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Abstract—Benefited from the rapid and sustainable development
of synthetic aperture radar (SAR) sensors, change detection from
SAR images has received increasing attentions over the past few
years. Existing unsupervised deep learning-based methods have
made great efforts to exploit robust feature representations, but
they consume much time to optimize parameters. Besides, these
methods use clustering to obtain pseudolabels for training, and
the pseudolabeled samples often involve errors, which can be con-
sidered as “label noise.” To address these issues, we propose a dual
path denoising network (DPDNet) for SAR image change detection.
In particular, we introduce the random label propagation to clean
the label noise involved in preclassification. We also propose the
distinctive patch convolution for feature representation learning
to reduce the time consumption. Specifically, the attention mech-
anism is used to select distinctive pixels in the feature maps, and
patches around these pixels are selected as convolution kernels.
Consequently, the DPDNet does not require a great number of
training samples for parameter optimization, and its computational
efficiency is greatly enhanced. Extensive experiments have been
conducted on five SAR datasets to verify the proposed DPDNet. The
experimental results demonstrate that our method outperforms
several state-of-the-art methods in change detection results.

Index Terms—Change detection, dual path denoising network
(DPDNet), label noise, synthetic aperture radar (SAR).

I. INTRODUCTION

OWING to the sustainable development of remote sensing
imaging science and technology, plenty of synthetic aper-

ture radar (SAR) sensors are designed for aerial and spaceborne
platforms. The ability to collect images of the same locations at
higher frequency allows near real-time monitoring of the earth,
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and therefore, increasingly SAR images of the same geograph-
ical area are available. These images provide insights to many
applications, such as change detection [1]–[4], natural disaster
monitoring [5]–[7], urban planning [8]–[10], and land cover
data updating [11]. Among these applications, change detection
aims to recognize the changed information of the same region
by analyzing mutlitemporal images. It has attracted widespread
interest in recent years [12].

SAR change detection is commonly considered as a classi-
fication task. In a general pipeline of SAR change detection,
the difference image (DI) is first created, and the DI is clas-
sified into changed or unchanged pixels in a supervised or
unsupervised manner [13]. However, the existence of speckle
noise is a nonnegligible problem in SAR change detection task.
Speckle noise in SAR images appears as a form of multiplica-
tive noise and degrades the image quality. False alarms are
usually produced due to the existence of speckle noise [14],
[15]. Therefore, the DI classification for SAR images is still
a challenging task [16], [17]. So, it is critical to design robust
change detection techniques which are effective in speckle noise
suppression [18]–[20].

In the past few years, researchers have devoted great ef-
forts toward solving or alleviating the effect of speckle noise.
There are two types of change detection techniques: supervised
and unsupervised methods. Supervised methods require labeled
training samples to learn the parameters of a classifier [21],
[22]. Compared with it, unsupervised methods are more popular
since they compare two multitemporal SAR images without any
prior knowledge or manually labeled samples [23]–[25]. In this
article, we mainly focus on developing unsupervised SAR image
change detection method.

Existing unsupervised change detection methods mainly fo-
cus on DI generation and classification. In DI generation, log-
ratio [26], Gauss-ratio [27], or neighborhood-based ratio [28]
operators are used. Besides, the coefficient of variation based on
time series SAR images is used to avoid the speckle noise [29].
For DI classification, many clustering methods have been em-
ployed, such as fuzzy c-means (FCM) [30], k-means cluster-
ing [31], multiple kernel clustering [32], and mean-shift algo-
rithms [33]. In addition, the machine learning methods based on
Markov random fields are also applied to the despeckle task [23].

To further enhance the DI classification performance, re-
searchers incorporate deep learning-based classifiers into the
traditional unsupervised model. Gong et al. [34] first assigned
pseudolabels to the pixels in DI by an FCM-based joint classifier.
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Fig. 1. Comparisons of traditional methods with the proposed DPDNet.
(a) General framework of existing unsupervised SAR image change detection
method. These methods contain many noise labels and are commonly time-
consuming in the training phase. (b) Proposed DPDNet. It generates clean labels
and is more efficient in the training phase.

Then restricted Boltzmann machines (RBMs) were trained for
change map generation. Hou et al. [35] presented a change
detection method by combining saliency computation and low-
rank algorithm. Zhan et al. [36] proposed a deep Siamese
CNN model to extract discriminant features for change de-
tection. Zhang et al. [37] presented a deep spatial-temporal
gray-level co-occurrence CNN, which is capable of exploiting
the spatial-temporal information of mutlitemporal images. Dong
et al. [6] integrated unsupervised clustering with CNN to learn
clustering-friendly feature representations from multitemporal
SAR images. Qu et al. [38] proposed a dual-domain network.
Features from both frequency and spatial domains are exploited
to alleviate the speckle noise.

