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Abstract—Recently, convolutional neural networks (CNNs) have
been successfully utilized in polarimetric synthetic aperture radar
(PolSAR) image classification and obtained promising results.
However, most CNN-based classification methods require a large
number of labeled samples and it is difficult to obtain sufficient
labeled samples. For this reason, an ensemble dual-branch CNN
(EDb-CNN) is proposed for PolSAR image classification with small
samples. First, to solve the problem of the small sample in Pol-
SAR image classification, a new data enhancement method based
on the superpixel algorithm is proposed to expand the number
of labeled samples. Second, to obtain different scales of features
from PolSAR images, a Db-CNN model is proposed. This model
contains two parallel CNN structures. One CNN branch is used
to extract the polarization features from the complex coherency
matrix. The other branch is utilized to extract the spatial features
based on weighted spatial neighborhood. On the top of these two
branches, a feature fusion model is adopted to combine these two
deep features, and a weighted loss function is employed to improve
the learning procedure. Then, the ensemble learning algorithm is
used for each CNN branch and Db-CNN network to obtain the
better classification results. Finally, a postprocess algorithm based
on the superpixel algorithm is proposed to improve the consistency
of classification results. Experiments on two PolSAR datasets show
that the proposed method achieves a much better performance than
other classification methods, especially when only a few labeled
samples are available.

Index Terms—Dual-branch convolutional neural network (Db-
CNN), polarimetric SAR, superpixels, terrain classification.

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (PolSAR) is a
powerful microwave imaging technology, which can pro-

vide the target information on Earth surface under all-weather
and all-time conditions. Compared with other remote sensing
images, PolSAR images are able to provide richer information
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as they transmit and receive electromagnetic waves in four
polarization combinations (HH, HV, VH, and VV). Due to these
characteristics, PolSAR images have been widely applied in
remote sensing field, such as image classification [1], target
recognition [2], and detection task [3], among which, PolSAR
image classification has been extensively studied as the basis of
understanding and interpretation of remote sensing [4]–[6].

Therefore, PolSAR image classification has attracted exten-
sive research attention and more and more methods are proposed
to accomplish this task. The majority of available methods
are based on feature extraction and representation [7]–[9], and
classifier designing and optimization [10]–[12]. In general, po-
larimetric target decomposition is one of most powerful and
widely used methods for feature extraction of PolSAR images,
such as Krogager decomposition [13], Pauli decomposition
[14], H/a/A decomposition [15], Freeman three-component de-
composition [16], and Huynen decomposition [17], Yamaguchi
decomposition [18], and the extensions of the these mentioned
methods [19], [20]. In addition, statistic features, backscattering
elements, color features, texture features, and other popular fea-
tures are used for PolSAR image classification. However, these
extracted features are mostly class-specific, and it is difficult
to achieve satisfactory classification results by using only one
feature extraction method. But if multiple feature extraction
methods are adopted, it will not only increase the time cost
but also need effective feature selection methods to avoid the
influence of redundant features.

After obtaining the features, the design of the classifier is also
one of the important research content to solve the classification
of PolSAR images. Traditional classifiers mainly include the
complex Wishart classifier [21] and machine learning based
methods, such as k-nearest neighbor [21], support vector ma-
chine (SVM) [23], sparse representation [24], and decision
tree [25], etc. Many researchers have successfully used these
methods for PolSAR image classification and have obtained the
satisfactory classification results. However, in these methods,
the classifier is designed according to the extracted features. Not
only it takes a lot of time to extract features and design classifiers,
but also the generalization performance is poor. Therefore, tradi-
tional methods cannot make full use of the relationship between
features and classifiers to improve the classification accuracy of
PolSAR images.

With the advancements in computing technology, the the-
ory of deep learning has become increasingly important in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2611-6194
https://orcid.org/0000-0002-0798-0019
https://orcid.org/0000-0002-8111-8195
https://orcid.org/0000-0003-4622-8361
mailto:huawenqiang@xupt.edu.cn
mailto:zhangcong1402@163.com
mailto:xiewen@xupt.edu.cn
mailto:xmjin@xupt.edu.cn


2760 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

the field of pattern recognition. Among them, convolutional
neural network (CNN) has demonstrated remarkable learning
ability in many tasks, such as action recognition [26], [27],
image classification [28], [29], semantic segmentation [30], [31],
and scene labeling [32], [33]. Unlike the traditional machine
learning methods, CNN is driven by data and can automatically
extract features needed by the corresponding classifier through
back-propagation. Moreover, CNN usually contains multiple
convolution layers and activation layers, which can provide
the deep nonlinear features. Therefore, to solve the problem
of PolSAR image classification, some scholars introduce the
CNN method to extract deep features of PolSAR images and
classify them. In 2017, Zhou et al. [28] applied CNN based
method to solve the problem of PolSAR image classification
for the first time. In this method, they proposed a three-layer
CNN architecture to classify PolSAR images and obtained the
good classification results. After that, the classification methods
based on deep learning are gradually applied to the classifica-
tion of PolSAR images and achieved remarkable results, such
as graph-based architecture [34], fully convolutional networks
[35], complex-valued CNN (CV-CNN) [36], and other advanced
convolutional networks [37], [38]. However, these success of
CNN-based PolSAR image classification methods depend on
adequate labeled samples. With the development of remote
sensing technology, it is becoming easier to obtain the large
number of unlabeled PolSAR data. But marked PolSAR images
still takes a lot of manpower and material resources. Therefore,
PolSAR image classification methods based on small samples
has become one of the research hot topics in recent years.

