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Spatially and Semantically Enhanced Siamese
Network for Semantic Change Detection in
High-Resolution Remote Sensing Images

Manqi Zhao , Zifei Zhao, Shuai Gong , Yunfei Liu, Jian Yang, Xiong Xiong , and Shengyang Li

Abstract—Given a pair of bitemporal very high resolution (VHR)
remote sensing images, the semantic change detection task aims to
locate land surface changes and identify their semantic classes. The
existing algorithms use independent branches to locate and identify
separately without considering the association between branches.
In this article, we propose an end-to-end spatially and semantically
enhanced Siamese network (SSESN) for semantic change detection.
The SSESN aggregates the rich spatial and semantic information
in the VHR image through a designed spatial and semantic fea-
ture aggregation module. Additionally, a change-aware module
is proposed to decouple the aggregated features. Features in the
binary branch are fused to the semantic branches as prior loca-
tion information. This allows the spatially enhanced features to
predict changed regions and the semantically enhanced features to
refine the region categorizations. Experimental results show that
our method provides comparable results with the state-of-the-art
binary change detection and semantic change detection algorithms.

Index Terms—Change aware (CA), change detection, remote
sensing image, siamese network, spatial and semantic aggregation.

I. INTRODUCTION

CHANGE detection in remote sensing images is essential in
earth observation systems, distinguishing between images

of the same geographic area taken at different times [1], [2].
Change detection is crucial in various applications, including
ecosystem monitoring [3], urban planning [4], resource man-
agement [5], and damage assessment [6]. Change detection is
commonly divided into binary change detection (BCD) and
semantic change detection (SCD) tasks. BCD aims to identify
the pixels corresponding to the changed regions to distinguish
the changed regions from the unchanged ones. In contrast, SCD
needs to further identify the change category based on the
distinguished changed regions [7].
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Benefiting from the development of satellite imaging technol-
ogy, many satellites, including Ikonos, QuickBird, Spot-5, and
GaoFen, can acquire very high resolution (VHR) images at the
meter or submeter resolutions. VHR images provide rich spa-
tial distribution information and texture details of the surfaces,
improving the image interpretation and context extraction at the
pixel level [8]. These characteristics help the change detection
task obtain more accurate changed regions and distinguish the
features between different images more effectively [9].

Among the existing change detection algorithms, deep learn-
ing methods benefit from powerful feature representation ca-
pabilities, thereby efficiently using the rich spatial distribution
information and semantic information in the VHR image. How-
ever, the features of different layers extracted by neural networks
are often imbalanced between semantic and spatial: shallow
features retain more spatial location information, while deep
features contain more semantic information [10]. Moreover, the
existing SCD methods handle BCD tasks simultaneously but use
independent branches to process SCD and BCD separately [11].
These methods ignore the correlation between the two tasks:
BCD can help SCD obtain prior location information of the
changed regions.

To balance and aggregate the rich spatial and semantic in-
formation in VHR images, we propose a spatial and semantic
feature aggregation (SSFA) module that integrates the feature
pyramid structure and dense connections between multilevel
features. Furthermore, to take advantage of the correlations
between BCD and SCD, we design a change-aware (CA) mod-
ule that uses binary features as prior information of semantic
features.

Our main contributions in this article are as follows.
1) We propose a novel end-to-end spatially and semantically

enhanced Siamese network (SSESN), which fuses and
enhances the spatial and semantic information in VHR
remote sensing image pairs. The SSESN achieves state-
of-the-art performance on both the BCD and SCD datasets.

2) We design an SSFA module that aggregates the rich spatial
and semantic information in the VHR image pairs. SSFA
integrates the pyramid structure and establishes dense con-
nections between multilevel features, making the extracted
features more representative.

3) We devise a CA module that establishes the association
between BCD and SCD tasks. CA uses spatial attention
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and channel attention mechanisms to decouple the spatial
and semantic information in the aggregated features. The
features in the binary branch are then concatenated to
the semantic branch as prior information, which further
improves the accuracy of SCD.

The rest of this article is organized as follows. Section II
summarizes the related work. Section III describes the proposed
SSESN. Section IV shows our experimental results and discus-
sion. Finally, Section V concludes this article.

II. RELATED WORK

In this section, we propose a review of BCD and SCD al-
gorithms. Sections II-A and II-B correspond to BCD and SCD,
respectively. In addition, we also provide a specific discussion of
the problems in the existing methods and present a brief synopsis
of our corresponding solutions.

