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Abstract—Landslides have caused tremendous damage
to human lives and property safety. However, the complex
environment of mountain landslides and the vegetation coverage
around landslides make it difficult to identify landslides quickly
and efficiently using high-resolution images. To address this
challenge, this article presents a feature-based constraint deep
U-Net (FCDU-Net) method to detect rainfall-induced mountainous
landslides. Usually, the vegetation in the landslide area is severely
damaged, and the vegetation coverage can indirectly reflect the
spatial extent of the landslide. Meanwhile, the texture features of
high-resolution images can characterize the surface environment
of landslide hazards to a certain extent. We first introduce auxiliary
features of normalized difference vegetation index and gray-level
co-occurrence matrix into the proposed method to further improve
the detection performance. Then, to minimize the information
redundancy of these features and the image, we combine Relief-F
and Deep U-Net to screen the optimal features to effectively identify
accurate and detailed landslide boundaries. Compared with tradi-
tional semantic segmentation methods, the FCDU-Net method can
capture fine-grained details in high-resolution images and produce
more accurate segmentation results. We conducted experiments by
applying the proposed method and other most popular semantic
segmentation methods to a high-resolution RapidEye image in Rio
de Janeiro, Brazil. The results demonstrate that the FCDU-Net
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method can achieve better landslide detection results than the other
semantic segmentation methods, and the evaluation measures of
Precision, F1 score, and mean Intersection-over-Union are as high
as 88.87%, 81.17%, and 83.19%, respectively. Furthermore, we
quantitatively analyze the effect of the convolution input window
size on the performance of FCDU-Net in detecting landslides. We
believe that FCDU-Net can serve as a reliable tool for fast and
accurate regional landslide hazard surveys.

Index Terms—Auxiliary features, deep convolutional neural
networks (DCNNs), feature selection, high-resolution image,
landslide detection.

I. INTRODUCTION

A S A common geological disaster, landslides cause immea-
surable damage to infrastructure and seriously threaten

the safety of human life and property [1]–[3]. Therefore, ef-
ficiently and accurately locating of landslide areas is crucial
for emergency rescue and disaster warning. Landslide inventory
data is the main resource for landslide research at different
scales [4]. The training and testing of landslide prediction begins
with the creation of a landslide inventory map [5]. Traditional
landslide inventory mapping methods mainly rely on field survey
and visual interpretation of aerial images [6], but it requires
personnel with professional knowledge to complete it, wastes
a lot of manpower and material resources, and cannot meet the
needs of efficient and accurate positioning of landslides.

Remote sensing data can cover hundreds of square kilometers,
providing rich image data for disaster observation. Optical and
radar remote sensing images have been widely used to observe
the landscape changes of landslides [7]–[12]. Traditional image
processing techniques mainly detect landslides on remote sens-
ing images through statistical methods [10] and semi-automatic
methods [13]. However, these methods need to obtain the image
features of the landslide area in advance by artificial means, and
also require a lot of parameter modulations, and the process is
complicated.

Satellite images are significant for identifying landslides fol-
lowing large-scale events, especially when the disaster occurs in
remote or hard-to-reach areas [14]. Generally, landslides can be
automatically identified in aerial photographs, high-resolution
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and very-high-resolution remote sensing images by using pix-
elwise identification methods and object-based information ex-
traction (OBIE) methods [15]. Among them, pixelwise methods
can overcome the shortcomings of human interpretation, and can
be mainly separated into two main categories: supervised learn-
ing and unsupervised learning. The former includes discrimi-
nant analysis, feature analysis, maximum likelihood analysis,
support vector machine, etc., and the latter includes iterative
self-organizing data analysis technique algorithm and K-means.
These pixelwise methods were used to identify landslides in
Taiwan and compared with visual interpretation results [16].
After discussing six different image fusion methods, Marcelino
et al. [17] proved that the intensity-hue-saturation technique can
better preserve the information of the original image and used
it to identify landslide scars. In addition, the change detection
technique allows the extraction of landslides from images at
different time phases [18]–[25]. The pixelwise methods only
exploit the spectral features of different materials in the image
without considering the geometric and contextual information
in the image. Therefore, these methods are prone to “pepper and
salt” noise in the resultant map. However, OBIE-based methods
can consider multiple features, such as spectral (pixel value,
hue, color, etc.), spatial (landslide area size, shape, contour,
etc.), and background features [26], which are widely used for
landslide detection using airborne and satellite images [27], [28].
For example, Martin et al. [29] took the image segmentation
result as the basic unit and established landslide recognition con-
straints based on shape, texture, and adjacent features, and the
classification accuracy reached 65%. Based on FORMOSAT-2
images and DEM data, Rau et al. [30] identified landslides in
the mountainous areas of central and southern Taiwan through
multilevel segmentation and hierarchical semantic network, and
achieved good experimental results. Meanwhile, conventional
classification methods such as support vector machine [31]
and random forest [28] have also been introduced into the
OBIE-based landslide detection, and their effectiveness has been
verified. However, some empirical parameters of OBIE rely too
much on experts and the degree of automation is low. Thus, there
are still certain limitations in practical applications [32], [33].

