) 7.0.0 software.

Fig. 3 shows NDVI values over the study area in five different
time phases. Based on these images, bare soil pixels were
retrieved by the threshold of NDVI < 0.2 [48]. No pixels always
had NDVI < 0.2 in these time phases. For each image, bands
5, 6, 7, 8A, 11, 12, and ten spectral indices were used to obtain
exhaustive vegetation cover information to infer soil texture in
the current study (see Table I) [9], [25], [48]–[55]. Finally, a total
of 80 indices were derived from the five Sentinel-2 images.

D. Methods

The flowchart shown in Fig. 4 summarizes the methodology
used in this work. It consists of three main steps:

https://scihub.copernicus.eu/dhus/#/home
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Fig. 4. Flowchart for methodology.

1) data preprocessing, which includes the balance of data
set based on synthetic minority oversampling technique
(SMOTE) and variables election using recursive feature
elimination with cross validation (RFECV);

2) model construction and evaluation, where three SVMs
with different inputs are compared to evaluate the potential
of adding Sentinel-2 data for soil texture classification;

3) model interpretation and application, where soil texture
classes are identified based on the best model and SHAP
method is applied to interpret the results.

1) SMOTE: ML methods usually work well on balanced
datasets. However, models could give a very poor performance
on an imbalanced dataset [57]–[60]. In order to solve this
problem, many techniques have been proposed. Among them,
SMOTE has been successfully used in different fields [57]–[60].
SMOTE performs oversampling by creating synthetic examples
in the variable space. Specifically, a random example from the
minority class is first chosen. Then k nearest neighbors of that
example are found. A linear function is generated between that
example and each nearest neighbor, and a new synthetic sample
is created by this function (see Fig. 5).

In this case, the imbalanced data were converted into a new
balance dataset using SMOTE_NC in Imblearn 0.7.0 package
of Python 3.6.10 [61]. The original and oversampling datasets
were shown in Table II.

2) Variable Selection: The RFECV was used to conduct
variable selection for simplifying statistical problems and elim-
inating redundant information. RFECV performs a recursive
variables elimination process by identifying and removing vari-
ables with low importance. Meanwhile, it applies a cross-
validation method to find an optimal subset with minimum
generalization errors [37]. RF algorithm (parameters mtry =
default (square root of the number of input features) and ntree =

Fig. 5. Illustrative overview of the SMOTE.

Fig. 6. Optimal variables subset selection using RFECV-random forest.

500) was used to calculate the importance of each variable based
on Mean Decrease Impurity [62], because it was insensitive to
non-informative predictors [62], [63]. The number of variables
was determined automatically based on the highest OA. Finally,
a total of 47 variables were retained, including all geological
and topographical variables and 42 remote sensing variables (see
Fig. 6 and Table V). These variables were used in the following
analyses.

3) Support Vector Machine: SVM is a popular supervised
classification and regression learning technology. It is by nature
a binary classifier, but it can be extended for multiclass classi-
fication using the “one-against-all” (ovr) or “one-against-one"
(ovo) strategies. The kernel functions extend SVM to a non-
linear model. There are four typical kernel functions including
polynomial, sigmoid, linear, and radial basis function (RBF).
SVM with RBF was used in this case, since it has been widely
used in DSM [27], [28]. The SVR model of scikit-learn 0.23.0
implemented with Python 3.6.10 was used in this study. The
kernel function was “RBF” and the classification strategy was
“ovo.”

4) Model Evaluation: Three SVM models (MODEL A, B,
and C, hereafter) with different input combinations were created
in the current work. MODEL A solely included DEM derivatives
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and stratum, MODEL B purely contained Sentinel-2 images, and
MODEL C had all variables.

We selected randomly 75% of the data for training and the
remainders for test. Ten-fold cross-validation was applied to op-
timize model parameters based on the training sets. Specifically,
the training set was divided into ten pairs of mutually exclusive
subsets, of which nine pairs were used as training sets and the
remaining were verification sets. The experiment was performed
with the subsets in turn, and ten verification results were aver-
aged. Two parameters including penalty (cost) and kernel width
(gamma) are needed for the RBF. The appropriate parameters
(cost and gamma) were selected according to the mean OA.
GridSearch-CV module in scikit-learn 0.23.0 of Python 3.6.10
was used to search optimal parameters of SVM in the parameter
space (gamma ∈ (0,10], cost ∈[1, 100]). Values of cost and
gamma were 20 and 5, 9 and 3, 10.65 and 0.75 for MODEL A,
B, and C, respectively.

