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Abstract—Recently, kernel collaborative representation classifi-
cation (KCRC) has shown its outstanding performance in dealing
with the problem of linear inseparability in hyperspectral remote
sensing image classification. Meanwhile, ensemble learning has
attracted great attention in improving the performance of a single
classifier. Aiming at the limitation of a single classifier, bagging
algorithm based on KCRC(KCRC-bagging) is presented in this
article. The KCRC-bagging method uses bootstrap to increase the
diversity of base classifiers, thus improving the classification accu-
racy and generalization performance. In order to reduce the scale
of ensemble, a diversity-driven multikernel collaborative represen-
tation classifier ensemble approach (DIV-KCRC) is proposed. DIV-
KCRC verifies the effectiveness of the representation classifier with
the pair of diversity measures, and classifiers with high accuracy
and diversity are selected to improve the classification performance
and efficiency of the ensemble system. Three real hyperspectral
data sets were applied to prove the validity of the proposed method.
The experimental results demonstrate that both KCRC-bagging
and DIV-KCRC can yield better classification performance than
their corresponding base classifiers. In particular, DIV-KCRC pro-
vides more reliable classification results than KCRC-bagging.

Index Terms—Bagging, diversity measure, ensemble learning,
kernel collaborative representation classification (KCRC).

I. INTRODUCTION

HYPERSPECTRAL remote sensing images can obtain in-
formation with hundreds of continuous spectral bands of

surface objects, and provide rich spectral information to enhance
the ability to distinguish ground objects [1], [2]. Hyperspectral
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remote sensing plays an important role in the diversity appli-
cations, such as national defense, environmental monitoring,
agriculture, etc. Among them, supervised classification is a
critical process for hyperspectral remote sensing image applica-
tions. However, the limited training samples, uneven quality, and
high dimensionality results in great challenges for hyperspectral
images classification [3].

In view of the above-mentioned problems, support vector ma-
chine (SVM) and extreme learning machine (ELM) are applied
to hyperspectral image classification and achieved meaningful
performance. However, a single classifier is often limited and
cannot accomplish the best performance with complex and
diverse scenarios of hyperspectral images. Therefore, how to
integrate the advantages of different classifiers and achieve the
effect of “1+1>2” is an important research direction. Ensemble
learning has attracted much attention for its ability to use the ad-
vantages of multiple classifiers to complete the final decision and
has shown promising performance than individual classifiers.
Such as the classic Bagging and Boosting [4], and the improved
ensemble method: a scalable end-to-end tree boosting system
(XGBoost) [5], a highly efficient gradient boosting decision tree
(LightGBM) [6], etc.

At present, ensemble learning is investigated from two
aspects: improving the base classifier, and taking advantage of
the diversity between classifiers. To improve the performance
of the base classifiers, that is, to design a strong classifier
suitable for hyperspectral image classification. Some traditional
machine learning models have been used for hyperspectral
image classification, and the most representative ones of which
are SVM and ELM. SVM is one of the representative algo-
rithms of the kernel transformation technique. Its main idea is to
transform low-dimensional linear non-separable problems into
a high-dimensional space for accurate classification. Melgani
and Bruzzone were the first to test the application of SVM in
the field of hyperspectral remote sensing image classification
[7]. In order to further improve the performance of SVM,
SVM-based extensions such as hybrid kernel SVM have been
introduced, which have achieved certain improvements, but the
selection of kernel function and optimal parameter combination
is still a difficulty [8]. ELM has proven to be effective for
high-dimensional data [9]. The output weights of the learning
network can be obtained only through one-shot calculation,
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which effectively improves the parameter setting and improves
computing efficiency in the training process, and has stronger
generalization ability than SVM. Convolutional neural network
methods is also widely used [10], [11]. All of the above methods
need complex parameters. In recent years, the representation
model has been widely concerned because of its advantages
of simplicity and few parameters [12]. The core idea of this
classifier is that the class labels of testing samples can be
represented by a dictionary of labeled samples linearly. The
representation coefficients are solved by different regularization
functions, namely, sparse representation (SR) with l0-norm or
l1-norm minimization constraints [12], [13], and collaborative
representation (CR) using l2-norm minimization constraints.
CR has attracted more attention due to its lower computational
complexity and better classification performance [13], [14]. For
example, the proposed novel CR-based nearest neighbor algo-
rithms in [15] uses the weight coefficient of CR to find the truly
closest training sample for each testing sample, which outper-
forms the traditional Euclidean distance. Tangent distance-based
CR for classifier (TCRC) in [16], using manifold learning to
project hyperspectral data into a simplified tangent space to
achieve better performance. In addition to linear methods, some
nonlinear CRC methods that use nuclear techniques are also
proposed. For example, kernel CR with Tikhonov regulariza-
tion is proposed in [17] incorporates neighborhood information
into a kernel space to increase separability between classes,
a novel kernel nonlocal joint CR classification method uses
the similarity measure between spectral pixels as the mapping
feature in [18], [19], and a multiple kernel CRC incorporates
multiple kernel functions, enhance CRC performance [20], [21].
Liu et al. [22] proposed a probabilistic kernel cooperative
representation classifier to solve the problem that the original
KCRC could not do. Karaca et al. [23] designed a spatial aware
probabilistic multikernel CR to overcome the problem of small
samples in hyperspectral classification. Ma et al. [24] designed
a discriminative kernel CR and Tikhonov regularization method
to improve the utilization rate of correlation between different
categories, which effectively improved the separability between
samples. Su et al. [25] designed a shape-adaptive neighborhood
KCRC model to explore the nonlinear characteristics of spatial
features, which effectively improved the performance of the
kernel cooperative representation model. Tu et al. [26] used the
density peak to improve the super pixel model and extract local
spatial information of images and designed a structural-kernel
CR algorithm, which effectively improved the reliability of
extracted spatial information. An optimized single classifier
provides more choices of base classifiers for ensemble learning,
but there is still room for further improvement.