Convolutional neural networks (CNNs) can effectively cap-
ture abstract features from the original image [34]. In recent
years, CNNs have attracted extensive attention and applications
in the fields of large-scale image recognition, target detection,
and semantic segmentation due to their advantages of local
receptive, weight sharing, and connection sparsity [35]–[38].
However, only a few articles have used CNNs for landslide
detection based on remote sensing image [2]. Ding et al. [39]
first used texture and spectral features to remove the interference
of background features such as buildings, water bodies, and
vegetation, and then used CNNs to capture remote sensing image
information before and after the landslide and calculated the
Euclidean distance of the two features to determine whether
there is a landslide on the image. Yu et al. [40] first screened
out candidate images with landslides from remote sensing im-
ages through a shallow CNN, and then used a region growing
algorithm to determine landslide boundaries and centers. Ghor-
banzadeh et al. [1] performed different numbers of convolutions

and different levels of feature fusion on remote sensing images
of southern Nepal. To further reduce the influence of background
on the image, Ji et al. [2] developed a deep convolutional neural
network (DCNN) for end-to-end landslide target detection. Yi
et al. [41] constructed a cascaded end-to-end DCNN to intel-
ligently detect earthquake-triggered landslides. Qin et al. [42]
applied distant domain transfer learning and traditional CNNs
for landslide detection.

In summary, traditional feature extraction methods and CNNs
have been used for landslide detection in high-resolution images.
However, only a few articles have used deep learning techniques
to detect landslides in areas with complex terrain, especially
those triggered by extreme weather such as heavy rain. We
believe that the task of detecting landslides in mountainous areas
caused by heavy rainfall still faces the following challenges.
First, the background of remote sensing images with moun-
tainous terrain is very complex, including quarries, terraces,
slopes, and riverbeds, which may be similar in characteristics
to landslides and easily interfere with detecting them. Second,
landslides usually appear at different scales on remote sensing
images, and the length of landslides may vary from a few meters
to several kilometers. Finally, there are obvious seasonal changes
in remote sensing images of mountainous areas, and the specific
characteristics of coverage in different seasons may make it
difficult to identify landslides.

To fill a gap in the previous articles, we present a feature-based
constraint deep U-Net (FCDU-Net) method to map rainfall-
induced landslides in remote areas with mountainous terrain.
The main contributions are summarized as follows:

1) We only need to acquire postdisaster optical remote sens-
ing imagery and process landslide data through data aug-
mentation strategies, without inputting other data such as
topographic factors and multitemporal images.

2) Deep U-Net (DU-Net) is used as a prediction model for
landslide detection. Since it combines the advantages of
U-Net and DenseNet, it can capture fine-grained details
in high-resolution images and produce more accurate se-
mantic segmentation results than most popular networks.

3) The FCDU-Net method combines auxiliary features with
the original image to improve the identification accuracy
of landslides. Usually, the vegetation in the landslide area
is severely damaged, and the vegetation coverage can
indirectly reflect the spatial extent of the landslide. Mean-
while, the texture features of high-resolution images can
characterize the surface environment of landslide hazards
to a certain extent. On this basis, normalized difference
vegetation index (NDVI) and gray-level co-occurrence
matrix (GLCM) are input into the network as auxiliary
features. Furthermore, to minimize the information re-
dundancy of these features and the image, we combine
Relief-F and DU-Net to screen the optimal features for
subsequent processes, and effectively identify accurate
and detailed landslide boundaries.

The rest of this article is organized as follows. Section II
introduces the study area. Section III describes the auxiliary
features used in this article and the modified DU-Net method.
Section IV analyzes landslide detection results of different
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Fig. 1. Location of the study area and annotated rainfall-induced landslides (red polygons).

methods. Section V discusses the effectiveness of the proposed
method. Finally, Section VI concludes the article.