The model performance was evaluated based on the training
and independent test sets. The evaluation indexes included OA,
kappa statistic, precision, recall rate, and F1-score. The calcula-
tion formulas are as follows [60]:

OA =
TP + TN

TP + TN + FN + FP
(1)

Pe =
(TP + FN) (TP + FP) + (FP + TN) (FN + TN)

N2
(2)

Kappa = 1− 1− OA
1− Pe

(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1− score =
TP× Precision × Recall

Precision + Recall
(6)

where TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative, respectively (see Table III).
N is the sample number. Models with higher values of OA,
Kappa, Precision, Recall, and F1-score perform better. Model
performance indicated by Kappa is: <0, poor; 0.00–0.20, slight;
0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, substantial;
and 0.81–1.00, almost perfect [64].

These indicators were calculated by the confusion matrix. An
example of a confusion matrix was shown in Table III.

In addition, the receiver operating characteristic curve (ROC)
was drawn and the area under the curve (AUC) was calculated.
ROC curve shows the relationship between true positive rate
(TPR) and false positive rate (FPR). TPR and FPR are as follows
[25]:

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
. (8)

An AUC value of 1 suggests a perfect model, while an AUC
value of 0 indicates a noninformative model [46]. According to
AUC, the model performs excellent (0.9–1), very good (0.8–0.9),
good (0.7–0.8), average (0.6–0.7), and poor (0.5–0.6) [65].

5) Model Interpretation: Complex ML technique offers a su-
perior capability to account for nonlinear relationships between
predictors and target and interaction effects between predictors,
but it is limited by the lack of interpretability and “black box”
properties. The SHAP proposed by Lundberg and Lee in 2017
[32] furnishes a unique solution for interpreting model output.
SHAP method is based on game theory and local explanations,
satisfying the following properties: local accuracy, missingness,
and consistence [66]–[68]. This method calculates the shapley
value for variable i to estimate its contribution to model output
(v(N)) using the formula [69]:

∅i =
∑

S⊆M\{i}

|m!| (m− |s| − 1)!

m!
[(v (S ∪ {i})− v (S)] (9)

where ∅i denotes the shapley value of variable i. S represents
the variable subset that does not contain variable i. M is the set
of all input variables and m is the number of variables.

A linear function of binary variables g is defined to replace
the original model f:

f (x) = g (x′) = ∅0 +
m∑

i=1

∅i (10)

where ∅0 is the constant when all inputs are missing. For each
sample, the model output is decomposed into the sum of a
constant and the shapley values (contribution) of all variables.
Then, both local and global importance of input variables are
obtained. SHAP library v0.37.04 embedded in Python 3.6.10
was used in this study [34], [36].

III. RESULTS

A. Model Performance

Fig. 7 shows the model performance evaluated using training
and test datasets before and after SMOTE. For each model,
similar values of statistical accuracy indicators were produced
by both training and test datasets before or after SMOTE. This
confirmed the robust generalization ability of SVM. Meanwhile,
model performances displayed accordant trends for the datasets
before and after SMOTE. That is, MODEL A with solely DEM
derivatives and stratum performed worst, MODEL B with purely
Sentinel-2 data gave much higher classification accuracy than
MODEL A, and MODEL C with all parameters performed best.
Also, the relative improvement of MODEL C over MODEL A
was more prominent than that of MODEL C over MODEL B.
These demonstrated that the addition of Sentinel-2 data can
bring significant amelioration in prediction accuracy than the
addition of topography and stratum parameters. Moreover, the
comparison of various accuracy indicators for the same model
before and after SMOTE shows the benefits of using SMOTE,
which was coincident with some literatures [57], [58], [60].
Therefore, the following analyses were based on the results after
SMOTE.