As mentioned above, designing a suitable CNN architecture
for PolSAR image classification with small samples is very
necessary. In the emerging preliminary research, learning from
the traditional machine learning method to solve the small sam-
ple problem, which provides a good research idea for the deep
learning method to solve the small sample problem of PolSAR
image classification. PolSAR image classification is a pixel-level
classification task and aims to assign each pixel with a class label
of given categories. Therefore, how to use a small number of
labeled samples and the related information between pixels in
PolSAR images to transfer the labeled information to unlabeled
samples is an effective solution. Superpixels algorithm [39] can
divide an image into many small regions of approximately the
same size and shape. Combined with the spatial relationship
between PolSAR pixels, this feature of superpixels can help
the marker propagation of labeled samples in PolSAR images.
Therefore, this article proposes a data enhancement (DE) strat-
egy based on superpixel algorithm to expand the number of
labeled samples.

In addition, pixel-based CNN classification [35]–[38] usually
takes each pixel as the center and selects pixel blocks as the input
information. Although this input information selected method
also achieves good classification results, it does not make good
use of the spatial relationship between pixels in the pixel block.
In order to effectively use this spatial relationship, a spatial
weighted pixel block selection method is proposed, which can
better express the characteristics of the center pixel. At the
same time, in order to obtain more abundant multiscale features,

a dual-branch CNN (Db-CNN) model is proposed. This Db-
CNN architecture contains two parallel deep CNN architectures.
In these two parallel deep CNN architectures, one CNN uses
directly selected pixel blocks as input, and the other uses spatial
weighted pixel blocks as input. This inputting method not only
increases the diversity of input features but also makes up for the
lack of information caused by the single input mode. Then, on
the top of these two branches, a feature fusion model is used to
combine these extracted features and a weighted loss function is
used to improve the learning procedure of the proposed Db-CNN
model. Moreover, in the proposed Db-CNN model, there are
three outputs: one output is the result of feature fusion of two
parallel deep CNNs. The other two outputs are the output of each
branch CNN architecture, and each branch has an output result.
Then, in order to further improve the classification effect, the
idea of ensemble learning is used to decide the final output results
by majority voting. Finally, a postprocess algorithm based on
superpixels is proposed to improve the regional consistency of
classification results.

Therefore, the main contributions and advantages of this
article are as follows:

1) Aiming at the small sample problem of PolSAR im-
age classification, a new ensemble dual-branch CNN
(EDb-CNN) model is proposed. It contains a new
weighted loss function and an ensemble module, both of
which can effectively improve the network classification
performance.

2) The superpixel-based DE method is proposed to increase
the number of training samples such that the classification
accuracy can be improved with the limited samples.

The rest of this article is organized as follows: Section II de-
scribes the proposed method. Section III shows the experimental
results and analysis with two real PolSAR datasets. Finally,
Section IV concludes this article.

II. PROPOSED METHOD

A. Feature Representation

In PolSAR images, each resolution cell is expressed as the
complex coherency matrix or complex covariance matrix, which
is a symmetrical matrix and the diagonal elements are real
numbers. The form of complex coherency matrix T is defined as

T =

⎡
⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎦ . (1)

To adapt the input format of the CNN, we utilize the coherency
matrix T to convert into a real 6-dimensional (6-D) vector as
shown below:

A = 10log10(SPAN)
B = T22/SPAN
C = T33/SPAN
D = |T12| /

√
T11 · T22

E = |T13| /
√
T11 · T33

F = |T23| /
√
T33 · T22

(2)
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where A denotes the total scattering power, SPAN = T11 +
T22 + T33 denotes the sum of the principal diagonal elements
of T. B and C denote the normalized ratio of the power of T22

andT33, respectively. D, E, and F denote the relative correlation
coefficients. Therefore, PolSAR data can be converted into a
6-D to form a 6×M ×N dataset, where M and N denote the
number of rows and columns of PolSAR images, respectively.

B. Pixel Block Selection Based on Spatial Weighted

In the CNN-based PolSAR image classification methods, each
pixel is used as the center to select the pixel block, then the
pixel block is classified, and finally, the category of the pixel
block is used as the category of the central pixel. This method
is very suitable for uniform areas, because the pixel blocks
contain pixels with the same category. But, in the nonuniform
region, each pixel block may contain multiple categories, which
seriously affect the classification of the whole pixel and center
pixel. Aiming at this phenomenon, a pixel block selection based
on spatial weight is proposed in this article.