II. STUDY AREA AND DATA

The study area is located in the Nova Friburgo mountains
in Rio de Janeiro, Brazil, as shown in Fig. 1. In January
2011, a heavy rainfall event of 350 mm/48 h occurred in Nova
Friburgo, triggering at least 3500 translational landslides with
a total area of about 5.56 km2, and more than 1500 people
died from the rainfall-induced landslides [43]. The landslide
inventory map of the study area was manually generated by
experts from high-resolution satellite images based on shape
and tone information, and validated using Google Earth Pro and

compared with landslide maps produced by other scholars [44].
The high-resolution image used in this article was acquired by
the RapidEye sensor on August 13, 2011. It has 5000 × 5000
pixels and five bands in the range of 440–850 nm, with a spatial
and temporal resolution of 5 m and 5.5 days, respectively. In the
image, 816 landslides caused by heavy rainfall were marked
as solid polygons of different sizes, ranging from 200.32 to
78117.35 m2, as shown in Fig. 1.

III. METHODOLOGY

A. Auxiliary Features

1) NDVI: NDVI, a remote sensing index reflecting the status
of land vegetation cover, has been widely employed in land use
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TABLE I
CALCULATION FORMULA OF TEXTURE FEATURE FACTOR

and land cover change. In the study of landslide identification,
it is generally believed that the vegetation coverage inside the
landslide body will change with the movement of the landslide.
Therefore, this article introduces the index to strengthen the
distinction between vegetation areas and nonvegetation areas

NDVI =
NIR −R

NIR +R
(1)

where NIR and R represent the reflectivity in the near-infrared
band and in the red band, respectively.

2) GLCM: The GLCM is a classic analysis method that ex-
tracts texture features by calculating the conditional probability
density between gray levels of an image, and is widely used for
information extraction of remote sensing images. The texture
of the landslide is significantly different from the surrounding
geological environment. In order to synthesize the information
of each band and reduce the dimensionality of data, the principal
component analysis is used on the original image, and eight
GLCM texture features of the first principal component are
calculated. Table I lists the texture features of high-resolution
images used for deep learning modeling. The Mean indicates
how regular the texture distribution is. The stronger the regu-
larity, the greater the mean. Variance is the difference between
each pixel and the mean. If the gray value of the pixel changes
greatly, the variance value is larger. Homogeneity is a measure
of uniformity within a local area. In this area, the more uniform
the image distributed, the greater the homogeneity. Contrast
represents how the matrix values are distributed and to what
extent local variations in the image reflect the sharpness of the
image and the depth of the grooves in the texture. The greater
the contrast, the deeper the grooves, and the sharper the effect.
Dissimilarity is similar to Contrast. In a local area, the higher
the contrast, the stronger the dissimilarity. Entropy is a measure

of the randomness of the information contained in an image.
Entropy is greatest when all means in the GLCM are equal or the
pixel values show the greatest randomness. Therefore, the higher
the entropy value, the more complex the grayscale distribution of
the image. The second moment represents the uniformity of the
grayscale distribution of the image and texture thickness. When
the image texture is fine and the grayscale distribution is uniform,
the second angular moment is larger. Correlation refers to the
similarity of the grayscale of the image in the row or column
direction. The texture reflects the local grayscale correlation of
the image. The larger the value is, the greater the correlation.

B. Deep Convolutional Neural Networks

1) Fully Convolutional Network: To apply deep learning
CNNs to semantic segmentation, a full convolutional network
(FCN) was proposed [45], which replaces the last part of the
CNN with a convolution layer (a kernel of size 1 × 1), allowing
prediction of two-dimensional dense class label maps [46]. The
semantic segmentation effect of point-to-point classification is
achieved by restoring the feature map to the input size while
preserving the spatial structure of the image. It modifies the fully
connected layers of deep CNNs (AlexNet, VGG, GoogleNet,
etc.) for image classification into convolutional layers, and pro-
poses an end-to-end semantic segmentation model.

2) U-Net: U-Net was proposed to improve the situation
where the target edges are not fine enough in the resultant
segmentation map [47]. In this network, the number of channels
of the feature map is doubled during each downsampling proce-
dure to allow more feature information (e.g., boundaries, colors,
shapes, etc.) to propagate among the convolutional layers, while
this number is halved during each upsampling procedure. The
skip connection is performed and the stacking operation of
dimensional concatenation to fuse feature maps of different
scales. This process preserves more high-resolution details to
help restore the spatial resolution of the output map and improve
segmentation accuracy [48]. This network has been widely used
in target extraction from remote sensing images [49]–[51].

3) DeepLabv3+: DeepLabv3+ was proposed to use atrous
convolutions to improve segmentation performance [52].
Specifically, it uses atrous convolutions [53] with different
strides [54]. The receptive field is expanded through atrous
convolution without increasing the network training parameters
and reducing the resolution of the output feature map. In essence,
DeepLabv3+ fuses the shallow features of the encoder with the
deep features of the atrous spatial pyramid pooling [55] module
to output more accurate semantic segmentation results. Shallow
features can provide better object details, and deep features
can provide more abstract semantic information and location
information of objects. The fusion of the two features can output
higher precision semantic segmentation results.