Fig. 8 shows the AUC scores of the three models calculated
with the test dataset. According to the AUC scores, MODEL C
performed excellently, MODEL A and MODEL B performed
very good. The higher AUC scores (exceeded 0.8) of the three
models pointed out that these different types of environment

4[Online]. Available: https://github.com/slundberg/shap

https://github.com/slundberg/shap
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Fig. 7. Various assessment scores for Models A, B, and C on training and test
dataset before and after SMOTE (Training_cv denotes ten-fold cross validation
of training dataset. The left side shows the cross-validation results of the training
set and the right side shows the results of the test set. MODEL A: solely DEM
derivatives, stratum. MODEL B: purely Sentinel-2 data. MODEL C: Sentinel-2
data plus DEM derivatives and stratum. The same below).

variables (Sentinel-2 data, DEM derivatives, and stratum) were
suitable for identifying soil texture classes.

The confusion matrices further concretely reveal the classi-
fication results of the three models (see Fig. 9). MODEL A
with solely DEM derivatives and stratum could identify about
85% sandy, 50% loamy, and 63% clayey textural soils. MODEL
B with purely Sentinel-2 data could discern about 99% sandy,
66% loamy, and 78% clayey textural soils. MODEL C with
DEM derivatives, stratum, and Sentinel-2 data could distinguish
about 99% sandy, 70% loamy, and 81% clayey textural soils.

Fig. 8. ROC curves of the three models based on the test dataset after SMOTE.

Fig. 9. Confusion matrices of the three models based on the test dataset after
SMOTE.

There were discrepancies in the identification of a single soil
texture class for different models. MODEL B and MODEL C
with Sentinel-2 data had more advantages in recognizing clayey
and loamy soils. This indicates the potential of Sentinel-2 data
for classifying soil texture classes. The contributions of Sentinel-
2 data to explain soil texture class variability were about 17%,
41%, and 28% for sandy, loamy, and clayey textural soils,
respectively.

B. Predictor Importance

The best model (MODEL C) was then employed to explore
the importance of individual variables for identifying soil texture
classes with SHAP technique. Fig. 10 shows the summary map
of the variable importance based on the average absolute value
of SHAP. Figs. 11–13 present SHAP summary plots for sandy,
loamy, and clayey textural classes, respectively.

Overall, elevation and stratum were the main explanatory
variables for soil texture classification (see Fig. 10). Band 5
in September (B5_Sep) and band 7 in October (B7_Oct) in
red-edge bands also played an essential role with the mean
absolute values of SHAP of 0.140 and 0.136, respectively.
Among the traditional spectral indices and bands, NDWI in
December (NDWI_ Dec) and band 12 in April (B12_Apr) had
higher contributions to texture classification. However, these
six indicators did not contribute significantly to identify each
single soil texture class. According the absolute mean values of
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Fig. 10. Variable importance to soil texture classes (Apr., Aug., Oct., and Dec.
mean April, August, October, and December, respectively).

Fig. 11. SHAP summary plot of sandy soils (Each dot corresponds to a soil
instance from test data. And the gradient color of dots reflects the variable’s
value changing from low (blue) to high (red). The input variables are placed
along y-axis based on their importance, and the most influential variables are
kept at the top. The x-axis represents the SHAP value. The SHAP value denotes
the probability of being predicted as target textural class. The higher the SHAP
value, the higher the probability. For stratum, 0 and 1 denote the Daye Formation
and the Xujiahe Formation, respectively, Figs. 12–13 are same).

Fig. 12. SHAP summary plot of loamy soil.

Fig. 13. SHAP summary plot of clayey soils.

SHAP, the variables with higher relative importance scores were
elevation (100%) > stratum (80%) > B12_Apr (54%) for sandy
soils, stratum (100%) > B5_Sep (86%) > B7_Oct (68%) >
NDWI_ Dec (64%) for loamy soils, elevation (100%)>B7_Oct
(60%) > NDWI_ Dec (57%) for clayey soils.