Another idea is to increase and utilize the diversity among
classifiers for ensemble learning [27], [28]. Bagging and boost-
ing, the most typical ones, create diversity by changing the train-
ing sample subset. SVM and ELM are often integrated as base
classifiers. Among them, rotation-based SVM integration uses
data transformation and random features to generate training
results of multiple SVMs to participate in the final decision
[29]. Bagging-based ELM and Adaboost-based ELM use ELM
as the base classifier for bagging and boosting respectively,

which overcomes the problem in the original ELM caused by
randomness of input weights [9], [21]. Artificial neural networks
are also used in ensemble learning as weak classifiers. SR has
been used as a base classifier in random subspace (RS) and
bagging ensemble methods in the area of signal processing
[32], [33]. CRC-bagging subsequently proved to be effective
in hyperspectral classification [34]. Tangent space corepresen-
tation projects hyperspectral data to a simplified tangent space
to achieve better performance. Besides, TCRC is sensitive to
training data and parameters, so TCRC combined with bagging
and boosting can show better performance than CRC-bagging.
It also effectively solves the problems of limited accuracy and
weak generalization performance in a single TCRC [35]. In order
to effectively utilize the diversity information of features, Chen
et al. combined multifeature and Adaboost algorithm to extract
Gabor features, gray level co-occurrence matrix, and extended
morphological profile (EMP) features for stack, and each can
increase the diversity between base classifiers by using differ-
ent spatial features [36], [37]. Chen et al. [38] also proposed
an SVM algorithm based on RS, which effectively improved
the classification accuracy and obtained feature sequences by
feature selection. Then, feature sequences were divided into
sections and randomly sampled according to a sampling ratio,
and the performance and diversity of base classifiers were also
improved. In order to improve the computational efficiency, an
adaptive shape neighborhood RS-based k-nearest class CR with
Tikhonov algorithm was proposed by combining CR and RS
[39], and the spatial structure information of training and testing
samples was further explored.

It is worth noting that in addition to creating diversity, it is also
important to quantify the diversity between classifiers [40]–[42].
Bi et al. studied the impact of diversity on the accuracy of
classifier ensemble, and proved that effective diversity indicators
can improve ensemble accuracy while reducing the integration
scale [41], [42]; Kuncheva et al. [43] used nine measures to
test the performance of two classic algorithms, bagging and
boosting, and experiments show that boosting can produce more
diversity even for stable classifiers. Nan Li et al. used voting
and paired difference evaluation indicators to measure the dif-
ference between classifiers and ensemble pruning, reducing the
integration scale, and improving the calculation efficiency [26],
[28], [44]. Zhao et al. [45] proposed a classifier ensemble dif-
ference measure based on complementary information entropy
under fuzzy relation. It measures the uncertainty contained in
the classification data space, and the difference between base
classifiers is gauged according to the information, which solves
the problem that fuzzy data cannot be directly processed in
the diversity assessment of multiclassifier systems. A heuristic
classifier ensemble algorithm considering sparsity and diversity
is proposed in [46]. In addition, Tan et al. [47] combined the
three diversity metrics of different (D), double fault (DF), and
correlation coefficient (ρ) to evaluate the difference between
SVM, k-nearest neighbor, multinomial logistic regression, and
ELM, and select the three most diverse classifiers for integration,
which effectively improves the classification accuracy.

From the above-mentioned analysis, the first problem is the
existing differentiation-guided classifier ensemble methods are
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mostly verified on UCI data sets, and the effect of hyperspectral
feature classification is unknown. Moreover, traditional machine
learning models are mainly used. In other words, the base
classifier involved in the ensemble is relatively simple. Another
problem is that although the ensemble learning based on the
representation model classifier can increase the diversity of the
ensemble system, but without the evaluation on diversity. There
is no relevant research on the diversity of representing model
classifier. Therefore, how to solve the problem of diversity and
precision balance in ensemble learning is very important, and
how to choose a strong classifier with diversity as the basic
classifier is also the key.

In this article, a bagging ensemble learning algorithm based
on KCRC (KCRC-bagging) and a diversity-driven multikernel
CR classifier ensemble (DIV-KCRC) method for hyperspectral
image classification are proposed. KCRC-bagging selects the
KCRC as the base classifier and uses the Bootstrap sampling
method to generate training subsets with differences, and then
creates a series of classifier combinations with diversity to
participate in the ensemble to improve the generalization per-
formance of KCRC. The DIV-KCRC explores the diversity
among CR classifiers guided by different kernel functions and
effectively utilizes the advantages of KCRC. In this method,
the CR classifiers of different kernel functions are combined
as base classifiers, and the differences among base classifiers
are evaluated by four diversity measures. With the verification
accuracy and diversity evaluation results, the optimal combi-
nation is selected to participate in the integration for the final
classification result. Through the final classification results,
the effect of several diversity indicators is analyzed, and then
the diversity indicators with good effects are selected, and the
validity of the selected indicators is validated on other data sets.
The main contributions of this article are as follows.