This method weights the feature information of pixels in the
pixel block by calculating the distance between the central pixel
and the pixel block, which is expressed as follows:

Wij =
wii

wij
(3)

wij =
1

2
Tr((Ti)

−1Tj) + ln |Ti| (4)

where the range of Wij value is (0, 1], wij denotes the distance
between the center pixel and its neighborhood pixel, Tr() is
the trace of a matrix, Ti and Tj represent the coherency matrix
of center pixel and its neighborhood pixel, respectively. The
smaller the value of wij means that the pixel is more similar to
the central pixel, the greater the possibility of belonging to the
same category, the greatest contribution to the final judgment of
the central pixel category, and the greater the weightWij . On the
contrary, the greater the value of wij means that the greater the
difference between the pixel and the central pixel, the less likely
it is to belong to the same category, the smaller the contribution
to the final judgment of the central pixel category, and the smaller
the weight of its feature.

C. DE Method Based on Superpixels

Superpixels method is an image segmentation technique,
which segments the image into some homogeneous pixel areas
depending on pixels’ distance and feature domain. Turbopixels
segmentation algorithm [39] is one of the best superpixel meth-
ods, which can divide an image into many small regions with the
similar size and shape. In the turbopixel segmentation method,
pixels in any superpixel with high similarity are considered to
belong to the same classes. For PolSAR images, pixels in the
same region usually have high similarity, so they are more likely
to belong to the same category. Therefore, combining the statis-
tical characteristics and spatial information of PolSAR images,
a DE method based on turbopixels algorithm is proposed to
expand the number of labeled samples by using the information

Fig. 1. Flowchart of the DE method based on superpixels.

of a small number of labeled samples and a large number of
unlabeled samples. This method consists of four steps.

1) A small number of labeled samples are randomly selected
as the initial training samples U1.

2) Apply turbopixels algorithm divide the PolSAR images
into Nt superpixels.

3) Select the superpixel block that contains the labeled pixels,
and calculate the distance between the labeled pixels and
other unlabeled pixels in each superpixel block in (4).

4) Select the mL unlabeled samples closest to the labeled
samples in superpixel block, and take them as the extended
training samples.

Fig. 1 shows the flowchart of the DE method based on
superpixels. In Fig. 1(a1), the red, green, and blue represent
three categories of labeled pixels randomly selected. Fig. 1(a2)
shows that the image is divided into three superpixel blocks.
Fig. 1(b) represents the superpixel block containing labeled
pixels. Fig. 1(c) shows that the 5 closest pixels of each category
to the labeled pixels are selected and labeled in the surperpixel
block of Fig. 1(b). As can be seen from Fig. 1(a1) and (c), the
number of labeled pixels in each class has increased from 1 to
6, realizing the expansion of the label sample set.

D. Architecture of the Db-CNN Model

In recent years, deep neural networks have achieved great
success in the field of image processing. Compared with the
traditional machine learning methods, deep learning methods
can learn the deep hidden information of the data actively. As one
of the best deep learning networks, CNN has made remarkable
achievements in various fields of image processing, such as
object detection, image segmentation, terrain classification, etc.

The Db-CNN model is based on a basic deep CNN, and the
architecture of Db-CNN model mainly consists of four parts:
data augment processing, training process, testing process, and
postprocessing, as shown in Fig. 2. In the process of DE, the
number of labeled samples is expanded by using the superpixels
method and the similarity between pixels. The training process
consists of two parallel CNN structures, a feature fusion module,
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Fig. 2. Network architecture of the proposed method.

Fig. 3. Inception structure.

two auxiliary softmax classifiers, a main softmax classifier, and
an ensemble learning module. In two parallel CNN structures,
one CNN channel uses the extracted 6d-information as the input
data, and the other channel uses the spatial weighted features as
the input data. Then, an inception structure is used to fuse these
two depth features. This inception structure is shown in Fig. 3.
In this structure, different branches represent two convolution
channels of the proposed method, and each channel uses differ-
ent size convolution kernels to obtain different receptive fields.
Then, the subsequent connections mean the fusion of different
scale features. In the ensemble learning module, the majority
voting method is used to vote the classification results of the
two auxiliary classifiers and the main classifier. Finally, apply
the trained model to predict the test data, and the postprocessing
method based on superpixel is used to improve the prediction
results.

The weighted cascade loss function (CLF) of the proposed
method consists of three terms as shown in the following
equation:

Loss = Lmain + λ1Lauxiliary1 + λ2Lauxiliary2 (5)

where Lmain denotes the loss function after the fusion of two
branch channel features, Lauxiliary1 and Lauxiliary2 denote rep-
resent the loss function of each branch CNN respectively. To
emphasize the importance of these two branch networks, we use
put weights for these two losses λ1 and λ2.