As illustrated in Fig. 1(a), existing deep learning-based un-
supervised SAR change detection methods confront two chal-
lenges. 1) The obtained pseudolabels commonly involve er-
rors. The existing methods generally use clustering to obtain
pseudolabels, which contain some errors. This phenomenon
is called “label noise,” which can affect the subsequent net-
work optimization. Accordingly, it is highly desired to devise
a label noise tolerant method. 2) Deep learning-based methods
are time-consuming in the training phase. To obtain satisfying
results, the existing methods run many epochs during the training
phase or utilize the pretraining strategy to obtain the desired
features (Here, the pretraining time is also regarded as a part
of time consumption). Both of them are time-consuming and
require reliable training samples, which are quite limited in SAR
change detection. Therefore, how to design a network that is less
time-consuming and requires fewer training samples has become
the key to the research.

To tackle the abovementioned problems, we propose a dual
path denoising network (DPDNet) to alleviate the effect of
speckle noise and label noise simultaneously [see Fig. 1(b)]. As
illustrated in Fig. 2, one branch of DPDNet uses random label
propagation to clean the label noise. Besides, the other branch of
DPDNet is employed to extract shallow and deep features, and
then combines them together for hierarchical feature representa-
tion. In this process, the designed distinctive patch convolution
(DPConv) is utilized to simplify the network structure and
reduce the training time. To validate the effectiveness of the
proposed DPDNet, we conducted extensive experiments on five
datasets. Moreover, we compared our method with six state-of-
the-art models, and the experimental results demonstrate that our
method can reduce the effect of speckle noise and label noise
effectively. Besides, the DPDNet consumes less time than other
models while achieving satisfying change detection results.

In summary, the main contributions of this article are as
follows.

1) To the best of our knowledge, we make the first attempt
to solve the problem of speckle noise and label noise si-
multaneously. Previous works mainly focus on the speckle
noise. However, the label noise problem is detrimental to
the change detection performance. The proposed DPDNet
can alleviate two kinds of noise simultaneously, and gen-
erate more accurate change maps.

2) We present a novel distinctive patch convolution (DP-
Conv), which simplifies the network structure and expe-
dite the training phase. The patches taken from the original
images are used as convolutional kernels, and therefore,
it does not require many training samples for parameter
optimization.

II. METHODOLOGY

As shown in Fig. 2, the proposed DPDNet comprises two
branches: one is used to clean the label noise by propagating
the correct labeled samples to the other unlabeled samples. In
this process, the transformation weight is generated through
homogeneous region generation and similarity measurement,
followed by multiple random label propagation based on the
weights and using voting to obtain the final labels. The other
branch aims to improve the efficiency of the model while
avoiding the speckle effect. To reduce the long training time
required by conventional convolution, the designed DPConv is
used to obtain hierarchical convolution features, so as to reduce
the consumption of computational resources while improving
feature expressiveness. Through the combination of these two
branches, it not only enables the removal of noise from the
data and improves the change detection performance, but also
reduces the training time and improves the application potential.

A. Overview of the Proposed DPDNet

Most existing deep learning-based methods applied to SAR
change detection tasks require multiple rounds of training for
parameter optimization, which is very time-consuming. Besides,
in the process of clustering, considerable noisy samples are in-
evitably introduced due to the limitation of clustering algorithm
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Fig. 2. Schematic illustration of the proposed DPDNet. One branch uses random label propagation to clean the label noise generated in preclassification.
The other branch is utilized to extract shallow and deep features by stacking multiple convolution layers. Finally, the clean labels and stacked features are fed into
the classifier to compute the final change detection results.

Fig. 3. Visualization of label noise. (a) Ground-truth change map. (b) Pseu-
dolabeled change map generated by k-means [31] clustering. From the marked
areas, it can be observed that there some differences between the ground-truth
map with the generated pseudolabeled map. If these noisy labels are fed into the
neural network, they will mislead the training process, and cause a decrease in
the change detection performance.

(see Fig. 3), which is rarely considered in previous works [25],
[38], [39]. However, a robust change detection method should
take label noise into account. To solve the above two problems,
a dual path change detection model has been proposed, which
is shown in Fig. 2. The first branch is used to guide the removal
of label noise. Its core idea is to randomly remove the labels of
some selected samples and repredict the labels of these selected
samples based on the prior knowledge and spatial correlation.
The other branch focuses on despeckle, and the proposed DP-
Conv is used replacing the conventional convolution operation
to reduce the time consumption while extracting meaningful
features. The experimental results show that the combination of
the two branches is an effective solution to the above problems
and has a certain improvement both in terms of efficiency and
evaluation indicators compared to other methods.

Fig. 4. Schematic of the proposed RLPA-based label noise cleaning for SAR
change detection.