A. BCD Algorithms

Many BCD methods have been proposed to distinguish
changed regions. Change vector analysis is usually applied to
multispectral images acquired by various multispectral sen-
sors [12], [13]. Formed by calculating the difference between
the data of each image band at each time, the change vector
provides the change intensity and direction, with the changed
and unchanged regions identified by thresholds [14], [15]. Using
canonical correlation analysis, multivariate change detection
extracts change information from linear combinations of the
raw data with maximal correlation [16]. Regions with little or no
change in the image have absolute values close to zero, while sig-
nificantly changed regions have large absolute values [17]. More
recent methods take advantage of the enormous parameter space
and powerful feature representation of deep learning networks to
enhance the extraction of change information in remote sensing
images [18]. Benefiting from the weight sharing structure and
the dual-input mechanism, the Siamese network [19] has been
widely incorporated into BCD methods [20], [21]. Deep feature
extraction and enhanced representation further improve the per-
formance of BCD algorithms [22]. Some methods use a pyramid
structure to extract multiscale features to obtain more robust
spatial features [23]. Attention mechanisms add the ability to
enhance feature representation and discrimination [24], [25].
As illustrated in Section I, the rich spatial distribution and
semantic information in VHR images indicate that it is necessary
to explore some aggregation structures to take full advantage
of the information. We propose an SSFA module to acquire
well-balanced spatial and semantic aggregated features.

B. SCD Algorithms

Most research into BCD distinguishes between changed re-
gions in fixed semantic scenes, such as buildings, land, and vege-
tation, without distinguishing specific semantic categories [26].
Therefore, there are few existing methods for SCD [27]. The
existing algorithms treat SCD as a multicategory classification
problem, classifying the specified semantic categories of two
changing images separately [7]. Alternatively, SCD is treated

as a semantic segmentation problem of changed and unchanged
regions [11]. Yang et al. [28] present an asymmetric Siamese
network with heterogeneous feature extraction to alleviate the
categorical ambiguity in the semantic identification process.
Most of the works treat the localization of changed regions and
identify the semantic classes separately. Daudt et al. [7] provide
a simple combination to add features from the semantic encoder
to the binary decoder structure. However, we believe that each
process emphasizes particular aspects while looking for overall
changed regions. The localization process pays more attention to
where changes occur, while the identification process pays more
attention to what changes. This focus can be naturally linked
to the attention mechanism [29]–[31]. Furthermore, the change
position obtained from BCD can be used as a priori information
to reduce the burden of semantic prediction. In this article, we
propose a CA module to establish the connection between BCD
and SCD tasks.

III. METHODOLOGY

An overview architecture of our proposed method is shown
in Fig. 1. First, the Siamese weight-sharing backbone structure
extracts multilevel features from the bitemporal VHR image
pairs. The extracted multilevel features FL1, FL2, FL3, and FL4

are fed into the SSFA module to integrate high-level semantic
and low-level spatial information. Next, the aggregation features
FT1 and FT2 and their feature difference map Fdiff are sent into
the CA module, corresponding to two semantic branches and
a binary branch, respectively. Finally, both the binary and SCD
results of the VHR image pairs are predicted by convolution and
upsampling layers.

In this section, we first introduce two prominent components
of our proposed architecture: the SSFA module for aggregating
multilevel spatial and semantic features in Section III-A and the
CA module for establishing the association between BCD and
SCD tasks in Section III-B. Then, we describe the process of
generating accurate binary and semantic probability maps along
with the loss function in Section III-C.

A. SSFA Module

VHR images contain rich semantic information and precise
spatial location information. It is well known that feature fusion
is an effective way to enhance feature representation. Gener-
ally, there are different ways of fusion of semantic information
and spatial information. Spatial fusion means aggregation be-
tween different resolutions and scales. For example, in [20] and
[32]–[34], the pyramid structure is applied to gradually upsam-
ple high-level features from top to bottom and fuse same-level
features. In contrast, semantic fusion requires aggregation be-
tween channels and depths. For example, in [35]–[38], densely
connected network branches are organized between features
with different depths and channels.

To take full advantage of semantic and spatial information in
VHR images, we design the SSFA module, as shown in Fig. 2(a).
SSFA takes the feature set extracted by the Siamese network
as input. The set contains features with different depths FL1,
FL2, FL3, and FL4, with atrous convolutions of rate 2 applied
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Fig. 1. Overview architecture of the SSESN. It consists of three prominent components: a Siamese structure to extract multilevel features from the bitemporal
VHR image pairs, an SSFA module to integrate high-level semantic and low-level spatial information, and a CA module to decouple the fusion features and generate
final prediction maps.