E. Procedure of the EDb-CNN Algorithm

The EDb-CNN Algorithm is presented in Algorithm 1.

F. Postprocessing Algorithm

Postprocessing algorithm is significant in pixels-based clas-
sification methods. It can be used to reduce the effect of speckle
noises and achieve better performance. In this section, we in-
troduce the postprocessing methods based on turbopixels algo-
rithm. The specific process is as follows.

1) Computer the categories number (Ri, i = 1, 2, . . . k) of
pixels in each superpixel block and the pixels number
(NRi

, i = 1, 2, . . . k) in each category based on the classi-
fication results of EDb-CNN and the segmentation result
of turbopixels algorithm.

2) Select the main category Rw in each superpixel block,
which represents more than half of the total number of
pixel categories in each superpixel block.

3) For the pixels that do not belong to category Rw, calculate
the wishart distance d(TRi, VRw) from the pixels to the
center of category Rw. If this distance is less than the av-
erage wishart distance dc of the category Rw, the category
of this pixel is corrected to category Rw. d(TRi, VRw) and
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Algorithm 1: EDb-CNN.
Input: PolSAR image, randomly select the initial labeled

set U1

1. Use the data enhancement method to enlarge the
labeled sample set. (Section II, Part C)

2. Construct labeled and unlabeled sample sets (Utrain and
Utest). The first branch only uses extracted 6-D
features; The second branch first extracts 6-D features
and then spatially weights them (Section II, Part A and
B).

3. Train the EDb-CNN model using the labeled samples
Utrain. (Section II, Part C)

4. Use the trained model to predict the unlabeled samples
Utest, and obtain the three predict results
(class1, class2, and class3) of two auxiliary classifiers
and the main classifier. (Section II, Part D)

5. The majority voting method is used to vote the
classification result class1, class2, and class3, and the
classification result of each pixel is output. (Section II,
Part D)

Output: classification of PolSAR image

dc are defined as

d(TRi, VRw) =
1

2
{ln(|TRi|) + ln(|VRw|)

+ Tr(TRi
−1VRw + VRw

−1TRi)
}

(6)

dc =
1

NRw

NRw∑
i=1

d(TRi, VRw) (7)

where TRi denotes the coherence matrix of pixels in the super-
pixel block that do not belong to category Rw. VRw represents
the average of coherence matrix in categoryRw .NRw represents
the number of all pixels in category Rw.

III. EXPERIMENTAL DESIGN AND ANALYSIS

A. Data Description

Two real PolSAR datasets are used to verify the proposed
method: First, the Flevoland I farmland dataset was acquired
by the NASA/JPL AIRSAR system in August 1989. Fig. 4(a)
shows the Pauli RGB image of Flevoland I, which mainly
contains 15 classes, and has 750× 1024 pixel. Fig. 4(b) shows
the ground truth map of Fig. 4(a) [40], [41]. The second dataset
is Flevoland II area, which was acquired from the C-band by the
RADARSAT-2 system in April 2008. Fig. 5(a) shows the Pauli
RGB image of Flevoland II area. This data has 1400× 1200
pixel, and mainly contain four different terrain classes, including
urban, water, forest, and cropland. Fig. 5(b) shows the ground
truth map of Fig. 5(a) [40], [41].

B. Experimental Design

In the proposed method, we designed an EDb-CNN method
based on ensemble learning and superpixels algorithms. In the
EDb-CNN method, there are three different outputs, including

Fig. 4. AIRSAR dataset in Felvoland I. (a) Pauli image. (b) Ground truth
image.

Fig. 5. RADARSAT-2 data in Felvoland II. (a) Pauli image. (b) Ground truth
image.

two auxiliary classifiers (classifier1 and classifier2) and one
main classifier. In order to verify the effectiveness of this method,
each part of this method is compared in the experiment.

In order to verify the effectiveness of the dual-branch, we com-
pared the original Db-CNN with the traditional CNN method.
In order to verify the effectiveness of DE based on superpixels,
we compared the Db-CNN-DE with original Db-CNN. Db-
CNN-DE denotes that the original Db-CNN method is combined
with the DE processing. In order to verify the effectiveness of
CLF, we combined the Db-CNN-DE with Db-CNN-DE-CLF.
Db-CNN-DE-CLF denotes that strategy of CLF is used in
Db-CNN-DE method. In order to verify the effect of ensemble
learning, we compared the EDb-CNN-DE-CLF with auxiliary
classifier1, auxiliary classifier2, and Db-CNN-DE-CLF method.
EDb-CNN-DE-CLF denotes that the ensemble learning strategy
is used to integrate the results of the two auxiliary classifiers
and the main classifier of Db-CNN-DE-CLF method. Finally,
in order to verify the effect of postprocessing, we compared
the proposed method with EDb-CNN-DE-CLF method. The
proposed method includes all the functions of the four modules
(EDb-CNN, DE, CLF, and postprocessing).