To better compare the aforementioned methods, Table II lists
their advantages and disadvantages.

C. Feature Selection Based on Relief-F

Relief-F is a multiclass feature selection algorithm based
on mathematical statistics, calculating the weights of each
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TABLE II
COMPARISON OF CHARACTERISTICS OF THREE SEMANTIC SEGMENTATION METHODS

Fig. 2. Input and output of the first layer of DU-Net.

feature variable and rank the magnitude of the weight values
by randomly selecting samples [56]. The Relief-F method can
determine the relative importance of the features to landslide
occurrence, and it evaluates the value of features by considering
the correlation between features and categories [57].

The Relief-F algorithm first selects a random sample R from
the dataset D, and then selects k nearest neighbor samples from
the similar and different classes of the sample R. In the feature set
F, if the distance between samples of different classes is greater
than that of samples of similar classes in one feature, the feature
is conducive to classification, and its weight is increased. The
process repeats n times to take the mean of all the results as the
final weight value of each feature. Finally, the feature weight is
defined as follows:

ω (Fj)=ω (Fj)− 1

n · k
∑
h∈H

|Rj − hj |+ 1

n · k
∑
m∈M

|Rj −mj |
(2)

where ω(Fj) is the weight value of the jth feature, k is the
number of nearest neighbor samples,

∑
h∈H |Rj − hj | indicates

the sum of the distances between the selected k similar class
neighbor samples and the sample R on the jth feature, and∑

m∈M |Rj −mj | represents the sum of distances between k
heterogeneous nearest neighbor samples and the sample R on
the jth feature.

D. Deep U-Net Architecture

DU-Net [58] can effectively combine the advantages of tradi-
tional U-Net [47] and DenseNet [59], using skip connection

to combine low-level and high-level information in U-Net,
while using dense connection to enhance feature propagation in
DenseNet. In U-Net, the feature maps of the encoder are received
directly in the decoder. However, in DU-Net, the redesigned
dense skip connections change the connectivity of the encoder
and decoder subnetworks, and the number of convolutional
layers depends on the network level. For example, as shown in
Fig. 2, the layer-jumping path between nodes x0,0 and x0,3 is com-
posed of dense convolutional blocks with three convolutional
layers. Each convolutional layer is preceded by a connection
layer that merges the output of the previous convolutional layer
from the same dense block and the corresponding upsampled
output of the lower dense block. The DU-Net structure can
capture subtle information, obtaining better output than U-Net.
Therefore, the use of DU-Net for semantic segmentation of
remote sensing images has great application value.

The formula for DU-Net’s dense skip connection is given by

xa,b =

{
H

(
xa−1,b

)
, b = 0

H{[[xa,k
]b−1

k=0
, U

(
xa+1,b−1

)
]} b > 0

(3)

where xa,b represents the output of the b th node of the a th layer
of the network, and H (�), U (�), and [�] represent convolution
operation, upsampling operation, and concatenation operation,
respectively. When b = 0, the node only takes as input from
the downsampling layer of the upper layer. There are two inputs
passed to the node with b = 1, both of which come from the
encoding subnetwork and are two consecutive layers. When
b + 1 inputs are passed to a node with b > 1, b of those inputs
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Fig. 3. Architecture of DU-Net.

come from the output of the previous node in the skip path
consistent with that node, while one more input is obtained
from a skip path lower than that node after an upsampling
operation.

We propose an FCDU-Net method to detect landslides, which
fuses spectral bands, NDVI, GLCM texture features, and uses
the Relief-F algorithm to filter out positive factors from auxiliary
features and uses the DU-Net model for feature extraction and
training. Fig. 3 shows the DU-Net architecture, consisting of
an encoding structure, a decoding structure, and dense skip
connections. The feature maps of the same layer have the same
size, and from top to bottom, they are the first to fifth layers.
According to [58], three, two, and one convolutional modules
are included between the first, second, and third layers of the
encoder–decoder path, respectively. Each convolution module is
composed of two sets of convolutional layers with a kernel size of
3 and a rectified linear unit. The overall feature fusion structure
of DU-Net is in the shape of an inverted pyramid. Each layer of
the pyramid is equivalent to a dense block, and the features are
transferred backward through dense skip connections. Among
different layers, the features are deeply aggregated from top
to bottom, which shortens the semantic gap when the encoder
features and decoder features skip and connect, and improves
the feature learning ability of the model.