1) The novel nonlinear ensemble learning method combining
KCRC and bagging ensemble strategy is presented for
hyperspectral image classification. The KCRC-bagging
improves the CRC-bagging by combining the kernel coop-
erative representation classifier with the bagging ensemble
method and can solve the problem of the linear insepara-
bility of low-dimensional space more effectively.

2) The differences between different KCRC is evaluated by
the diversity measures for the first time, and multikernel
CRs with more diversity were used in ensemble learning,
making full use of the advantages of different KCRC.
Meanwhile, the difference in the ensemble system is en-
sured through the guidance of diversity.

3) The prior knowledge of accuracy and diversity is added
before the ensemble to avoid base classifiers with poor
performance in the ensemble, which reduces the ensemble
scale and improves the generalization performance.

The rest of this article is organized as follows. In Section
II, a detailed explanation of CRC, KCRC, pairwise diversity
measures, and diversity in ensemble learning are presented.
Section III is dedicated to introducing the proposed KCRC-
bagging and introduced the DIV-KCRC algorithm to reduce
ensemble complexity. Section IV introduces the experiment and
analysis of three real hyperspectral data. Section V discussed

the parameters selection of our method. Finally, Section VI
concludes this article.

II. THEORETICAL BASIS

A. CRC and KCRC

Let training data be denoted as X ∈ RF×N (which con-
tains F bands and N samples for M classes). Let the dic-
tionary D be constructed using M different subdictionaries
as [D1, D2, . . . , DM ]. The subdictionary Dn = {xni}Nn

i=1, n ∈
{1, 2, . . . ,M}, and

∑M
n=1 Nn. In CRC, an approximation of

a testing sample y ∈ RF×1 can be represented via the linear
combination of atoms. The best approximation in the subspace
is regarded as the class of sample y, which can be expressed as

class(y) = arg min
m=1,2,...,M

{‖y −Dmαm‖2/‖αm‖2} (1)

where the coefficient vector α can be estimated by solving the
following optimization problem with the l2-norm regularization
constraint:

α = argmin
α∗

{
‖y −Dα∗‖22 + λ ‖α∗‖22

}
(2)

here λ is the regularization parameter as the tradeoff between
the residual term and regularization. The analytical solution to
(2) is

α =
(
DTD+ λI

)−1
DT y (3)

where I is an identity matrix. After obtaining α, the class label
of y can be determined according to (1). However, samples of
HSI may be linearly indivisible in the original data space due
to the complex scene environment and mixed pixels. A better
approach is to use the kernel trick to map data from a lower
dimensional space to a higher one to increase class separability.
Define the nonlinear mapping Φ : RF �→ H corresponding to
a kernel function K(di, dj) = Φ(di)

TΦ(dj). In the KCRC, the
optimization problem in the kernel-induced space is rewritten
as

α = argmin
α∗

{
‖Φ(y)− Φ(Dα∗)‖22 + λ ‖α∗‖22

}
(4)

where Φ(y) is the mapped testing sample y, and training atoms
Xmapping intoΦ(D). The closed-form solution toα according
to (3) is reformulated as

α =
(
Φ(D)TΦ(D) + λI

)−1

Φ(D)TΦ(y) (5)

using the kernel function K(di, dj), the coefficient α can be
denoted as

α = (K (D,D) + λI)−1K (D, y) (6)

where K(D,D) is an N ×N Gram matrix and K(D, y) is an
N × 1 vector for the inner products between Φ(y) and Φ(D).
Similar to (1), the label of sample y is determined by

class (y) = arg min
m=1,2,...,M

{‖Φ(y)−Φ (Dm)αm‖2/‖αm‖2}

= arg min
m=1,2,...,M

{(K (y, y) +αT
mK (Dm,Dm)αm

− 2αT
mK(Dm, y))/‖αm‖2}. (7)
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Algorithm 1: KCRC-Bagging.
Input: KCRC: base classifier, K: Ensemble times
X�RF×N Input training sets, λ: regularized parameter
y: testing samples.
For k= 1 to K
Get new samples Xk ∈ RF×N from X using Bootstrap
Get a new dictionary DK = {D1k,D2k, . . . ,DTk}
by new differentiated training set Xk.
Calculating the class label class (y) for the testing sample

y according to Eq. (4-7) on the new samples
End for
Return label matrix: l = [l1, l2, . . . , lK ]
Received the final classification result using the majority

voting rule
Output: class (y) = mode (l)

TABLE I
CLASSIFICATION RESULTS OF CLASSIFIER Ci AND CLASSIFIER Cj

B. Pairwise Diversity Measures

Generally speaking, diversity measures can be divided into
two categories: pairwise and nonpairwise [48].

Suppose the classifier set C = {C1, C2, . . . , CP }, where P is
the number of classifiers in the classifier set. Let a, b, c, and
d respectively represent the number of correct and incorrect
sample classification by classifiers, and the details are shown
in Table I. The total number is T = a + b + c + d.