Fig. 2. Detailed structure of the designed SSFA and CA modules.

to the last layer to preserve the resolution of deep features.
For convenience, the spatial image resolution is represented by
stride, e.g., stride 8 corresponds to 1/8 input image resolution.

First, the Atrous Spatial Pyramid Pooling (Aspp) module [39]
is applied on the last layer feature, FL4. Aspp consists of three

3 × 3 atrous convolutions with different rates, a 1 × 1
convolution, and an image pooling layer to adjust the field
of view and capture enhanced features at multiple scales.
The output features of each layer are concatenated to the
fusion feature F ′

L4 at stride 16. Then, 1 × 1 convolution is
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adopted to reduce the dimension of F ′
L4. The reduced F ′

L4 is
upsampled to stride 8 and stride 4, and features with the same
spatial resolution are dimensionally reduced and concatenated
to obtain the fusion features X1, X2, and X3. Although the
fusion features have information at multiple scales, there is no
interaction between high-level and low-level features, so it is
necessary to fuse the multilevel features further.

A pyramid structure with dense connections is designed to
aggregate the features X1, X2, and X3. Each aggregation node
is the summation of input features Ys = Σ3

i=1a(Xi, s), where
X = {X1, X2, X3} represents the input feature set, and Ys

represents the output feature at stride s. The function a(Xi, s)
consists of a bilinear sampling for upsampling Xi to stride s
and a shortcut connection for maintaining resolution. Using this
scheme, all features are aggregated to stride 4, which is then
suitable for spatial and semantic balance [40]. Compared with
the conventional down–up stream with a shortcut connection at
the same resolution, dense connections in the pyramid structure
further enhance the semantic information. The resulting SSFA
module finally obtains the aggregated features with enhanced
semantic and spatial information.

B. CA Module

Most of the existing methods focus only on changed regions
as identified in the BCD task. Although some methods pay more
attention to the semantic connotations of the changed regions as
required by the SCD task, all of these approaches regard BCD
and SCD as two separate tasks: the head of the network uses
completely separate branches to predict the binary and seman-
tic change maps. Nevertheless, there is a connection between
the BCD and SCD tasks. More precisely, the binary branch
focuses on using spatial information to distinguish changed or
unchanged, while the semantic branch focuses on using semantic
information to predict what changed. Therefore, using the spatial
information of the binary branch as a priori knowledge alleviates
the burden of the semantic branch to determine the spatial
changed regions and results in better prediction of the semantic
changes. Moreover, the channel and spatial attention serve as
tools to enhance the semantic and spatial feature responses [30],
[31], making the features more discriminative for each branch.

We design the CA module to establish the connection between
the binary and semantic branches, as shown in Fig. 2(b). CA
takes the semantic branch fusion features FT1, FT2, and the
binary branch fusion feature Fdiff as input. The channel and
spatial attention modules are added at the beginning of CA to
enhance the discriminative ability of the binary branch and se-
mantic branch features, respectively. Fig. 3 shows the designed
channel and spatial attention modules.

The spatial attention module is formed as an hourglass struc-
ture [41]. It first downsamples the features through convolution
to highlight possible changed regions from the large receptive
field and then uses transposed convolution to upsample them to
restore the resolution. The learning process can be expressed by

Fspa = σ(H(Fdiff))⊗ Fdiff (1)

Fig. 3. Designed channel and spatial attention modules. (a) Spatial attention
module. (b) Channel attention module.

TABLE I
DEFINITIONS OF EVALUATION METRICS

where σ represents a sigmoid activation function, H denotes the
hourglass structure,Fdiff andFspa correspond to the input feature
and the output spatially enhanced feature, respectively, and ⊗ is
elementwise multiplication.