E. Flowchart of Landslide Inventory Mapping

Fig. 4 illustrates the overall flow of the proposed method.
First, training samples are generated through data preprocessing,
including image normalization, feature selection, and landslide
data processing. The proposed method is supervised and trained
based on the training dataset and real samples. Meanwhile,
the model is continuously calculated and analyzed based on
validation data to ensure satisfactory generalization to unknown
datasets. After the validation loss reaches the minimum value,
the training process terminates. The model inference process

adopts the edge-ignoring prediction method [60], and the pros
and cons of the model are evaluated based on the test dataset.

1) Data Preprocessing: Data preprocessing mainly includes
image cropping, normalization, and preparation of landslide
training datasets. Different features of the target often have
different dimensional units, which will affect the results of data
analysis. To eliminate the influence between indicators, image
normalization is usually required to make the data indicators
in the same order of magnitude and facilitate the training of
deep CNNs. In this article, each channel of the original image
is normalized by Min–Max normalization so that the input has
a similar distribution. Due to the diversity of landslide shapes
and sizes, multiple input window sizes are used for landslide
detection. First, an n-band high-resolution image and a single-
band rasterized ground-truth label layer are stacked to form
a (n+1)-channel array to ensure that feature transformations
remain in the image. We then scan the image using a sliding
window algorithm to generate training patches, as shown in
Fig. 5.

To better train a deep learning network, it is necessary to select
a sufficient number of samples to train the network. If the number
of training image sets is small, the scenes contained in these
image data may be relatively homogeneous, and the network
model cannot learn features extensively, so the generalization
ability of the trained model is not strong. Inspired by previous
articles in similar fields [61], [62], we use a data augmenta-
tion strategy to generate more training samples. Next, these
patches are expanded horizontally, vertically, and diagonally,
which increases the invariance and robustness of the network to
such deformations. All training samples are generated from the
training area, and images from the test area are not used during
training.

2) Model Training: Using a small-batch training strategy,
only a small portion of the training dataset is used as input in each
iteration to avoid local minimizing of training errors and achieve
rapid convergence in the parameter optimization process [63].
In addition, the scales of landslides are different. We randomly
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Fig. 4. Flowchart of this article.

Fig. 5. Flowchart of cropping a high-resolution image to generate raster tiles through scanning the image using a sliding window.

selected three test areas. The total training area contains 749
landslides (88%) and test area contains 98 landslides (12%). For
imbalanced datasets, this may result in the minority categories
being easily ignored since classifiers are usually designed to
optimize overall accuracy (OA) [64], [65]. Dice loss [66] is
especially proposed as a loss function for medical images with
too large proportion of background information and too small
proportion of foreground information, resulting in imbalance of
positive and negative sample categories. Taking into account the
difference in landslide and background proportions, this article
uses the weighted dice loss. Specifically, we weight the losses

for different categories and calculate the weight for each class.
The higher the frequency, the smaller the lower of the category.

3) Model Validation and Inference: During training, 30%
of each dataset is used as validation data, and they are not
augmented to evaluate the generalization ability of DCNNs. In
this article, a threshold of 0.5 is chosen to classify the results into
binary classes. Specifically, if the predicted probability value of
a certain pixel is greater than 0.5, the pixel is considered to be
a landslide unit, and the pixel with a probability value less than
0.5 is a nonlandslide unit. Next, we conduct model testing to
analyze the quality of the network. In particular, we select a
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Fig. 6. Sketch map of model inference. (a) Test area image. (b) Cropping the image. (c) Inference results are directly spliced together. (d) Direct splicing results.
(e) Splicing inference results while ignoring the edges. (f) Edge-ignoring inference result.

robust model that does not overfit in the training dataset, and
evaluate it qualitative and quantitative through visual inspection
and different objective metrics.

What is more, the automatic landslide detection model uses
datasets from the test area for evaluation. The test area image is
sliced into a series of smaller images to be input to the network
for inference, and the prediction results are merged into a mosaic
to fully cover the original range, as shown in Fig. 6. Direct
stitching prediction methods often result in splicing traces, af-
fecting landslide inventory mapping. In this article, we perform
edge-ignoring prediction, i.e., cropping overlapping images and
adopt the edge-ignoring strategy when splicing. In Fig. 6(e)
and (f), the actual cropped image is predicted to be A, then the
stitching result is a. The percentage of a in area A is r, and the
overlap ratio of adjacent cropped images is 1−√

r, where the
value of r is 0.5.