1) Q statistics: For any two classifiers Ci, Cj ∈ C, Q is
calculated as

Q =
ad− bc

ad+ bc
(8)

and Q ∈ [−1, 1]. For statistically independent classifiers Q = 0.
The overall diversity calculation method Qav of classifier set

C is

Qav =
2

P (P − 1)

P−1∑
i=1

P∑
j=i+1

Qij . (9)

The diversity of classifier sets decreases with the increasing
of Q [49].

2) Correlation Coefficient: For classifiers Ci, Cj ∈ C, Cor
is defined as

Corij =
ad− bc√

(a+ b) (c+ d) (a+ c) (b+ d)
. (10)

Correlation Coefficient (Cor) and Q are the same as positive
and negative, and it can be proved that |Cor| ≤ |Q|.

Algorithm 2 DIV-KCRC
Input: KCRC-RBF, KCRC-LA, KCRC-Linear,

KCRC-Pairwise, KCRC-Poly: base classifiers.
D = [D1, D2, . . . , DK ] λ: regularized parameter,
y: testing sample, k: the number of pre-defined
class

For p = 1 to P
1. Calculate the distance between y and training samples

per class
2. Sort dis to find the k-nearest classes of y to obtain V
3. Computing the validation label class (v) for the

verification sample v according to Eq. (4-7).
4. Calculating the Diversity between classifiers

separately according to Eq. (8-15).
5. Sort Diversity to selected the most different classifier

combination.
End for

Return label matrix: l = [l1, l2, . . . , lC ]
Get the final classification result by majority voting rules
Output: class (y) = mode (l)

The diversity calculation method Corav of classifier set C is

Corav =
2

P (P − 1)

P−1∑
i=1

P∑
j=i+1

Corij . (11)

The diversity of classifier sets decreases with the increasing
of Cor [40].

3) Disagreement Measurement: The disagreement measure-
ment (Dis) between Ci and Cj can be computed as

Disij =
b+ c

a+ b+ c+ d
(12)

and the Dis [40] of the entire classifier combination can be
obtained as

Disav =
2

P (P − 1)

P−1∑
i=1

P∑
j=i+1

Disij . (13)

4) Double Fault Measurement: The misclassification prob-
ability of both classifiers can be measured by double fault
measurement (DF) as

DFij =
d

a+ b+ c+ d
. (14)

The overall diversity DF of the classifier system is expressed
as

DFav =
2

P (P − 1)

P−1∑
i=1

P∑
j=i+1

DFij (15)

The diversity of classifier sets increases with the decrease of
DF [49].
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Fig. 1. Illustration of KCRC-bagging for hyperspectral image classification.

C. Diversity in Ensemble Learning

The diversity between classifiers is a necessary condi-
tion to improve the generalization performance of ensemble
learning.

Obviously, if the error rates of the individual classifiers partici-
pating in the ensemble are highly correlated, then the ensemble is
meaningless. Taking binary classification as an example, assum-
ing that the error rates of the individual classifiers participating
in the ensemble are independent of each other, it can be known
from the Hoeffding [49] inequality that with the increase of the
ensemble times K, the error rate of ensemble eventually tends
to zero, namely

P (EL(x) �= Y (x)) =

	K/2
∑
t=0

(
T
t

)
(1− ε)tεK−t

≤ exp

(
−1

2
K(1− 2ε)2

)
(16)

where ε is the error rate of the base classifier, EL(x)
represents the decision result of the ensemble system, and Y (x)
represents the true value. However, (16) holds on the premise
that the error rates of the base classifiers are independent of
each other, which does not exist in real-world tasks. In the
actual learning process, the base classifiers participating in the
ensemble often have a unified learning objective, which deter-
mines the inevitable relationship between them. In fact, there
is a certain conflict between the accuracy and diversity of base
classifiers in ensemble learning. Generally, after the variance
is high, increasing the accuracy will sacrifice the variance; on
the contrary, in order to ensure the accuracy, a part of the

diversity is often sacrificed. This phenomenon can be explained
more intuitively from the perspective of error-ambiguity de-
composition, which was proposed by Krogh and Vedelsby [28],
[48], [49].

Assuming the classifier set C = {c1, c2, . . . , cK}, in the re-
gression learning task, for x, the error-ambiguity decomposition
of the ensemble system that completes the decision through the
weighted average method can be defined as

Err (EL) = Err −AM (17)

among them, Err =
∑K

i=1 ωiErri and AM =
∑K

i=1 ωiAMi

represent the generalization error and weighted divergence value
of ci.

Since the definition ofErr(EL) is based on the entire sample
space and AM cannot be obtained a priori, Err(EL) is difficult
to optimize directly. It should also be noted that the above
derivation is only applicable to regression learning, and it is
difficult to directly generalize to classification learning tasks.