B. Label Noise Cleaning With Random Label Propagation

As illustrated in Fig. 3, there are some differences between
the ground-truth change map with the generated pseudolabeled
change map. These differences can be considered as the label
noise. If these noisy labels are fed into the neural network, they
will mislead the training process, and thus, cause a decrease
in the final change detection performance. To effectively clean
the label noise, we introduce the random label propagation
algorithm (RLPA) [40] in our network, which is shown in
Fig. 4. It mainly includes three phases—homogeneous region
construction, generation of probabilistic transition matrix, and
random label propagation.

1) Homogeneous Region Construction: We aim to propagate
the label information among samples to clean the label noise.
We assume that pixels from the same homogeneous region are
more likely to belong to the same class. Thus, the construction
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of homogeneous regions plays an important role in label noise
cleaning. The entropy rate superpixel segmentation [41], which
is an objective function of superpixel segmentation, is employed
to construct homogeneous regions. Through this function, the
whole image can be divided into several regions, and each region
is recognized as a homogeneous region to facilitate subsequent
label propagation.

2) Probabilistic Transition Matrix Generation [42]: Upon
the acquired homogeneous regions, we can assign a weight to
the pixels within a homogeneous region based on the spatial
similarity, and let the weight between the pixels from different
homogeneous regions be zero

Wij =

{
exp(− sim(pi,pj)

2

2σ2 ), pi, pj ∈ χl

0, pi ∈ χl and pj ∈ χp

(1)

where sim(pi, pj) represents the spatial similarity,χl andχp are
the lth and pth homogeneous region, and σ is the mean variance
of all pixels in each homogeneous region.

In this article, the Euclidean distance is used to measure the
similarity

sim(pi, pj) = ‖pi − pj‖2 (2)

where ‖ · ‖2 demotes the l2 norm.
After that, the label information can propagate through the

connected weight between different pixels. The larger the weight
between two nodes, the easier it is likely to traverse. Hence, the
two nodes are more likely to belong to the same class. We can
define a probabilistic transition matrix T which can be seen as
the probability of label conversion

Tij = P (j → i) =
Wij∑N

k=1 Wkj

(3)

where Wij is the connected weight between different pixels.
Here, N is the number of pixels in the homogeneous region, and
k traverses all pixels in the homogeneous region, and Tij can be
considered as the probability to travel from node j to i.

3) Random Label Propagation: The training dataset X is
divided into a labeled subset XL = {x1, x2, . . ., xl} ∈ Rl (XL

is the set of real vector of l elements) and an unlabeled subset
XU = {xl+1, xl+2, . . ., xN} ∈ RN−l (XU denotes the set of
unlabeled vector of N − l elements). The label matrix of XL

is denoted as ŶL, while the labels of XU are discarded. In the
experiments, we randomly choose two subsets from the total
training samples. Afterward, the task turns to be predicting the
labels ŶU of the unlabeled subset XU based on the generated
probabilistic transition matrix. To better propagate the label
information, multiple iterations are adopted to propagate the
labels from XL to XU . Hence, the label of xi at time t+ 1 is

yt+1
i = α

∑
xi,xj∈X

Tijy
t
j + (1− α)ỹi

LU (4)

where α is a parameter to balance the contribution between the
initial label information and the label information received from
its neighbors, and ỹi

LU is the ith column of ỸLU = [ỸLỸU ]
T .

It should be noted that the labels of the unlabeled subset are
initialized to zero.

Since the initial labeled and unlabeled subsets are chosen
randomly, the abovementioned process of random assignment of
clean samples and unlabeled samples are repeated multitimes.
Because each sample gets one label per round, each sample
will obtain multiple labels after multiple rounds of random
assignment. The final label can be computed by majority vote.

C. Alleviating Speckle Noise With Distinctive Patch
Convolution

Speckle noise is a granular interference that inherently
degrades the quality of SAR images, and it severely affects
the change detection performance. Many deep learning-based
classifiers have been used to suppress the speckle noise [43],
[44]. However, these techniques are commonly time-consuming
in the training period. Besides, these techniques generally
require a great number of training samples for model training
to achieve robust representation. To solve the mentioned issue,
we propose a distinctive patch convolution (DPConv) for SAR
image feature representation.

Xu et al. [42] proposed a random patch network (RPNet),
which utilizes the random patches taken from the image to build
a random matrix, and then project the original vector into a
proper subspace. This work reveals the potential value of ex-
tracting patches from the original images as convolution kernels,
which has not been considered in SAR image change detection.
However, there are certain problems with this approach, despite
the advances it achieved. In [45], it points out that in a structured
model, the randomness of sampling can risk the model’s capa-
bility of focusing on nontrivial spatial contextual information.
As we all know, SAR image is often composed of background
and semantic objects. The texture and geometry information of
semantic objects is distinctive, so these semantic objects (called
distinctive region) commonly have higher activation values in
the feature map. Therefore, when the convolutional kernels are
selected from the background, they do not contain as much
information as the semantic object regions, and this view is also
demonstrated by comparative experiments in Section III-C. To
solve the problem, we proposed DPConv, which selects patches
from the distinctive regions as convolutional kernels to avoid the
randomness of convolution kernel selection, so as to focus on
important regions with salient texture and geometry information.