F. Accuracy Evaluation

To quantitatively analyze the effectiveness of the proposed
method, the experiments calculate several evaluation measures
of Precision, Recall, and F1 score (F1). Precision indicates that
the correctly recognized landslides are divided by the aggregate
number of landslides recognized by the model. Recall means that
the correctly recognized landslides are divided by the aggregate
number of actual landslides. F1 is used as a standard measure
of model performance, which represents the harmonic average
of the measures of Precision and Recall. Besides, two statistical
measures of Kappa and OA are applied to evaluate the predictive
ability of different landslide inventory mapping methods. The
aforementioned measures are given by

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F
1
= 2× precision× recall

precision + recall
(6)

Kappa =
Pc − Pexp

1− Pexp
(7)

Pexp =
(TP + FN ) (TP + FP ) + (FP + TN ) (FN + TN )

(TP + TN + FN + FP )
2

(8)

Overall Accuracy =
TP + TN

TP + FP + TN + FN
(9)

where TP and TN represent the number of positive and negative
samples correctly classified by the model, respectively, and FP

and FN denote the number of positive and negative samples in-
correctly classified by the model, respectively. Pc is the observed
agreement rate meaning the percentage of type consistent frac-
tions in the two datasets, and Pexp is the expected probability of
change agreement. The Kappa coefficient is generally calculated
to be between−1 and 1, but usually between 0 and 1. The higher
the F1, the better the prediction.

Mean Intersection-over-Union (mIoU) is a commonly
adopted validation metric in computer vision. The intersection
and union of the predicted area and the true area are obtained, and
mIoU is the ratio of these two components. In this article, these
two sets are the landslide interpretation map and the landslide
prediction map. The value ranges from 0 to 1, where 1 means
the best result. The measure of mIoU is given by

mIoU =
1

m+ 1

m∑
j=0

Pij
Pii∑m

j=0 Pij +
∑m

j=0 Pji − Pii
(10)
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Fig. 7. Landslide inventory mapping results by different DCNN methods. (a) FCN. (b) DeepLabv3+. (c) U-Net. (d) DU-Net. (e) FCDU-Net.

where m = 1 in this article and m + 1 is the number of classes.
Pij represents the number of real i, but predicted to be j.

IV. RESULTS

A. Experimental Settings

To illustrate the performance of FCDU-Net in landslide
inventory mapping, four deep CNNs were compared, including

FCN, DeepLabv3+, U-Net, and DU-Net. All deep CNNs were
performed on Linux platform using Tensorflow-based Keras
framework, and the training and testing process was carried
out on a deep learning machine with 64G CPU memory. Cal-
culations were performed using two NVIDIA GeForce RTX
2080Ti GPUs (12 GB RAM) in the NVIDIA CUDA Toolkit
10.1 environment. Experiments all restarted training the network
without involving any pretrained model weights. The commonly
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Fig. 8. ROC curves of different methods using the test set.

used Adam optimizer [67] was chosen to update the hyperparam-
eters in the network. Through extensive experiments, 0.001 was
used as the learning rate. To avoid overfitting, an early-stopping
measure is used to save network parameters when the validation
loss curve reaches a minimum. During the training phase, a
maximum of 200 training epochs were conducted. To balance
training time and model inference performance, a batch size of
64 was chosen. All experimental hyperparameters, training data,
and other variables were set identically.

B. Landslide Inventory Mapping Results

All the mentioned deep learning methods were trained using
the training dataset, and tested on three subareas of the study
area. Referring to previous articles and landslide distribution,
all methods used an input window size of 128 × 128. Fig. 7
shows landslide detection maps for the five DCNN methods.
It is clear from Fig. 7 that FCN and DeepLabv3+ produced
more omission errors in the upper left and lower right corners
of the study area, respectively. In contrast, the DU-Net model
had fewer false positives and false negatives, compared to U-
Net. Fig. 7(e) shows that FCDU-Net has a good recognition
for small landslides that are indistinguishable to the naked eye,
degree. The landslide boundaries inferred by FCDU-Net match
the true distribution of landslides better than U-Net and DU-Net.
The visual inspection results show that FCDU-Net has the best
prediction performance.

Fig. 8 plots receiver operating characteristic curves of the
five models. The area under the curve (AUC) is a quantitative
measure of the accuracy of each method in distinguishing cat-
egories. In this article, the two categories are landslide areas
and nonlandslide areas. Theoretically, the minimum value of
AUC is 0 and the maximum is 1. Moreover, the closer the AUC
value is to 1, the better the model’s ability to identify samples of
different classes. As can be seen from Fig. 8, the AUC values of
all the models are above 0.95, indicating that DCNN can exhibit
very satisfactory predictive ability. Furthermore, the FCDU-Net

method outperforms the other methods with the highest AUC
value of 0.983.