Furthermore, how the variables drive the output of the model
could be revealed through summary plots generated by SHAP
for understanding the decision process of the ML model [33],
[68]. Figs. 11–13 show that the dots of variables with lower im-
portance were mostly stacked vertically near the y-axis (SHAP
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value is close 0) at the bottom of the panel, while the dots of
variables with higher importance tended to have wide distribu-
tion range along the x-axis. In addition, the top six variables
explaining the overall variability of soil texture classes were
also located in the higher parts of the panels for sandy (see
Fig. 11), loamy (see Fig. 12), and clayey (see Fig. 13) textures.
For example, elevation could discern sandy and clayey soils. As
the elevation increased (the dot color transition from blue to red),
the probability of being sandy texture increased (SHAP values
change from negative to positive, see Fig. 11) and the probability
of being clayey texture decreased (SHAP value changes from
positive to negative, see Fig. 13). This indicated that most of the
sandy soils were located at a higher elevation and clayey soils
at lower areas. Stratum was useful for distinguishing loamy and
sandy soils. The Xujiahe Formation (red dots) corresponded to
the lower potential of sandy textural class (SHAP value < 0,
see Fig. 11) and the higher tendency of loamy textural class
(SHAP value > 0, see Fig. 12), showing that soils developed
from the Xujiahe Formation had more loamy soils than the sandy
soils. Similarly, the contributions of B7_Oct and NDWI _ Dec
were mainly to separate loamy soils from clayey soils. Their
effects on the output of the model could be summarized as a
higher possibility of being clayey class (SHAP value > 0, see
Fig. 13) and a lower possibility of being loamy class (SHAP
value < 0, see Fig. 12) with the increase of their values (from
blue to red). This suggested that loamy textural soils tended to
had lower values of B7_Oct and clayey textural soils tended
to have higher values of NDWI_Dec. B5_Sep ranked second
in identifying loamy texture (see Fig. 12), and B12_Apr was
third in recognizing sandy texture (see Fig. 11). Their lower
values (blue dots) resulted in lower likelihood (SHAP value <
0, see Figs. 11 and 12) of being loamy or sandy textual class,
respectively. This pointed out that loamy soils had a lower value
of B5_Sep and sandy soils had lower values of B12_Apr.

C. Soil Texture Classification Map

The soil texture class of each grid (10×10 m) for dry farmland
was predicted based on the best model (MODEL C) over the
entire study area (see Fig. 14). The spatial pattern of the soil
texture class was in consistent with that of the stratum and
elevation. Sandy soils were scattered in the northeast and south-
west areas, where the dominate soils were developed from the
Daye Formation at higher elevations. Loamy soils were mostly
distributed in the northern part, where soils were formed from
the Xujiahe Formation. Clayey soils were mainly concentrated
in the west and south areas, where the elevation was lower. In
addition, about 6% of the total dry farmland was sandy soils,
19% was clayey soils and 76% was loamy soils.

IV. DISCUSSION

A. Identification of Soil Texture Classes Using Sentinel-2 Data

This study provided new insights for the potential of Sentinel-
2 in DSM by using retrieved vegetation properties as proxies for
soil properties. Multispectral data can not only capture directly
bare soil reflectance but also obtain indirectly vegetation infor-
mation to predict soil properties. For temperate agroecosystems,

Fig. 14. Soil texture classification map.

the high revisit rate of Sentinel-2 (providing an image every 5
days) increases the possibility of acquiring bare soils images
along the crop cycle [70]. Bare soil areas could be maximized
by aggregating multiple acquisition dates [70]. However, it is
not applicable to our study area. The powerful capability of
Sentinel-2 in the vegetation remote sensing community offers
more potential usability for this study [71], [72]. The class of
soil texture affects the availability of soil moisture, heat capacity,
and other soil properties, which in turn leads to the response of
vegetation characteristics [9]. The new spectral channels of the
Sentinel-2, such as the three red-edge bands (Bands 5–7) that
may be overlooked by traditional multispectral satellites, are
promising in terms of detecting vegetation properties [71], [72].
Richer bands of Sentinel-2 could provide invaluable information
about vegetation cover to characterize vegetation-soil response,
which may be sufficient to discrete different vegetation charac-
teristics and their associated soil attribute (soil texture class).
Wang et al. [73] reported that variables related to vegetation
were important and practical for predicting soil properties.
Zhang et al. [25] emphasized that if there were no suitable
images under bare soil conditions, more predictors should be
considered to improve model performance under vegetation
condition, for which Sentinel-2 may be an appropriate data
source.