The implementation details of DPConv are shown in Fig. 5.
The distinctive regions are obtained according to the activation
values in the feature maps as

F̂ij =
Fij − Fmin

Fmax − Fmin
(5)

where F represents the input feature maps, Fmin and Fmax

denote the minimum and maximum values, respectively. In our
experiments, we set F̂ij > 0.7 as distinctive region. Then, we
random choose m pixels in the distinctive region. Around these
selected pixels, k × k patches are extracted. For pixels on the
edge of the feature map, the vacant neighboring pixels are filled
by mirroring the image. Then, these patches are considered as
kernels to be convolved with the input data.
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Fig. 5. Comparisons of RPConv with the proposed DPConv. (a) represents the
feature extraction by RPConv. (b) represents the feature extraction by DPConv.
The salient object is marked by green squares, the background is marked by blue
square. The selected regions are marked by diagonal squares. By using RPConv,
background region which contains little texture are chosen. In contrast, by using
the proposed DPConv, convolutional kernels are selected from the distinctive
region, and therefore, boosted classification performance can be achieved.

Fig. 6. Florence dataset. (a) Image captured on July 21, 2004. (b) Image
captured on September 30, 2004. (c) Ground truth image.

Fig. 2 shows that the network contains multiple convolution
layers. After each convolution layer, principal component anal-
ysis (PCA) is used to retain the first three principal components.
The philosophy behind this behavior is that we can obtain better
change detection results by fusing the multilevel features. Next,
we combine the deep and shallow features which are normalized
to alleviate the speckle noise. Finally, all features and the original
input data are utilized to predict the changed and unchanged
area via a SVM classifier. The detailed implementation steps
are shown in Algorithm 1.

III. EXPERIMENTS AND ANALYSIS

In this section, five multitemporal SAR datasets are used to
verify the effectiveness of the proposed DPDNet. An extensive
study of critical parameters are presented. Next, we compare
DPDNet with its variants and make a series of ablation studies.
Then, the proposed DPDNet is compared with several closely
related methods. Finally, we analyze the computational com-
plexity of DPDNet to show its efficiency.

A. Experimental Datasets

To validate the effectiveness of the proposed DPDNet, we
carried out experiments on five multitemporal SAR datasets.
The ground truth change maps are manually annotated carefully
by experts for accuracy assessment.

The first dataset is the Florence dataset, as shown in Fig. 6,
and it is obtained over the city of Florence, Italy. Some parts

Algorithm 1: The Workflow of Extracting Stacked Features
by DPConv.
Input: Original data F , the number of patches m, and the

depth of the network D.
Output: Stacked features Fout.
1: foreach layer d (1 ≤ d ≤ D) do
2: if (d > 1) then
3: PCA is employed to reserve the first three

principal components of F .
4: end if
5: Find the distinctive region according to the

activation value F̂ij :

F̂ij =
Fij − Fmin

Fmax − Fmin

6: Extract m patches from the distinctive region:

W = Random(m, F̂ij > 0.7)

7: Compute features by convolving F with patches
extracted in the previous step:

DPConv = W � F

8: Denote the features extracted in the dth layer as F d

9: If d < D, update the matrix F by F d

10: end for
11: F 1, F 2, . . . , FD are concatenated to form the final

output features Fout.

Fig. 7. Simulated dataset. (a) Image changed before. (b) Image changed after.
(c) Ground truth image.

of the river have changed between the two images. The images
were captured on July 21 and September 30, 2004, respectively.

The second dataset is the Simulated dataset, which is a sim-
ulated dataset [46]. The size of the image is 350 × 250 pixels.
The speckle noise on the Simulated dataset is rather severe. The
dataset is shown in Fig. 7.

The third dataset is the Sulzberger dataset. It is cropped from
a large SAR image from Sulzberger Ice Shelf. The dataset was
taken by the Envisat satellite of the European Space Agency.
Both images show the sea ice breakup. In March 2011, the ocean
waves generated by the Tohoku Tsunami caused the Sulzberger
Ice Shelf to break. To better reveal the change information,
we chose one typical region. The ground truth change map is
generated by experts with rich prior knowledge. The dataset is
illustrated in Fig. 8.

The next dataset is the Havana dataset, which is centred over
the city of Havana, Cuba. Two images show the landscape
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Fig. 8. Sulzberger dataset. (a) Image captured on March 11, 2011. (b) Image
captured on March 16, 2011. (c) Ground truth image.

Fig. 9. Havana dataset. (a) Image captured in May 1997. (b) Image captured
in July 1997. (c) Ground truth image.

Fig. 10. Bern dataset. (a) Image captured in April 1997. (b) Image captured
in May 1997. (c) Ground truth image.

changes from dry season to wet season in Havana. Two SAR
images were obtained by ERS-2 satellite in May and July 1997,
respectively. Some regions are flooded during the period. The
Havana dataset is shown in Fig. 9.