III. PROPOSED METHOD

A. KCRC Bagging

In this work, KCRC-bagging is proposed using the KCRC
as the based classifier within the bagging framework. Benefited
from the Bootstrap sampling method, a series of training sample
sets {X1,X2, . . . ,XK} is generated randomly from the raw
training setX , whereK represents the number of ensemble size.
Then, a subtraining set constructs a discrepant dictionaryDK =
{D1k,D2k, . . . ,DTk} in a new subdata Xk. Therefore, each
training subset trains a KCRC model, and the testing samples
are classified by K representation coefficients α gained from
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Fig. 2. Illustration of DIV-KCRC for hyperspectral image classification.

each bag. Finally, a set of different base classifier combinations
are obtained. Each classifier may vary in the same category.
The final classification results are generated by combining the
results of all bags using the majority voting rules. The main steps
of KCRC-bagging are listed in Algorithm 1 and its process chart
is shown in Fig. 1.

B. Kernel CR Classifiers Ensemble Based on Diversity

Although bagging increases the overall diversity of the in-
tegrated system by generating different training samples, it
lacks the diversity evaluation between the base computational
efficiency and poor integration effects.

In this section, a heterogeneous integration method for
different kernel cooperative representation classifiers with
diversity evaluation is proposed. The classifier poolC =
{C1, C2, . . . , CP } consists of CRC models guided by different
kernel functions. Meanwhile, the difference index is used to
evaluate the classification similarity among different classifier
models.

The higher the similarity, the smaller the diversity of the en-
semble. The combination of accuracy and diversity is combined
to determine the combination of base classifiers. First, the EMP
feature of spectral data is extracted, and the spectral feature and
EMP feature are divided into training and testing sets. Then, a
fixed number of training sets were randomly selected from each
class. Assume the k-nearest pixels similar to the testing sample
belong to the same category and are taken as the verification
set. A priori knowledge of the accuracy and diversity of basic
classifiers is obtained through validation sets. Finally, using the
diversity measures and the overall classification accuracy based
on the verification set, a best group can be found. Finally, obtain-
ing the classification result by the majority voting rule. It is worth
noting that the most varied combinations were determined by a
combination of four indicators. If the results of the four diversity

TABLE II
NINE GROUND-TRUTH CLASSES OF THE ROSIS DATA SET

indexes are inconsistent, the combination with high precision is
taken as the final output result. Algorithm 2 shows the key steps
of DIV-KCRC and its flow diagram is shown in Fig. 2.

IV. EXPERIMENTS

A. Hyperspectral Data Sets

1) Pavia University: The data set of University of Pavia
provides 103 bands in the 0.43–0.86 μm wavelength range,
excluding noise and water absorption bands. This data set is
located in Pavia, Italy, and was acquired in 2003 by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor, and the
size of the data is 610 × 340 pixels, which includes classes. The
detailed information of each class is described in Table II, and
images of this data set are shown in Fig. 3.

2) Purdue Campus: The second data set, Purdue Campus, was
obtained by an airborne hyperspectral mapper (HYMAP) sensor.
This data provides 126 bands in the spectrum of 0.45–2.48 μm,
after bad band removal. The data size is 377 × 512 pixels under
the 3.6 m spatial resolution. Six classes are contained in the
HYMAP data set shown in Table III, and the false color image
and ground-truth image are shown in Fig. 4(a) and (b).
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Fig. 3. (a) False-color image (b) Ground truth of the Pavia University data set.
(c) Class legend.

TABLE III
NINE GROUND-TRUTH CLASSES OF THE ROSIS DATA SET

Fig. 4. (a) False-color image. (b) Ground truth of the Purdue data set. (c) Class
legend.

3) Yellow River Delta: The third data set is Yellow River
Delta, which contains 330 spectral bands from visible light
to shortwave infrared. The data of the remaining 285 bands
after removing the 45 water absorption bands participated in
the experiment. The Yellow River Delta hyperspectral data was
collected on January 7, 2019, by the Gaofen-5 with a spatial
resolution of 30 m, and the image size of the experimental area
is 1185 × 1324. It is a typical coastal wetland area in Dongying
City, Shandong Province, China (36°55’–38°16’N, 117°31’–
119°18’E) [50], [51]. The data features complex types, including
21 types of features mainly composed of artificial vegetation,
wet vegetation, halophyte vegetation, and complex water bodies,
and the spatial distribution of various features presents a block
structure, which is of great representative significance [52], [53].
The detailed information of each class is described in Table IV,
and images of this data set are shown in Fig. 5.

TABLE IV
TWENTY-ONE CLASSES OF THE YELLOW RIVER DELTA

Fig. 5. (a) False-color image. (b) Ground truth of the Yellow River Delta.
(c) Class legend.

B. Experimental Setup

In order to evaluate the performance of the two proposed
methods, several related classifiers are chosen for comparison,
including the classical single classifier SVM, typical integration
methods RF [4], XGBOOST and LingtGBM, single classifier
CRC and KCRC based on presentation model framework, the
CRC-bagging algorithm combined with CR and bagging, and
the ensemble method KCRC-All which combines ALL clas-
sifiers without difference evaluation. The CRC-bagging and
KCRC-bagging are running for 20 iterations.

C. Classification Performance

In this paper, the commonly used indices such as overall
accuracy (OA), average accuracy (AA), and Kappa coefficient
(KAPPA) are selected to measure the performance of classifier.

1) Overall Accuracy:

P (Ci)OA =

∑M
m=1 Pmm

N
× 100% (18)
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TABLE V
PARAMETERS SETTING

where P (Ci)OA represents the overall classification accuracy
of classifier Ci, M represents the total number of ground object
classes, and N represents the total number of test samples. P
represents a confusion matrix of size M ×M . Pmm represents
the number of correctly classified ground objects of classm, and
this element is located on the main diagonal of matrix P .