The channel attention module takes the semantic branch fu-
sion feature as input and obtains the average pooling featureFavg

through a global average pooling layer. A multilayer perceptron
(MLP) consisting of two linear transformation layers and a
ReLU nonlinearity layer in between is then applied to Favg to
form the channel weight, and the sigmoid activation function
is used to normalize the weight. Finally, the channel weight
and the input feature are multiplied to obtain the semantically
enhanced output feature Fcha. The channel attention module can
be expressed as

Fcha = σ(MLP(Favg))⊗ Favg. (2)

After applying the spatial and channel attention modules, the
binary branch feature can pay more attention to the location
information of the changed regions, and the semantic branch
feature has a more powerful semantic representation ability of
the changed regions. Then, for the binary branch, we use several
Conv-BN-ReLU blocks to refineFspa intoFmid. Considering that
feature in the binary branch has a priori location information
of the changed regions, we concatenate the semantic branch
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Fig. 4. Visualization results on the CDD dataset. (a) and (b) Original bitemporal image pairs. (c) Ground truth. (d) Result from FC-Siam-conc. (e) Result from
DASNet. (f) Result from SNUNet-CD. (g) Result from our SSESN.

TABLE II
QUANTITATIVE RESULTS ON THE CDD DATASET

features Fcha and the refined binary branch feature Fmid to Fca.
Similar Conv-BN-ReLU blocks are also used to refine Fca. The
CA module successfully establishes the connection between
BCD and SCD.

C. Loss Function

Both the binary and semantic final features are obtained
through a channel reduction convolutional layer and an up-
sampling layer. Then, a softmax layer is applied to the final
features to generate the binary and semantic prediction maps.
To optimize the proposed network and handle the imbalanced
distribution of each class, we adopt the focal loss function [42]
for both the binary and semantic branches. The loss function can
be expressed as

L = − 1

N

N∑

i=1

M∑

j=0

αjyij(1− pij)
γ log(pij) (3)

whereN is the total number of training samples,M is the number
of all classes, yij ∈ {0, 1} indicates whether a specific sample i

TABLE III
QUANTITATIVE RESULTS ON THE HRSCD AND SECOND DATASETS

belongs to the label of class j, pij ∈ [0, 1] is the probability
that sample i is predicted to belong to class j, γ is the tunable
parameter, and αj is the balanced weight for class j.

The prediction semantic and binary maps can be denoted as
M1, M2, and Mc, separately. Specifically, given the ground
truth for SCD G1 and G2 and for BCD Gc, the joint loss function
Lall is the linear combination of loss functions on separate
branches

Lall = L(M1,G1) + L(M2,G2) + 2L(Mc,Gc). (4)

IV. EXPERIMENTS AND DISCUSSIONS

A. Evaluation Datasets and Metrics

CDD [43] is one of the most common BCD evaluation
datasets. The CDD dataset contains 11 pairs of multispectral
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Fig. 5. Visualization results on the HRSCD dataset. (a) Original bitemporal image pairs. (b) Ground truth. (c) Result from HRSCD.str4. (d) Result from
FC-Siam-diff. (e) Result from FC-EF. (f) Result from our SSESN.
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TABLE IV
ABLATION STUDY RESULTS ON THE HRSCD AND CDD DATASETS

remote sensing images in different seasons acquired by Google
Earth. The spatial resolution of these images ranges from 3
to 100 cm per pixel. 16 000 pairs of images with a size of
256× 256 pixels are generated from the original images through
cropping and rotation operations. Among the 16 000 image pairs,
10 000 are selected as the training set and 3000 for each of the
validation and test sets. Precision rate (P), recall rate (R), and
F1 score (F1) are adopted as BCD evaluation metrics.

HRSCD [7] is one of the few publicly available SCD datasets.
The HRSCD dataset contains 291 pairs of aerial images with a
resolution of 50 cm per pixel from the National Institute of Ge-
ographic and Forest Information’s BD ORTHO database. There
are six categories in the HRSCD dataset: artificial land, agri-
cultural areas, forests, wetlands, water, and no change category.
In the dataset, 99.232% of all pixels are labeled as no change
category, and 0.653% stands for agricultural areas and artificial
land, which brings extreme label imbalance. Considering the
expensive training and testing costs brought by the original
10 000× 10 000-pixel images, we cropped the original images to
512 × 512 pixels and chose images that focused on the changed
regions. We selected 5713 pairs of images as the training set and
2854 pairs as the test set.

SECOND [28] is another SCD dataset containing 4662 pairs
of aerial images with each image size 512 × 512. There are
seven categories in the SECOND dataset: nonvegetated ground
surface, tree, low vegetation, water, buildings, playgrounds,
and nonchange category. 61.2% of all pixels correspond to
the nonchange category, 29.9% stands for nonvegetated ground
surface, while the remaining classes lower than 5%. Limited by
open-source availability, we randomly split the original public
training set into new training and testing sets with a ratio of 4:1,
corresponding to 2374 and 594 pairs, respectively. Overall ac-
curacy (OA), mean intersection over union (mIOU), and Kappa
coefficient are adopted as SCD evaluation metrics.