Table III lists the detection accuracy evaluations of different
methods for Precision, Recall, F1, mIoU, Kappa, and OA,
demonstrating the quantitative assessment accuracy of each
method based on the test dataset. It can be observed that
FCDU-Net has the highest mIoU at 83.19%, which is about 7%
higher than U-Net (76.47%). In addition, FCDU-Net achieves
the highest Precision, Recall, F1, Kappa, and OA values. Except
for Recall, the FCN model performs worse than the other three
models in terms of all other statistical metrics.

C. Parametric Analysis

1) Influence of Convolutional Input Window Size: To analyze
the influence of convolutional input window size, we conducted
landslide detection experiments using FCDU-Net with different
convolutional input window sizes. Specifically, the size of 128
× 128 was used as the large input window size of the model,
while the sizes of 64 × 64 and 96 × 96 were considered as
two different versions of the small window. On this basis, 3060,
1880, and 1296 training samples of size 64 × 64, 96 × 96, and
128 × 128 were derived, respectively. Fig. 9 shows landslide
detection maps for two landslide subareas in the study area using
FCDU-Net with three different input window sizes. It can be
seen that different convolutional input window sizes can reflect
the geological environmental conditions of different scales of
landslides. As a result, the model can extract different spatial
contextual information during training.

To quantitatively analyze the usability of the FCDU-Net
method with three different input window sizes, a confusion
matrix is used to calculate the four evaluation measures men-
tioned in Section III-B, as listed in Table IV. The size from 64
× 64 to 96 × 96 improves Precision, but results in lower Recall,
mainly because the larger input window has a negative impact
on the classification of random points distributed in the landslide
polygon. Some randomly distributed points will be close to the
boundary of the landslide area. As a result, the nonlandslide area
will increase with the size of the input window. However, the
lowest F1 and Kappa were obtained based on the size of 96 ×
96. In short, FCDU-Net with 128 × 128 can perform better on
all evaluation metrics compared to other sizes.

2) Influence of the Relief-F Feature Selection: To verify the
effectiveness of DU-Net integrated with Relief-F, the feature
importance (FI) of each auxiliary feature is shown in Fig. 10.
The higher the FI value, the more important the conditioning
factor is to modeling. As can be observed from Fig. 10, the
NDVI factor reached the highest FI value. The correlation with
landslide occurrence raises as the value increases. Therefore, the
conditioning factors that obtained the first three FI values were
selected for subsequent modeling.

In this section, we compare the landslide detection perfor-
mance of DU-Net and FCDU-Net. All experiments used only
an input window size of 128× 128. The test area covers a variety
of land use types such as roads, shrubs, woodlands, and houses,
and soil landslides mainly occur in woodlands and grasslands.
Each landslide varies in shape and size, and some landslides have
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Fig. 9. Three convolution input window sizes from two landslide subareas.

Fig. 10. Feature importance of each auxiliary feature factor using Relief-F.

TABLE III
DETECTION ACCURACY ASSESSMENTS BY DIFFERENT METHODS IN ALL TEST AREAS

The highest accuracies are indicated in bold in each statistical measure.
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Fig. 11. Landslide detection maps of two test areas obtained by DU-Net and FCDU-Net. (a) DU-Net on test area 1. (b) FCDU-Net on test area 1. (c) DU-Net on
test area 2. (d) FCDU-Net on test area 2.

Fig. 12. Performance of DU-Net and FCDU-Net in terms of statistical measures.

spectral signatures similar to bare soil, posing a great challenge
to landslide detection. Fig. 11 shows the landslide inventory
mapping results for DU-Net and FCDU-Net. It can be seen
from Fig. 11(a) and (c) that most of the large landslides can be
distinguished from the background by DU-Net, and the bound-
aries of some slender landslides can also be accurately identified.

However, the results reveal some incomplete and overdetection
of small-scale landslides for two reasons. One is the serious
imbalance between landslide and nonlandslide samples, and the
other is due to the impact of imaging techniques or vegetation
coverage, some small landslides cannot be detected by remote
sensing images alone. From Fig. 11(b) and (d), we can observe
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Fig. 13. Very-high-resolution images from Google Earth overlapped with the landslide detection results by FCDU-Net. Figures (a)–(d) denote landslides that
were not recorded in the previous landslide inventory data.

TABLE IV
PERFORMANCE OF FCDU-NET USING DIFFERENT INPUT WINDOW SIZES

that the entire landslide map in both figures is satisfactory,
reducing the number of overidentified and incorrectly identified
landslides, and most of the landslide scars are consistent with
the boundaries of the true inventory data. shows the performance
of DU-Net and FCDU-Net in terms of five statistical measures
Fig. 12previously mentioned in Section III-B. As can be seen
from this figure, FCDU-Net performs more balanced in all test
domains, and FCDU-Net is better than DU-Net in terms of the
statistical measures. Specifically, the Precision of FCDU-Net is
88.87%, which is more than 12% higher than that of DU-Net
(76.63%), and the F1, mIoU, and Kappa of FCDU-Net are all
5% higher than that of DU-Net.