The last dataset is the Bern dataset, which is captured in the
area near the city of Bern, Switzerland. Two images show the
geomorphic changes after the Aare River flooded parts of the
cities of Thun and Bern and the airport of Bern entirely [47].
Two images were obtained by ERS-2 satellite in April and May
1997, which is illustrated in Fig. 10.

A critical issue in change detection is the selection of evalua-
tion criteria [25], [38], [48]. In this article, false positives (FP),
false negatives (FN), percentage correct classification (PCC),
Kappa coefficient (KC), and F1 score (F1) are used to evaluate
the change detection performance.

1) FP: the number of unchanged pixels in the ground truth
image but falsely classified as changed.

2) FN: the number of changed pixels in the ground truth image
but falsely classified as unchanged.

3) PCC: Classification accuracy in change detection. The PCC
is calculated by

PCC = 1− FP + FN
Nc +Nuc

(6)

where Nc denotes the number of changed pixels in the ground
truth image, and Nuc is the number of unchanged pixels.

Fig. 11. Relationship between the classification accuracy and parameter α.

4) KC: Kappa coefficient is used for reliability evaluation, and
it is computed as:

KC =
PCC − PRE
1− PRE

(7)

PRE =
(Nc + FP − FN)×Nc + (Nuc + FN − FP)×Nuc

(Nc +Nuc)× (Nc +Nuc)
.

(8)

5) F1: F1 score is the harmonic mean of precision and sensi-
tivity, and it is computed as

F1 =
2TP

2TP + FP + FN
(9)

where TP is the number of changed pixels in the ground truth
image and truly classified as changed.

B. Analysis of the Important Parameters of DPDNet

Analysis of the parameter α. In the proposed DPDNet, an
important branch is used to clean the label noise. The critical
parameter α is used to balance the contribution between the
initial label itself and the labels received from its neighbors. We
evaluate the change detection performance by taking α = 0.5,
0.6, 0.7, 0.8, and 0.9. Fig. 11 shows the quantitative analysis
result of the parameter α. It can be observed that when α = 0.6,
the PCC obtains the best value on the Florence datasets, while
on the Simulated, Sulzberger, Havana, and Bern datasets, the
result achieves the best when α = 0.7. Since different datasets
have different spatial structures in the label propagation, the
contributions between the initial label and the label received
from its neighbors are different. Hence, we set α to 0.6 on the
Florence datasets, and set α to 0.7 on the Simulated, Sulzberger,
Havana, and Bern datasets in our following experiments.

1) Analysis of the Image Patch Size: As we all know, the
contextual information plays an important role in alleviating the
speckle noise. However, the patch size controls the contextual
information contained in the training samples, and therefore,
we design experiments to test the parameter w. Here, w denotes
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Fig. 12. Relationship between PCC and the size of patch.

the size of the patches used as the training sample. We evaluate
the change detection performance by taking w = 5, 7, 9, 11,
and 13. As shown in Fig. 12. We can see that the PCC value
is not satisfying when w = 5, because such small patches can
hardly extract the contextual information effectively. On the
Sulzberger, Havana, and Bern datasets, the DPDNet achieves
the best result when w = 7. On the Florence and Simulated
datasets, w = 9 obtains the best PCC values. It indicates that
different datasets contain different contextual information and
require different size of receptive fields for feature extraction.
Therefore, in the following implementation, we set w = 7 on
the Sulzberger, Havana, and Bern datasets and set w = 9 on the
Florence and Simulated datasets.

2) Analysis of the Training Sample Numbers: It is evident
that the number of training samples has a great impact on the
change detection performance. Hence, we investigate the rela-
tionship between PCC value and the training sample numbers
on different datasets. As mentioned before, the training samples
are randomly selected from the preclassification results by the
clustering algorithm. We randomly selected 4%, 6%, 8%, 10%,
12%, and 14% pixels as training samples. The change detection
performance on different datasets by using different training
sample numbers are shown in Fig. 13. From the curves in the
figure, it can be seen that there is a sharp increase in PCC value
when the training sample number ranges from 4% to 10%. On
Florence, Sulzberger, Havana, and Bern datasets, the best result
is achieved when the training sample ratio is 12%. After that, the
PCC value tends to be stable even the number of training samples
increases. Hence, we select 12% pixels from the preclassification
result as training samples.

3) Analysis of the Stacked Layer Numbers: The main objec-
tive of this study is to use distinctive patches extracted from the
original images as convolution kernels for feature extraction. In
this article, we use multiple convolutional layers to extract shal-
low and deep features. Therefore, the number of convolutional
layers affects the number of stacked features, which has a great
impact on the change detection results. In this experiment, we

Fig. 13. Relationship between the change detection accuracy and the number
of training samples.