In this article, all PolSAR datasets were tested with randomly
selected training samples. Before the classification, the refined
Lee filter [42] with a 7× 7 window size is used to reduce the
effects of speckle noise. For the data augment processing, each
dataset was divided into 3000 superpixels based on turbopixels
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Fig. 6. Structure and parameter setting of the proposed method.

algorithm. The size of the input pixel block is set as 9× 9, the
learning rate is 0.001, ReLU is used as nonlinearity activation
function, and other parameters of the proposed method are
shown in Fig. 6. By comparing the performance of different
classification methods, overall accuracy (OA) and kappa statis-
tics of classification results are adopted to measurements of the
classification performance. In order to compare the fairness of
the experiment, all experiments are carried out with Tensorflow
2.0 on a desktop computer that runs Windows 10 operating
system with an Intel(R) Core (TM) CPU processor (3.20 GHz)
and 16 G memory.

C. Parameter Analysis

In the proposed method, there are three key parameters,
weight parameters of the cascaded loss function, number of
training samples, and size of pixel block. In order to select the
appropriate parameters, the first dataset Flevoland I area is used
as an example in this section.

1) Effects of Weight Parameters of CLF: In this section, we
only consider the influence of two weights parameters
of (5).

The loss function is a necessary component for deep learning
models in network training. In this article, the proposed method
is designed based on the dual-branch architecture, and the final
results depend on two different features: polarimetric features
and spatial weighted features. Because of the complexity of this
structure, the traditional single loss function at the end of the
network is insufficient to optimize the proposed model. There-
fore, a weighted CLF is proposed to better guide the training
procedure. In this article, λ1 and λ2 are used to represent the
weight coefficient of cascaded loss function. In order to select
the optimal weight coefficient, we did comparison experiments
with different value ofλ1 andλ2. Table I shows the OA and kappa
statistics of the classification results of the proposed method,
and 10 labeled samples of each class are used. As shown in
Table I, different weight coefficients have a significant impact
on the classification results. From Table I, it can be found
that when λ1 = 0.7 and λ2 = 0.7, the classification accuracy
is 93.41%, which is higher than other values. When λ1 = 0.6
and λ2 = 0.3, the classification accuracy is 85.95%, which is
lower than other values. This shows that the selection of different
weight parameters has a great influence on the classification
results. It also shows that the cascaded loss function proposed in

Fig. 7. Classification accuracy of Flevoland I datasets vary with the different
number of labeled samples.

this article is an effective strategy, which can effectively increase
the classification accuracy of the proposed method.

2) Effects of The Number of Labeled Samples: Different
number of training samples usually have a great influence
on supervised classification methods. It can reflect the
effectiveness and stability of the classification method in
a different number of training samples. Therefore, this
section only considers the influence of different training
samples on the proposed method, and the weights of the
cascaded loss function are set to λ1 = 0.7 and λ2 = 0.7.

Fig. 7 shows the change curve of classification accuracy of the
proposed method when the different number of training samples
are selected for each class in Flevoland I area. There are four
curves in Fig. 7. The dark blue and light blue curves represent
the classification accuracy of the two auxiliary classifiers of the
proposed method in different training samples. The green curve
shows the main classifiers of the proposed method in different
training samples. The red curve represents the final classification
result of the proposed method without postprocessing.

From Fig. 7, it can be found that the OA of the proposed
method is 70.23% when 1 labeled sample is selected as training
samples for each class. Moreover, with the increase of the num-
ber training samples, the classification accuracy of the proposed



HUA et al.: POLARIMETRIC SAR IMAGE CLASSIFICATION BASED ON ENSEMBLE DUAL-BRANCH 2765

TABLE I
COMPARISON RESULTS OF THE PROPOSED METHOD WITH DIFFERENT WEIGHTS PARAMETERS OF CLF

The bold number indicates the best result in Table I.

method is increasing. When 10 labeled samples are selected as
training samples for each category, the classification accuracy
of the proposed method is 93.41%. This shows that the OA
increases by 23.18% as the number of each labeled samples
used increases from 1 to 10. This also shows that the proposed
method is an effective method, with the increase of training
samples, the classification accuracy also gradually increases.
When each class selects 20 labeled samples as training samples,
the OA of the proposed method is 94.62%. Thus, it can be
seen that the training sample increases from 10 to 20, the
classification accuracy of the proposed method only increases
by 1.12%. This shows that the proposed method is a reasonable
classification method with the increase of training samples, the
increase of classification accuracy gradually decreases. From
the red curve in Fig. 7, we can also find that when the training
samples are very small, the change of classification accuracy
increased significantly with the increase of training samples.
When the training samples increase to 10 labeled samples
each class, the change of classification accuracy rate gradually
slows down. In addition, it can be seen from Fig. 7 that both
the classification accuracy of the two auxiliary classifiers and
the classification accuracy of the main classifier increase with
the increase of training samples. This further shows that the
method proposed in this article is an effective and reasonable
method.