2) Average Accuracy: AA is obtained by dividing the sum of
the precision of all classes by the percentage of the total number
of classes

P (Ci)AA =

∑M
m P (Ci)CA,m

K
× 100%. (19)

3) Kappa Coefficient: KAPPA is different from OA and AA,
which integrates all the information of confusion matrix P . As
a quantitative evaluation index for the consistency between the
classification results of the analysis algorithm and the distribu-
tion of real ground object classes, KAPPA can reflect the overall
classification accuracy of the classifier more comprehensively
and accurately.

The optimum parameters for the proposed methods are listed
in Table V. Table VI shows the corresponding numbers of base
classifiers. The value of n denotes the number of neighboring
pixels. The classification accuracies, such as OA, AA, and
KAPPA, are included in Tables VII–XII. Boldface represents
the best result.

For the Pavia University data set, Fig. 6(a)–(j) visually dis-
plays the ten classification maps. By comparing the classification
maps of several algorithms, it can be found that KCRC-bagging
and DIV-KCRC algorithms have better classification effects on
the 4th, 6th, 7th, 8th, and 9th class, especially the DIV-KCRC
algorithm has a better processing effect on the building bound-
ary. From Table VII, classification accuracy performance of
classifier combinations selected by four diversity measures (Cor,
Q statistics, DF and Dis) are shown. The classifier combinations
selected by the four diversity measures were all 134, which was
3.3% higher than the OA of all classifiers combined together. It is
0.28%, 3.36%, 3.81%, 3.36%, 3.54%, 3.81%, 3.81% higher than
that of 123, 124, 125, 145, 234, 235, 245, 345, respectively, and
only 0.10% lower than that of 135, and the DF value difference
between combination 134 and combination 135 is only 0.0005.
The experimental results validate the four difference evaluation
indexes. Table VIII records the specific classification accuracy

performance of eight algorithms in ROSIS data. The OA (%)
values of the classifiers (RF, SVM, XGBOOST, LingtGBM,
CRC, CRC-bagging, KCRC, KCRA-All, KCRC-bagging, and
DIV-KCRC) were 77.57, 76.90, 77.00, 85.57, 87.57, 89.31,
87.57, 88.08, 89.01, 91.38, respectively. As can be seen from
Table VII, compared with single classifier KCRC and KCRC-all,
the OA of KCRC-bagging is improved by 1.53% and 1.02%
respectively. And the OA of DIV-KCRC algorithm is 13.81%,
14.48%, 14.38%, 5.81%, 3.81%, 2.07%, 3.81%, 3.3% higher
than that of base classifier RF, SVM, XGBOOST, LingtGBM,
CRC, CRC-bagging, KCRC, KCRA-All algorithm. The OA
of the KCRC-ALL that integrates all base classifiers is in-
creased by 3.3%, and the OA of the classic ensemble algorithm
KCRC-bagging is increased by 2.28%. In addition to the overall
classification accuracy, the AA and KAPPA of DIV-KCRC
ensemble method are the best among the 10 methods, followed
by KCRC-bagging.

The experimental results demonstrate the accuracy and effec-
tiveness of the ensemble learning method based on difference
evaluation for multikernel classifier, while reducing the ensem-
ble scale.

In order to verify the reliability of the proposed method, the
Purdue data sets with grassland, roads, and buildings as main
ground object types were used for the experiment. For this
data, 7 or 8 training samples were randomly selected for each
class by the 10 algorithms. Experimental results of Purdue data
show that both KCRC-bagging algorithm and the DIV-KCRC
algorithm achieve good results. By comparing the classification
results of 10 algorithms for this data as shown in Fig. 7(a)–(j),
it is found that the two proposed algorithms have significantly
improved their performance in distinguishing buildings and
roads compared with the other eight comparison algorithms,
especially DIV-KCRC algorithm, which has better fitting effect
than KCRC-bagging algorithm.

As illustrated in Table IX, the classifier combinations selected
by Cor, Q, DF, Dis were all 134. The accuracy of the selected
combination is highest. From Table X, the OA (%) values for RF,
SVM, XGBOOST, LingtGBM, CRC, CRC-bagging, KCRC,
KCRA-All, KCRC-bagging and DIV-KCRC are 86.83, 83.41,
78.36, 86.08, 88.17, 87.50, 90.96, 90.23, 90.98, and 93.81.
Similar to the ROSIS data set, DIV-KCRC can also provide the
best performance by producing 93.81% of OA, which increases
3.58% and 2.83% over KCRA-All and the KCRC-bagging re-
spectively.

However, the CRC-bagging and KCRC-bagging have inter-
esting performance, not even as good as a single classifier. It can
be seen that ensemble learning without considering accuracy and
difference may not achieve ideal results.