Fig. 14. Relationship between PCC and the stacked layer number.

explore the relationship between the number of stacked layers
D and the change detection results. The experimental results
are illustrated in Fig. 14. As can be observed, when D = 4,
the PCC values reach the best on the Florence, Sulzerberg,
and Havana datasets. On the Simulated and Bern dataset, the
best performance is achieved when D = 5. It is owing to the
reason that different datasets have different texture details. With
the increase of stacked layers, better feature representations
can be captured on different regions. The visualized results
with different number of stacked layers on the Florence and
Havana datasets are shown in Figs. 15 and 16, respectively.
As can be seen, with the increase of stacked layers, the change
map contains less noise regions. Therefore, D = 5 is used on
the Simulated and Bern dataset, D = 4 is employed on other
datasets. In real applications, the value of D should be adjusted
according to the texture or geometry characteristics of each
dataset.



2674 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 15. Change detection results on Florence dataset by different stacked
features.

Fig. 16. Change detection results on Havana dataset by different the number
of stacked features.

C. Verification of Distinctive Patch Convolution Effectiveness

1) Distinctive Patch Convolution Versus Random Patch Con-
volution: To alleviate the speckle noise, our method introduces
the distinctive patch convolution (DPConv) to extract the desired
features. In most existing works, a great number of training
samples are needed to optimize the parameters of the network,
which is time-consuming. To make up this shortcoming, Xu
et al. [42] proposed random patch convolution (RPConv) in
which random patches taken from the image are used as convo-
lution kernels. However, the randomness of RPConv risks the
model’s stability. Compared with RPNet, the proposed DPConv
pinpoints the most nontrivial units of the image and offers better
feature representation upon sampling position. We compare the
models using DPConv with RPConv for feature extraction. As
illustrated in Fig. 17, in most cases, the standard DPDNet offers
a better performance. Meanwhile, the performance of RPConv
is not stable, and it achieves relatively good change detection
results when it takes samples from representative locations.

2) Distinctive Patch Convolution Versus Nonlocal Filter: To
verify the performance of the proposed DPConv for speckle

Fig. 17. Comparison between distinctive patch convolution with random patch
convolution.

Fig. 18. Effect of filtering operations on Sulzberger dataset.

noise suppression, the nonlocal means filter [49] was used for
data preprocessing for all methods. As shown in Fig. 18, the
filtering operation is performed on the Sulzberger dataset for
these methods, and PCC value is utilized as the evaluation
metric. It is obvious that nonlocal filter reduces the speckle noise
to some extent and improves the change detection performance
for most of the methods. As for DPDNet, the performance is also
improved after using nonlocal filter for data preprocessing, but
the improvement was smaller compared to the other methods.
This is because it provides an end-to-end way to reduce the
speckle noise via the strong learning capability of the network.
Furthermore, the evaluation metric shows that DPDNet still out-
performs the other methods without the addition of filter, which
also proves that it is beneficial in speckle noise suppression.

D. Ablation Study

We further verify the effectiveness of both branches of the
proposed DPDNet on five datasets. Note that to make a fair
comparison, we have designed a Baseline (#1), which is com-
pletely consistent with the structure of the branch using DPConv
in DPDNet, including the size of the convolution kernel and
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TABLE I
ABLATION STUDIES ON FOUR DATASETS

the number of layers, except that DPConv is replaced by the
traditional convolution.

The Baseline (#1) has the same number of training epochs and
training samples as DPDNet. However, as reported in Table I,
the performance of Baseline is unsatisfying since the number
of training samples is quite limited. When we use the distinctive
patch extracted from the image as convolution kernels, it reduces
the dependence of the network parameters and achieves better
results (#1 vs #3). Meanwhile, the RPConv will risk the stability
of the network. For instance, when the kernels are selected
from the smooth-textured background, the parameters of the
convolution kernels are similar, and the extracted features cannot
be representative. Hence, the proposed DPConv can effectively
select kernels from the distinctive region, so as to reduce the
influence of randomness. The results of #2 and #3 in Table I
demonstrate the effectiveness of the proposed DPConv in feature
representation.

Furthermore, label noise is introduced into change detection.
To handle the problem, we use RLPA to clean the label noise
hidden in the preclassification results. To evaluate the effective-
ness of label noise cleaning, we make extensive experiments
(#4 vs #1, #6 vs #2, #5 vs #3). It is evident that when we
introduce a label noise cleaning branch, the change detection
performance always significantly improved. Moreover, it can
be observed that the proposed DPDNet (#6) not only enhances
the feature representation by using DPConv, but also improves
the classification performance by alleviating the label noise in
preclassification.