V. DISCUSSION

Landslide inventory mapping is the key to emergency res-
cue and landslide disaster loss assessment [68]. Meanwhile,
improving the efficiency of spatial prediction is also important
for technical experts to obtain detailed landslide disaster distri-
bution. Therefore, this article compares several DCNNs such as
FCN, DeepLabv3+, U-Net, and DU-Net for landslide detection.
Furthermore, we evaluate the impact of using different input
window sizes on prediction accuracy and ensemble performance
of DU-Net and Relief-F.

Generally speaking, high-resolution images have fewer avail-
able spectral bands, the spectral distribution of objects in the
image varies greatly, and the spectra of different objects overlap
each other. However, the geometry and textural information of
the object displayed in the image are more obvious. Landslides
are usually covered with vegetation. Therefore, it is necessary
to combine spectral features with other auxiliary features for
landslide detection. Based on the results by Relief-F, NDVI,
texture features of Entropy, and Second Moment are the eigen-
factors because they represent the characteristic properties and
structural information of the landslide. The experimental results
show that FCDU-Net achieved higher prediction accuracy than
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DU-Net alone because the filtering factor of Relief-F has a pos-
itive impact on the detection model and reduces the prediction
bias of the model.

To further improve the effectiveness of the proposed method,
we apply FCDU-Net to other high-resolution images to identify
potential or unlabeled landslide hazards. As shown in Fig. 13,
FCDU-Net can manually infer unlabeled landslides in different
test areas, which further proves that it can perform well in
landslide detection. Furthermore, DCNNs play an active role in
updating or supplementing existing landslide databases as they
can detect areas that were previously neglected.

In previous articles, some scholars began to explore the appli-
cation of deep learning or transfer learning in landslide inventory
mapping [69]–[74]. A comprehensive quantitative comparison
is not conducted herein due to differences in image size and
geographic location. They used OBIE, change detection, or
long time series detection algorithms, and included several topo-
graphic factors (e.g., DEM and its derivatives). For example, Lu
and Ma [70] combined transfer learning with OBIE to achieve
edge extraction for large landslides. Shi et al. [72] proposed a
new integrated method combining DCNN and change detection
for efficient landslide mapping in the Hong Kong area. Ghor-
banzadeh et al. [74] showed that topographic factors such as
elevation, slope, and plane curvature can improve the prediction
performance of deep learning networks. In contrast to these
articles, we did not use high-resolution DEM and any postpro-
cessing methods. The excellent performance demonstrates the
effectiveness and robustness of the proposed method.

Through comparative analysis, the application of DCNN
methods has greater advantages. Specifically, they require less
manual fine-tuning than traditional methods and can be easily
used in new domains that require only a small amount of train-
ing data. Moreover, the trained DU-Net will allow continuous
processing and segmentation of high-resolution images, driving
the development of software for continuous detection of new
landslides.

One of the aims of this article is to explore the effect of
landslides at different scales on the detection accuracy of deep
learning methods, so we have adopted the strategy of different
convolutional input window sizes for the proposed FCDU-Net
method. The experimental results demonstrate that FCDU-Net
with the convolutional input window size of 128 × 128 can
perform the best. It can found that multitemporal or long time
series data may be required to train the proposed method to well
remove the seasonal changes in mountainous areas. However, by
integrating NDVI and eight GLCM texture features with spectral
bands in the original image, this article proposes a strategy for
landslide feature extraction in high-resolution remote sensing
images in southern latitudes in winter, and we will investigate
the generalizability of this method in the future.

VI. CONCLUSION

In this article, we propose an effective FCDU-Net semantic
segmentation method. The FCDU-Net training model has the
advantages of fewer parameters and lower error probability,
and can be put into use quickly. To validate the effectiveness
of the proposed method, we apply it to landslide detection in

remote areas of the Novo Fribourg Mountains. In addition, we
also analyze the influence of different convolution input window
sizes on the landslide detection results. The experimental results
demonstrate that FCDU-Net using an input window size of 128
× 128 can produce the best performance and achieve higher
prediction results than classical methods of FCN, DeepLabv3+,
U-Net, and DU-Net. Therefore, FCDU-Net has greater appli-
cation potential in the landslide inventory dynamic mapping
system, which will expand the landslide database and promote
the subsequent studies of landslide susceptibility mapping. In
the future, we will increase landslide samples from other rainfall
events and continue to train the proposed model to enhance its
robustness to other disaster areas.
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