The above results show that the four difference indexes can be
used to select the suitable classifier combinations for different
data types, but the ground object types of the first two data sets

KAPPA =
N

∑M
m Pm,m −∑M

m=1

(∑M
m=1 Pm,n ×∑M

m=1 Pn,m

)

N2 −∑M
m=1

(∑M
m=1 Pm,n ×∑M

m=1 Pn,m

) (20)
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TABLE VI
BASE CLASSIFIER SHORTHAND TABLE

TABLE VII
FOUE DIVERSITY MEASURES AND TEN GROUPS CLASSIFICATION ACCURACY(%) FOR THE PAVIA UNIVERSITY DATA SET

TABLE VIII
CLASSIFICATION ACCURACY (%) FOR THE PAVIA UNIVERSITY DATA SET

TABLE IX
FOUE DIVERSITY MEASURES AND TEN GROUPS CLASSIFICATION ACCURACY (%) FOR THE PURDUE CAMPUS DATA SET
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Fig. 6. Classification maps resulting from the classification for the Pavia University data set using eight labeled samples per class. (a) RF (b) SVM. (c) XGBOOST
(d) LightGBM. (e) CRC. (f) CRC-Bagging. (g) KCRC. (h) KCRC-ALL. (i) KCRC-Bagging. (j) DIV-KCRC.

Fig. 7. Classification maps resulting from the classification for the Purdue data set using eight labeled samples per class. (a) RF (b) SVM. (c) XGBOOST.
(d) LightGBM. (e) CRC. (f) CRC-Bagging. (g) KCRC. (h) KCRC-ALL. (i) KCRC-Bagging. (j) DIV-KCRC.
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TABLE X
CLASSIFICATION ACCURACY (%) FOR THE PURDUE CAMPUS DATA SET

TABLE XI
FOUE DIVERSITY MEASURES AND TEN GROUPS CLASSIFICATION ACCURACY (%) FOR THE YELLOW RIVER DELTA

are relatively simple. In order to further verify the validity of
the results, the Yellow River Delta with complex ground object
types were selected to verify the reliability of the diversity index
again.

For the Yellow River Delta, Fig. 8(a)–(j) shows the classifica-
tion renderings. The detailed classification results of the diver-
sity values are recorded in Table XI, and the best choice is 135. In
addition, the selected results of the four difference indicators are
consistent, and all have higher performance accuracy than other
combinations with small diversity. Table XII shows the detailed
classification of comparison algorithms, where the OA (%) val-
ues for RF, SVM, XGBOOST, LingtGBM, CRC, CRC-bagging,
KCRC, KCRA-All, KCRC-bagging, and DIV-KCRC are 93.99,
86.75, 82.86, 90.61, 93.69, 93.87, 94.99, 95.50, 95.93, and
96.61, respectively. It is worth noting that KCRC-bagging has
a less than 1% improvement over KCRC and KCRC-All, while
DIV-KCRC improved by about 2%. There are nearly 1.2% im-
provements from our methods compared with KCRC-ALL, and
the accuracy of the original KCRC is almost up to 1.62%. As with
the first two data sets, it is observed that DIV-KCRC achieved
better results than KCRC-bagging. Especially for classes 3, 5, 7,

and 18, DIV-KCRC’s discrimination effect is significantly im-
proved compared with the KCRC-bagging algorithm and other
comparison algorithms. According to the experimental results
of the Yellow River Delta, the DIV-KCRC ensemble method
with diversity assessment can still achieve a good classification
effect on complex data types, that is, prior difference assessment
can improve the generalization performance of the ensemble
system.

V. DISCUSSIONS

A. Parameters Analysis for KCRC-Bagging

For the KCRC-bagging algorithm, the parameter λ and the
ensemble size K significantly impact the algorithm performance.
In the experiments, λ is set in the range of 1e-9−1e-1. The
relationship between parameter λ and the OA is shown in Fig. 9.

In the three data, CRC algorithm performs the best at 1e-2,
rapidly declines between [1e-2, 1e-4], and then tends to be stable.
Although CRC-bagging also shows a decreasing trend in Pavia
University data between [1e-1, 1e-4], its OA is significantly
higher than that of CRC after it becomes stable. In the Yellow
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TABLE XII
CLASSIFICATION ACCURACY (%) FOR THE YELLOW RIVER DELTA

River Delta, the regularization parameters increase between
[1e-1, 1e-3] and show a slight decreasing trend between [1e-
6, 1e-9]. KCRC was less affected by parameters, and the results
of the three sets of data showed that KCRC achieved the best
effect at 1e-2, and then tended to be stable. On the other hand,
KCRC-bagging performs better than CRC and CRC-bagging in
Pavia University as a whole, but its accuracy is not as good as that
of KCRC except for λ= 1e-1, and its accuracy decreases with
the decrease of regularization parameters. In terms of Purdue
data, KCRC-bagging is greatly affected by parameters, and its
accuracy is slightly higher than KCRC at 1e-3,1e-4,1e-8. In
terms of Yellow River Delta, the OA of KCRC-bagging is higher
than that of CRC and CRC-bagging as the first two groups, but
the overall performance is slightly better than that of KCRC.

According to Fig. 10(a), the OA of KCRC-bagging first
increases with the number of integrations in the Pavia University
data set. When the number of integrations reaches 30, it changes
and fluctuates between 30 and 50. When the number of integra-
tions k = 40, the accuracy is close to 88%. The second data set,
Purdue Campus, with the increase of integration times, the OA
of KCRC-bagging shows a trend of fluctuating growth, while
the OA of CRC-bagging shows an obvious increase between
5 and 15, and then shows a trend of first decreasing, then
increasing and then decreasing. It can be shown in Fig. 10(b).