E. Change Detection Results on Five SAR Datasets

To validate the performance of the proposed DPDNet,
six state-of-the-art methods, including PCAKM [31], NR-
ELM [46], GaborPCANet [50], RPNet [42], LR-CNN [51],
and DCNet [52] are used as the comparison methods. For
PCAKM, the contextual information is analyzed by PCA, and
the features are handled k-means clustering. NR-ELM utilizes
extreme learning machine (ELM) [53] as the classifier. Gabor-
PCANet is composed of cascaded PCA layer, binary hashing
layer, and block-wise histogram generation. RPNet uses random
patches taken from the original image as convolution kernels
to extract shallow and deep concolutional features. LR-CNN
is a deep learning based method with local spatial restrictions.

Fig. 19. Comparisons of the change maps generated by different methods
on the Florence dataset. (a) Ground truth image. (b) Result by PCAKM [31].
(c) Result by NR-ELM [46]. (d) Result by GaborPCANet [50]. (e) Result by
RPNet [42]. (f) Result by LR-CNN [51]. (g) Result by DCNet [52]. (h) Result
by the proposed DPDNet.

In DCNet, a channel weighting-based module is designed for
feature enhancement. Among these methods, RPNet, LR-CNN,
and DCNet are deep learning-based methods. It should be noted
that the RPNet is originally designed for hyperspectral image
classification, and we made some adjustments so that it can be
applied to change detection tasks.

1) Results on the Florence Dataset: Fig. 19 shows the ex-
perimental results on the Florence dataset, while Table II lists
the corresponding quantitative metrics. From Table II, we can
see that, compared with DPDNet, other methods suffer from
high FP values resulting in many noisy spots in the change map
as shown in Fig. 19. Since other learning-based methods do
not take the label noise into account, and the training samples
with errors mislead the learning process. In addition, the FN
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TABLE II
CHANGE DETECTION RESULTS OF DIFFERENT METHODS

ON THE FLORENCE DATASET

Fig. 20. Comparisons of the change maps generated by different methods on
the Simulated dataset. (a) Ground truth image. (b) Result by PCAKM [31].
(c) Result by NR-ELM [46]. (d) Result by GaborPCANet [50]. (e) Result by
RPNet [42]. (f) Result by LR-CNN [51]. (g) Result by DCNet [52]. (h) Result
by the proposed DPDNet.

value of DPDNet is the lowest, which means that the proposed
model does not ignore some subtle change pixels. Among these
methods, the proposed DPDNet achieved the best PCC, KC, and
F1 values. The results on the Florence dataset demonstrate that
label cleaning is necessary. The comparisons demonstrate the
superior performance of the proposed DPDNet on the Florence
dataset.

2) Results on the Simulated Dataset: Fig. 20 presents the
change maps on the simulated dataset. The corresponding quan-
titative metrics are shown in Table III. In addition to the complex
spatial structure, the Simulated dataset is severely interfered by
speckle noise. Thus, it is rather challenging to identify changed
pixels accurately on this dataset. The results of NR-ELM and

TABLE III
CHANGE DETECTION RESULTS OF DIFFERENT METHODS

ON THE SIMULATED DATASET

Fig. 21. Comparisons of the change maps generated by different methods on
the Sulzberger dataset. (a) Ground truth image. (b) Result by PCAKM [31].
(c) Result by NR-ELM [46]. (d) Result by GaborPCANet [50]. (e) Result by
RPNet [42]. (f) Result by LR-CNN [51]. (g) Result by DCNet [52]. (h) Result
by the proposed DPDNet.

GaborPCANet are polluted with noisy regions. Therefore, NR-
ELM and GaborPCANet suffer from high FP values. Generally
speaking, the deep learning-based models improve the change
detection performance with a clear margin. In addition, the
proposed DPDNet performs favorably against other methods on
this dataset. The comparison shows that the DPDNet is powerful
in noise suppression on the Simulated dataset.

3) Results on the Sulzberger Dataset: Fig. 21 shows the
change detection results on the Sulzberger dataset. From visual
inspection, it can be seen that most methods missed some subtle
changed areas, which generate higher FN values in Table IV.
Moreover, deep learning-based methods (LR-CNN, RPNet, and
DCNet) generally obtain better performance. Furthermore, be-
cause of the stacked DPConv features and label cleaning, the
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TABLE IV
CHANGE DETECTION RESULTS OF DIFFERENT METHODS

ON THE SULZBERGER DATASET

Fig. 22. Comparisons of the change maps generated by different methods
on the Havana dataset. (a) Ground truth image. (b) Result by PCAKM [31].
(c) Result by NR-ELM [46]. (d) Result by GaborPCANet [50]. (e) Result by
RPNet [42]. (f) Result by LR-CNN [51]. (g) Result by DCNet [52]. (h) Result
by the proposed DPDNet.

proposed DPDNet obtains the best PCC, KC, and F1 values.
Overall, the proposed DPDNet outperforms in terms of PCC,
KC, and F1 values on the Sulzberger dataset.