We also found that the prediction accuracy of the model with
purely Sentinel-2 data is superior to the model with solely DEM
derivatives and stratum (see Fig. 7). Enough heterogeneity of
vegetation features captured by Sentinle-2 might involve more
information about the target soil properties, because the vege-
tation is usually a comprehensive expression of several factors,
such as soils and terrain [9]. In addition, the combination of
DEM, stratum and Sentinel-2 data produced the most accurate
classification result, proving that both of them have unique
explanatory power for soil properties prediction.

Compared with existing studies, the results of identifying
soil texture class based on Sentinel-2 data in this study are
better than those based on Landsat series data (OA < 0.67,
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kappa < 0.53) [11], [74]. Higher spatial resolution seems to be
critical in the prediction of spatial variability of soil properties.
Ceddia et al. [16] pointed out that coarser spectral resolution data
(e.g., Landsat 8 OLI with 30 m resolution) are more likely to
have mixed-pixel problems and hence less sensitivity to spatial
complexity at short distances. The higher spectral resolution
may capture high levels of detail in landscape scale and smaller
objects (e.g., individual vegetation) whose spectral behaviors are
highly variable [75]. Sentinel-2 with high spectral resolution (10
or 20 m) may better represent the spatial variability of soil texture
classes in detail.

B. Critical Factors Related To Soil Texture Classes Based on
the SHAP

The global importance of all variables was shown by using
the SHAP method. We found that elevation and stratum were the
most momentous predictors, followed by red-edge bands (B5 in
September and B7 in October), NDWI in December, and B12 in
April (see Fig. 10). Furthermore, the direction of the impacts and
contribution degree of these six variables (relative score> 50%)
for different soil texture classes identification were revealed (see
Figs. 11–13).

Elevation plays a key role in the development of microcli-
mates, and in turn affects the soil processes [76]. It determines
gravity and hydraulic power conditions and thus the intensity of
erosion, redistribution, and sorting processes of soil particles to
a large extent [2]. Wilcke et al. [77] noted a strong dependence
of soil texture on elevation. Specifically, they pointed out a good
positive correlation between elevation and sand content but a
negative correlation between elevation and clay content, which
is consistent with our findings (see Figs. 11 and 13). This might
be attributed to the down-profile and downslope removal of finer
particles [78]. In previous studies of soil properties predictions,
elevation was also found to be the most effective topographic
parameter [2], [3], [77]. Geological factors exert a strong control
on potential pedogenesis at larger scales [79]. The classes of soil
texture developed from different strata may be diverse. Soils
developed from the Xujiahe Formation having a more loamy
texture than sandy texture (see Figs. 11 and 12) might be resulted
from the mudstone composition of this stratum in our study area.
Fityus and Smith [80] also reported that mudstone and marls
usually formed fine-textured soils.

Soil texture plays a key role in soil functions, including
fertility and solute transport [81]. Hence, there are differences
in the growth of crops for soils with distinct texture classes.
In September and October, the farmlands are shaded by sweet
potato (root crops) leaves. The growth state of vegetation leaves
could reflect the sensitivity of root crops to soil textual classes.
Bands 7 and 5, which are closely related to biophysical and
chemical properties of vegetation (e.g., plant nitrogen uptake)
[25], [82], may characterize the difference in crop leaves un-
der diverse soil texture classes. In addition, the foliar spectral
reflectance decreases with the increase of vegetation vitality
between 500 and 740 nm (central wavelength of band 5 is 703
nm) [83]. Thus, the lower reflectance of B5 (in September)
in loamy soils than sandy and clayey soils (see Figs. 11–13)
reflected the fact that soils with sandy loam texture are better for

tuber and root crops [84]. Same as shown in Fig. 11, Gholizadeh
et al. [48] also found that band 7 of Sentinel-2 images provided
a good positive correlation with clayey soils under bare soils.
Therefore, the usefulness of the red-edge factors of Sentinel-2
data in predicting soil properties are worthy to be explored in
the future.