Therefore, to increase the efficiency of the proposed method
and obtain satisfactory classification results, we suggest that 10
number of each labeled samples are used in this article.

3) Effects of The Size of Pixel Block: In the proposed method,
the central pixel and its neighborhood pixels as a whole
represent the feature information of the central pixel.
Therefore, the size of pixel is an important parameter of
the proposed method. In order to only analyze the size
of pixel block, the weights of the cascaded loss function
are set to λ1 = 0.7 and λ2 = 0.7, the number of labeled
samples per class is set 10.

Fig. 8(a) and (b) shows the OA and time cost of proposed
method with different size of pixel block on Flevoland I data
set. From Fig. 8(a), it can be found that the OA first increases
gradually with the increase in the size of the pixel block. This
is mainly because when the pixel block is comparatively small,
with the increase in the size of the pixel block, the neighborhood
pixels will also increase, resulting in the corresponding increase
of the spatial information, thus improving the final classification
accuracy. However, when the pixel block is larger than 9× 9,
the neighborhood pixels are relatively far away from the central
pixel, resulting in the redundant spatial information cannot
effectively improve the classification results, and even reducing
the classification accuracy with an increase in the size of the
pixel block. From Fig. 8(a) and (b), it can be found that when
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Fig. 8. Classification results of Flevoland I dataset vary with the different size
of pixel block. (a) Classification accuracy. (b) Time cost.

Fig. 9. Classification results of the Flevoland data set. (a) Proposed method
without filter. (b) Proposed method with filter. (c) and (d) Masked results
according to the ground truth of (a) and (b) respectively.

the size of pixel block is 9× 9, the OA is 95.49% and the time
consumed is 3890 s, while the size of pixel block is 11× 11, the
OA is 95.92% and the time consumed is 6742 s. The OA only
increased by 0.43%, but the time spent increased by 2852 s.
Therefore, considering the OA and time cost comprehensively,
the size of pixel block is set to 9× 9 throughout the following
experiments.

D. Effect of Speckle Filtering

In order to investigate the effect of speckle noise suppression
on the proposed method, the first Flevoland I data is used as an
example to analyze the effect of the Lee filter on the classification
accuracy, and each category selected 10 labeled samples as
training samples. Fig. 9 and Table II show the classification
results of the proposed method using and without using Lee
filter method.

From Fig. 9 and Table II, it can be found that the OA of the
proposed method is only 53.68% without using Lee filter, which
is much lower than the classification accuracy of the proposed
method using Lee filter. This result shows that the proposed

TABLE II
CLASSIFICATION ACCURACY (%) OF THE FLEVOLAND DATA SET WITH AND

WITHOUT FILTER

The bold number indicates the best result in each row.

method is very sensitive to noise. The main reason is that when
the filtering method is not used, due to the influence of speckle
noise, the unreliable samples are increasing by DE method in the
training samples, so that this large number of unreliable samples
are used for training network, resulting in the poor performance.
Therefore, we filter the PolSAR data before network training.

E. Experimental Results

In this section, the weights of the cascaded loss function are
set to λ1 = 0.7 and λ2 = 0.7, and each category selected 10
labeled samples as training samples. The first Flevoland I data set
contains 15 categories. So, the total number of training samples
in this data set is 150. Similar, the second Flevoland II data set
use 40 labeled samples (four categories) are used as training
samples.

1) Classification Results of the Flevoland I Acquired by
Airsar in 1989: In this part, Fig. 10 shows the clas-
sification maps of different classification methods, and
Table III shows the classification accuracy of each cat-
egory of crops by different methods. Fig. 10(a) shows
the classification result of the traditional CNN method.
Fig. 10(b) shows the classification result of the Db-CNN
method. Fig. 10(c) shows the classification result of the
Db-CNN-DE method. Fig. 10(d) shows the classification
result of the Db-CNN-DE-CLF method. Fig. 10(e) and (f)
shows the classification results of the auxiliary classifier1
and auxiliary classifier2, respectively. Fig. 10(g) shows the
classification result of the EDb-CNN-DE-CLF method.
Fig. 10(h) shows the classification of the proposed method.
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Fig. 10. Classification results of the Flevoland I data set acquired by Airsar. (a) CNN. (b) Db-CNN. (c) Db-CNN-DE. (d) Db-CNN-DE-CLF. (e) Classifier1. (f)
Classifier2. (g) EDb-CNN-DE-CLF. (h) The proposed method. (a1), (b1), (c1), (d1), (e1), (f1), (g1) and (h1) are masked results according to the ground truth of
(a)–(h), respectively.