4) Results on the Havana Dataset: Fig. 22 shows the change
maps on the Havana dataset. The corresponding evaluation
metrics are listed in Table V. As we can see, PCAKM, NR-
ELM, and GaborPCANet do not perform well since many
unchanged regions are falsely classified into changed regions
with high FP values. Moreover, the deep learning-based methods
(LR-CNN, RPNet, and DCNet) can suppress the speckle noise
to some extent by integrating spatial information. Therefore, the
PCC, KC, and F1 values of these deep learning-based models
have been greatly improved. However, some changed pixels are
missed, and thus the FN values are relatively high. The proposed

TABLE V
CHANGE DETECTION RESULTS OF DIFFERENT METHODS

ON THE HAVANA DATASET

Fig. 23. Comparisons of the change maps generated by different methods on
the Bern dataset. (a) Ground truth image. (b) Result by PCAKM [31]. (c) Result
by NR-ELM [46]. (d) Result by GaborPCANet [50]. (e) Result by RPNet [42].
(f) Result by LR-CNN [51]. (g) Result by DCNet [52]. (h) Result by the proposed
DPDNet.

DPDNet obtains the best PCC, KC, and F1 values compared with
other methods. Generally speaking, the comparisons demon-
strate the effectiveness of the proposed method on the Havana
dataset.

5) Results on the Bern Dataset: The visualized change de-
tection results are shown in Fig. 23, and the evaluation metrics
obtained by different methods are listed in Table VI. It can be
observed that the proposed DPDNet achieves the best perfor-
mance in most metrics with the assistance of cleaned labels and
multilevel features. Meanwhile, the result map of DPDNet is the
most similar to the ground truth map. The satisfying performance
on this open dataset proves the effectiveness of the proposed
method in change detection task.
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Fig. 24. ROC curves of the change detection results on different datasets. (a) ROC curves on the Florence dataset. (b) ROC curves on the Simulated dataset.
(c) ROC curves on the Sulzberger dataset.

TABLE VI
CHANGE DETECTION RESULTS OF DIFFERENT METHODS

ON THE BERN DATASET

TABLE VII
AUCS OF DIFFERENT METHODS ON THE FLORENCE, SIMULATED,

AND SULZBERGER DATASETS

F. ROC Curves of the Change Detection Results

Fig. 24 shows the receiver operating characteristic (ROC)
curves of the change maps on the Florence, Simulated, and
Sulzberger datasets. It should be noted that the PCAKM, NR-
ELM, GaborPCANet do not generate results with probability.
Therefore, we only provide ROC curves of DPDNet, DCNet,
LR-CNN, and RPNet.

The ROC curve of one good change detection method should
be close to the top-left corner. On the three datasets, the ROC
curves of the proposed DPDNet perform better than the other
methods. The ROC curves of RPNet are closest to the bottom-
right corner and have the worst performance. It is evident that
the proposed DPDNet effectively improves the change detection
performance by using the distinctive patch convolution. The
corresponding area under the ROC curve (AUC) is provided
in Table VII. The higher the AUC, the better the performance

TABLE VIII
COMPARISON AMONG DIFFERENT CHANGE DETECTION METHODS

OF THE EVALUATION TIME (IN SECONDS)

of the model at distinguishing between the changed and un-
changed pixels. We can observe that the DPDNet obtains the best
AUC, which also demonstrates the effectiveness of the proposed
method.

G. Analysis of the Computation Time Requirement

Table VIII shows the comparison among different change
detection methods of the evaluation time on the Florence, Sim-
ulated and Sulzberger datasets. The traditional methods such
as PCAKM and NR-ELM, cost less time, due to its relatively
simple workflow. However, their performances are not as good as
deep learning-based models. By contrast, the time consumptions
of GaborPCANet, LR-CNN, and DCNet are about more than
twice higher than the proposed DPDNet. This demonstrates the
computational efficiency of the DPDNet. The DPDNet requires
much less computation time owing to the prefixed convolution
kernels. Compared with RPNet, DPDNet costs more time to
clean the label noise, while this further improves the experi-
mental results. All experiments are carried out on a desktop PC
with an Intel Xeon E5-2620 processor and an NVIDIA GTX
1080Ti GPU.

IV. CONCLUSION

In this article, we present a novel SAR image change detection
model called DPDNet, which can suppress the speckle noise
and label noise simultaneously. The DPDNet is composed of



WANG et al.: CHANGE DETECTION FROM SYNTHETIC APERTURE RADAR IMAGES 2679

two branches. One branch cleans the label noise via random
label propagation, and the other branch combines shallow and
deep features by using distincitve path convolution. In particular,
the attention mechanism is used to select distinctive pixels in
the feature map. Patches around these pixels are selected as
convolution kernels. It does not require many training samples
for parameter optimization, and therefore, the proposed DPDNet
is of high computational efficiency. The experimental results on
five multitemporal SAR datasets demonstrate that the DPDNet
can achieve substantially higher accuracy over state-of-the-art
methods.
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