In addition, plenty of references reported the close relation-
ship between soil texture and soil moisture [81], [85]. The avail-
able soil water content depends greatly on the soil texture [86].
Soil moisture affects the intensity and absorption features of
spectral reflectance, causing the difference in spectral reflectance
under different soil texture classes. Band 12 (SWIR) and NDWI
that are related to soil moisture are important variables for
predicting soil texture in our study [87], [88]. Liao et al. [86]
found a good positive correlation between the reflectance of
SWIR and sand (r = 0.57, p < 0.01), which is inconsistent
with ours (see Fig. 11). However, their finding is on bare soil
(NDVI < 0.1). In fact, the spectral reflectance captured by the
satellite-borne sensor is also affected by soil roughness, climatic
conditions, and vegetation cover in addition to soil moisture [81],
[89]. Our study area is planted with crops, where the spectral
reflectance might be related to vegetation cover to a large extent.
Crop water budget changes are sensitive to soil texture under
climatic changes [90]. Therefore, the importance of band 12 and
NDWI might be ascribed to the spectral response of vegetation
moisture [91], [92]. Specifically, the soil with high water content
and low porosity suppressed the progress of soil temperature
decreasing in Winter and increasing in Spring [93]. Then, soil
temperature influences biological processes, like the uptake of
water and nutrients by roots [94]. Therefore, crop moisture
content might be higher in clayey soils in Winter (NDWI_Dec,
see Fig. 13), and higher in sandy soils in Spring (B12_Apr,
see Fig. 11).

C. Deficiencies and Prospects

In fact, few studies have predicted soil texture classes with
Sentinel-2, and the results of them do not seem to be ideal (OA
ranging from 0.43 to 0.65, kappa ranging 0.20 from 0.46) in
comparison with the current work [47], [81]. The difference in
prediction accuracy might be associated with the conditions of
the research area (e.g., vegetation cover, soil, and climate), the
models and sampling data. The current study was conducted
under one land use type, and the samples did not cover all soil
texture classes (e.g., no silty soils). This limitation suggested the
research might be regional and the model might be applied in
other areas with similar conditions. The application potential
of Sentinel-2 in DSM needs to be further proved in larger
areas with more soil texture classes under different land use
types.

Additionally, how to improve the accuracy of mapping soil
texture deserves further exploration. DSM might benefit from
the synthetic aperture radar (SAR) data, such as Sentinel-1, due
to their all-weather, day, and night imaging advantages [76],
[81]. They can provide information beyond the vegetative cover
and the soil surface, and broaden the potential of soil properties
characterization in areas where optical satellite sensors cannot
observe the ground. Besides, some new strategies proposed may
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grant the great prospect for DSM, such as deep learning (DL)
algorithms [95], [96], and ensemble learning modelings [97].
Compared with traditional ML, they have unique advantages.
DL learns data itself to automatically capture high-level features,
avoiding the subjectivity of handcrafted feature selection in
ML [98]. Ensemble strategy can overcome the disadvantages
of each individual ML to improve model performance [99].
Future research will focus on the conjunction of SAR data and
multitemporal optical images with different methods to improve
classification accuracy.

V. CONCLUSION

In this study, based on the close correlation between environ-
ment variables and soil properties, the potential of Sentinel-2
in the identification of soil texture classes was explored. The
SHAP method was used to visually display the weights of
different variables and their relationships with the target. The
main findings are summarized as follows:

1) SVM with the combination of Sentinel-2 data, terrain,
and stratum achieved the highest classification accuracy,
and that with purely Sentinel-2 data was also good in soil
texture classification. This confirmed the new potential of
Sentinel-2 in predicting soil properties.

2) The ranking of the variable importance indicated that
elevation, stratum, band 5 in September and band 7 in
October, NDWI in December, and band 12 in April were
the key predictors. In particular, the red-edge factors are
worthy of further study in DSM.

3) SHAP method showed both global and local contributions
of variables to soil texture classes. It also revealed how
the changes in variable values affected the final prediction
direction. This provided promising technical support for
improving the interpretability of ML in DSM tasks.

APPENDIX

Fig. 15. Soil texture classification of 43 samples based on laboratory analysis.

TABLE IV
GENERAL SOIL TEXTURE GROUPS CLASSIFICATION CONFUSION MATRIX AND

ACCURACY EVALUATION INDICATORS

TABLE V
A LIST OF SIMPLE COUNT FOR THE 42 REMOTE SENSING VARIABLES
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