The results of Yellow River Delta are shown in Fig. 10(c).
The overall performance of KCRC-bagging is relatively stable.
After the number of integrations reaches 30, KCRC-bagging
almost shows a stable performance, remaining between 95.35%
and 96%, while CRC-bagging shows a significant increase in the
number of integrations ranging from 15 to 25. After the number
of K reaches 25, it tends to be stable.

Fig. 10(b) and (c) shows that KCRC-bagging algorithm has
more advantages in classification effect and stability. In addition,
the three groups of experimental data also show that increasing
the number of ensemble times does not necessarily improve the
accuracy, and may even present a downward trend. After the
number of ensembles reaches 15–25, it gradually tends to be
stable.

B. Parameters Analysis for DIV-KCRC

For the DIV-KCRC algorithm, the performance is mainly
affected by diversity values. From Fig. 11, there is no obvious
linear relationship between the four diversity indices and the
OA. From the distribution of the two, the evaluation results of
the four indexes are consistent.

As can be seen from Fig. 11, the variation trend of Cor and
Q is relatively consistent, and the distribution of DF and DIS is
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Fig. 8. Classification maps resulting from the classification for the Yellow River Delta using eight labeled samples per class. (a) RF (b) SVM. (c) XGBOOST
(d) LightGBM. (e) CRC. (f) CRC-Bagging. (g) KCRC. (h) KCRC-ALL. (i) KCRC-Bagging. (j) DIV-KCRC.

Fig. 9. OA of different algorithms for three data set with varying λ. (a) Pavia University. (b) Purdue campus. (c) Yellow River Delta.

Fig. 10. OA of different algorithms for three data set with varying K. (a) Pavia University. (b) Purdue campus. (c) Yellow River Delta.



2874 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 11. OA of different algorithms for three data set with Diversity. (a) Pavia University. (b) Purdue campus. (c) Yellow River Delta.

Fig. 12. OA of different algorithms for three data set with Different Training Sets. (a) Pavia University. (b) Purdue campus. (c) Yellow River Delta.

similar. Among them, when the classification accuracy is high,
the values of Q, Cor, and DF are at a low level, and the value
of Dis is at a high level, that is, the classifier combination is
diverse large. In addition, the distribution of the two diversity
measures Cor and Q is more dispersed, and the diversity of the
ensemble system can be judged more intuitively. For example,
in Fig. 11(c), it can be seen that the classifier combination
with precision at (0.96, 0.97) is more diverse than the classifier
combination with precision at (0.925, 0.95). In other words,
diversity results in higher accuracy. However, when the number
of classifier combination is too high, the OA decreases. This
proves that the diversity between classifiers is limited in ensem-
ble learning. In addition, Fig. 11(c) clearly shows that the more
the overall distribution of DF is inclined to 1, the worse the
performance of the classifier is, and the distribution of the OA
is at a lower level.

By comparing the results of the three groups of experimental
data, it is found that more complex data include more diversity.
Specifically, under the condition of ensuring the accuracy of
the base classifier, increasing the difference between individ-
ual classifiers can effectively improve the ensemble accuracy,
while reducing the number of individual classifiers in ensemble
learning. Analyzing the relationship between the difference and
precision of different combinations, it can be found that the
classifier combination selected by the four diversity indicators is
consistent and has the highest accuracy among all combinations.
The experimental results of the three sets of data all prove the
effectiveness of the diversity measures in ensemble learning.

Moreover, the final trend of the four diversity indexes is
consistent, which can ensure that the selected combination is
optimal. Among them, the trend of Cor and DF is more obvious
than the other two indicators, and the accuracy is higher.

C. Sizes of Training Set

Fig. 12(a)–(c) shows the effect of different sample sizes on
classification accuracy in three sets of data. The Yellow River
Delta achieved the best classification effect when the number of
samples reached 12. With the continuous increase of the number
of samples, the classification accuracy showed a downward
trend. The data of Purdue and Pavia University are greatly
affected by the number of samples, and with the increase of
the number of samples, the accuracy is obviously improved. In
the three sets of data, when the number of samples is 8, the
proposed algorithm has the most obvious improvement over
other algorithms.

D. Time Complexity Analysis

According to Tables VIII, X, and XII for the three experimen-
tal data, DIV-KCRC significantly reduces the operation time
compared with the traditional bagging algorithm and improves
the computational efficiency. In other words, DIV-KCRC with
diversity evaluation can effectively reduce the scale of ensemble
and achieve better classification results with as few ensemble
times as possible.

VI. CONCLUSION

In this article, ensemble learning method with kernel CR and
multiple kernel CR classifier based on diversity measures are
proposed for hyperspectral image classification, i.e., KCRC-
bagging and DIV-KCRC. For the proposed method, the diversity
of the ensemble system is increased with different training sets.
In addition, the similarity evaluation index is used to screen
classifiers for ensemble and reduce the scale. Experimental
results show that KCRC-bagging can obtain better performance
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than a single classifier in most cases, and the multiclassifier
ensemble based on diversity measures (DIV-KCRC) can not
only improve the performance but also greatly improve the com-
puting efficiency, which demonstrates that the generating diver-
sity and evaluation diversity are equally important in ensemble
learning.
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