From Table III, it can be found that the classification accuracy
and kappa statistics of the proposed method are better than
other comparison methods in the majority of categories. In the
proposed method, the classification accuracy of 14 different
crops is higher than 90%, and only one crops has a classification
accuracy of 81.52%. For CNN method, only 2 crops have a
classification accuracy greater than 90%, and there are 7 crops
of classification accuracy below 80%. For Db-CNN method,
there are 8 crops with classification accuracy higher than 90%.
For Db-CNN-DE method, there are 9 crops with classification
accuracy higher than 90%. For Db-CNN-DE-CLF method, there
are 11 crops with classification accuracy higher than 90%.
For EDb-CNN-DE-CLF method, there are 12 categories with
classification accuracy higher than 90%. Moreover, the OA of
the proposed method is 95.49%, which is significantly higher
than other comparison methods.

In addition, compared the Db-CNN method and CNN method,
it can be found that OA of Db-CNN method is 5.64% higher
than CNN method. This indicates that the classification result
of Db-CNN method is better than that of the CNN method. This
is mainly because the Db-CNN method extracts the richer and
more scale feature information by two CNN branch structure,
and these richer and more scale features can effectively im-
prove the classification results of PolSAR images. Compared
the Db-CNN method and Db-CNN-DE method, it can be found
that OA of the Db-CNN-DE method is 6.07% higher than
the Db-CNN method. This indicates that the proposed DE is
an effective method, which combines the superpixel method
and the spatial information of PolSAR images, effectively uses
a large number of unlabeled samples and expands the num-
ber of training samples. Compared to the Db-CNN-DE-CLF
method and Db-CNN-DE method, it can be found that OA of
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TABLE III
CLASSIFICATION ACCURACY (%) OF THE FLEVOLAND AREA ACQUIRED BY AIRSAR

The bold number indicates the best result in each row.

TABLE IV
CLASSIFICATION ACCURACY (%) OF THE FLEVOLAND AREA ACQUIRED BY RADARSAT-2

The bold number indicates the best result in each row.

Db-CNN-DE-CLF method is 0.85% higher than Db-CNN-DE
method. This indicates that the weighted CLF is better than non-
CLF. Compared to the EDb-CNN-DE-CLF method, classifier1,
classifier2, and Db-CNN-DE-CLF method, it can be found that
OA of the EDb-CNN-DE-CLF method is 2.04%, 2.99%, and
1.02% higher than classifier1, classifier2, and Db-CNN-DE-
CLF method, respectively. This indicates that combined with
the proposed network structure, the introduction of ensemble
learning strategy can improve the classification accuracy of
the proposed method. Compared to the proposed method and
the EDb-CNN-DE-CLF method, it can be found that OA of
the proposed method is 2.06% higher than EDb-CNN-DE-CLF
method. This indicates that the proposed postprocessing strategy
is an effective method, which can improve the classification
results. Through these comparisons, it is found that each part of
the proposed method can effectively improve the classification
results of PolSAR images. Similar, compared with the kappa

coefficients of different methods, the same conclusion is ob-
tained: the proposed method is much better than the traditional
CNN and Db-CNN methods, and each module of the proposed
method has a significant contribution to improving the classifi-
cation accuracy.

Comparing the kappa statistics of these methods in Table IV,
it can also be seen that the proposed method is 0.9508, which
is obviously better than other comparison methods. Moreover,
from the classification map, it can be seen that the regional
consistency of the proposed method is obviously better than
other comparison methods, especially in bare soil, rapesee,
barely, and grasses area. Therefore, we can also conclude that the
proposed method is an effective method, and better than other
comparison methods.

2) Classification Results of the Flevoland II Acquired by
Radarsat-2 in 2008: In this part, Fig. 11(a)–(h) shows
that the classification maps of different methods for
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Fig. 11. Classification result of the Flevoland II data set acquired by radarsat-2. (a) CNN. (b) Db-CNN. (c) Db-CNN-DE. (d) Db-CNN-DE-CLF. (e) Classifier1.
(f) Classifier2. (g) EDb-CNN-DE-CLF. (h) The proposed method. (a1), (b1), (c1), (d1), (e1), (f1), (g1) and (h1) are masked results according to the ground truth
of (a), (b), (c), (d), (e), (f), (g) and (h) respectively.

Flevoland II area, and Table IV shows the classification
accuracy of each category, OA, and kappa statistics by
different methods.

From Table IV, it can be found that the OA of the pro-
posed method is 95.21%, which is 16.81%, 9.41%, 4.13%,
3.43%, and 3.11% higher than CNN, Db-CNN, Db-CNN-DE,
Db-CNN-DE-CLF, and EDb-CNN-DE-CLF methods, respec-
tively. Compared to the Db-CNN-DE and Db-CNN method,
the OA of Db-CNN-DE method is 5.28% higher than that of
Db-CNN method after combining with the proposed DE. Com-
pared to the proposed method and EDb-CNN-DE-CLF method,
the OA of the proposed method is 3.11% higher than that of

EDb-CNN-DE-CLF method after combined with postprocess-
ing. This conclusion also proves the validity of the proposed DE
method and the postprocessing method based on super-pixel,
and further indicates that each part of the proposed method is
effectiveness and can improve the classification accuracy for
PolSAR images. In addition, From Fig. 11 and Table IV, it also
can be found that the classification accuracy of cropland area
and forest area are 55.30% and 75.27% by using the traditional
CNN method. However, the classification accuracy of cropland
area and forest area are 89.51% and 95.79% by using the
proposed method, which is higher 34.21% and 20.52% than the
CNN method, respectively. This is mainly because the training
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Fig. 12. Classification result of different classification methods varying with
the number of labeled samples for the Flevoland I data set. [In (Nl, OA), Nl

denotes the number of labeled samples per class, OA denotes classification
accuracy.]

samples selected under the same conditions are very few, and
the CNN network cannot show good classification ability under
the lack of sufficient samples. This also shows that the proposed
method is an effective method for PolSAR image classification
with the small samples.

From Fig. 11, the classification map of the proposed method
is better than other comparison methods, especially in urban
and cropland area. Moreover, by comparing the kappa statistics,
it also can be found that the kappa statistics of the proposed
method is much higher than other comparison methods. This
further shows the superiority of the proposed method.

3) Comparisons With Existing Methods in terms of the Num-
ber of Labeled Samples: In this part, we take the first
Flevoland I dataset as an example to compare the clas-
sification accuracy of the proposed method with other
traditional classification methods under different training
samples. Fig. 12 shows the number of training samples
(Nl) required for different classification methods when the
classification accuracy is above 90%. Because the num-
ber of training samples required for different distribution
varies greatly. Therefore, in order to better display the
classification results, the abscissa of Fig. 12 is represented
by logarithm. In the experiment, we compare the pro-
posed method with the improved Tri-training [11], CNN
[28], SAE [43], SVM [23] and supervised Wishart [21]
methods. In Fig. 12, different color curves represent the
classification accuracy of different methods in different
training samples. The colored annotation (Nl, OA) repre-
sents the coordinates of the corresponding points. The first
number Nl represents the number of training samples for
each category, and the second number OA represents the
classification accuracy of the classification method under
the current number of samples.

From Fig. 12, it can find that the proposed method only needs
5 (5 ≈ 100.6990) labeled samples for each category, and the

classification accuracy can reach 90.65%, and the OA is 72.67%
when there is only one training sample for each category. The
OA of CNN, SAE, and SVM methods are less than 30%, the OA
of the improved tri-training method and the supervised Wishart
method is 71.04% and 59.78%, when there is only one training
sample in each category. Moreover, it can be found that the
improved tri-training method needs 30 (30 ≈ 101.4771) labeled
samples per category, CNN method needs 20 (20 ≈ 101.3010)
labeled samples per category, SAE method needs 100 (100 =
102) labeled samples per category, SVM method needs 700
(700 ≈ 102.8451) labeled samples per category when the OA
reaches 90%, and OA of Wishart classifier is 80.22% when the
number of training samples is 1000 (1000 = 103). From this, it
can find that the accuracy of the proposed method is obviously
better than other comparison methods when training samples are
few. In the case of very few samples (only 1 training samples
per category), the proposed method can also obtain more than
70% classification accuracy. Therefore, we can conclude that the
proposed method is better than other comparison methods, and
can effectively improve the classification accuracy of PolSAR
images with small labeled samples.

IV. CONCLUSION

In this article, we presented an effective deep network model
for PolSAR image classification with small samples, which com-
bines the CNN, superpixels algorithm, and ensemble learning.
First, a DE method based on superpixels algorithm is proposed to
enlarge the labeled samples. Second, to obtain more scale and
deep polarization information, a Db-CNN model is proposed.
Third, in order to increase the difference between two branch
networks and improve the performance of the network, a spatial
weighted method is proposed in one CNN branch to enhance
the difference between two branches. This spatial weighted
method can enhance the feature weight similar to the center
pixel and weaken the feature weight different from the center
pixel in the selected pixel block. Then, combined with the idea
of ensemble learning, the results of main dual-network classifiers
and two auxiliary classifiers are integrated. Finally, a postpro-
cessing method based on super-pixel is proposed to reduce the
speckle noise and improve the homogeneity of classification
results.

Experimental results and analysis with two real PolSAR
datasets show that the proposed method is an effective PolSAR
image classification method, especially within few training sam-
ples. The experimental results demonstrate that the proposed
method only needs five labeled samples to get more than 90%
classification accuracy, while other comparison methods need
dozens or hundreds of labeled samples to achieve the same
classification accuracy. In addition, we analyzed the influence of
the DE and postprocessing method based on super-pixel for the
classification results. Figs. 10 and 11 indicate that the proposed
DE method and the postprocessing method are two effective
methods to improve the performance of classification results of
PolSAR images. In our future work, we will focus on physically
explainable deep learning for PolSAR classification with limited
labeled samples.
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