The definition and the formula of the evaluation metrics are
shown in Table I, where TP, FP, TN, and FN denote the number of
true positives, false positives, true negatives, and false negatives,
respectively. po corresponds to observed agreement between
ground truth and predictions, and pe is the expected agreement
between ground truth and predictions.

B. Implementation Details

We implemented the proposed SSESN on the Pytorch frame-
work and conducted all the experiments on two Nvidia Titan

RTX GPUs. We augmented the data using random flips and ro-
tations. The optimization process used the Adam optimizer [44],
and the batch size was set to 16. The training process contained
50 epochs in total with an initial learning rate of 0.001. The
learning rate decays by 0.1 at the epoch of 20. In addition,
the weight decay and momentum were set to 0.0001 and 0.9,
respectively. As for parameters in the loss function, we set γ
to 2. For the balanced weight, we set αj to 0.2 if class j occupies
more than 50% pixels, 2.0 if less than 5% pixels, and 1.0 if in
between.

C. Comparison and Analysis

For the BCD task, we selected several representative deep-
learning-based methods for comparison. FC-EF, FC-Siam-conc,
and FC-Siam-diff [20] integrate the UNet [33] structure and
develop a baseline model for change detection based on the
Siamese network structure. Similarly, FCN-PP [45] utilizes
a U-shaped network structure and introduces pyramid pool-
ing to enlarge the receptive field to overcome the limitations
of traditional global pooling. The variants of UNet structure,
i.e., UNet ++ [37], was also introduced into change de-
tection. UNet++ _ MSOF [46] inputs image pairs into the
UNet++ backbone network and uses multiside output fu-
sion for hierarchical supervision. SNUNet-CD [47] integrates
the Siamese network, UNet++, and channel attention mech-
anisms. The dense skip connection reduces the uncertainty
of the edge pixels of the changed regions. DASNet [24] ap-
plies the spatial and channel attention mechanisms to de-
scribe local features of the changed regions and recognize the
pseudo-changes.

As shown in Table II, our method achieved state-of-the-art
performance on the CDD dataset. More precisely, the F1 score
of our method reached 0.967, matching the best result from
SNUNet-CD but with a higher precision rate of 0.973. In order
to evaluate and compare more intuitively, we visualized the
experimental results, as shown in Fig. 4.

Fig. 4 shows three pairs of representative images divided into
three rows to comprehensively display the change detection re-
sults in different scenarios. The first row shows our model’s accu-
rate recognition of complex road network changes; our method
yielded the most coherent lines. The color and background in
the image pairs in the second row varied greatly, and our method
successfully captured the changed vehicles and roads. The third
row of images shows typical architectural changes in change
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Fig. 6. Ablation results on the HRSCD dataset.

detection. Our method retained most of the changed details in
the extraction of building contours.

For the SCD task, we used FC-EF, FC-Siam-conc, and FC-
Siam-diff [20] as baseline models by changing output category

numbers. The fourth strategy proposed in [7] explores the com-
bination of SCD and BCD based on the U-shaped structure: the
encoder of the semantic branch is merged with the decoder of the
binary branch through skip connections and finally obtains the
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BCD and SCD maps from the change and semantic branches,
respectively. This method is denoted by HRSCD.str4 for short.

The quantitative results in Table III show that our method
achieved the best performance on both the HRSCD and SEC-
OND datasets. Our approach gets the highest OA (0.919, 0,890),
mIOU (0.643, 0.708), and Kappa coefficient (0.756, 0.311) on
the two datasets. Taking the method HRSCD.str4 as an example,
although HRSCD.str4 combines BCD and SCD, the results show
that this combination was suboptimal, with mIOU scores of
0.610 and 0.672, and Kappa coefficient values of 0.719 and
0.294. Our method exceeds the performance of HRSCD.str4 by
5.4% on the mIOU metric and 5.8% on the Kappa metric. Sim-
ilarly, we have a more intuitive visual comparison and analysis
of the results on the HRSCD dataset in Fig. 5.

We selected four bitemporal image pairs containing the most
comprehensive semantic change categories as representative in
Fig. 5. Image-pair1 and Image-pair2 focus on comparing the ac-
curacy of changed regions, while Image-pair3 and Image-pair4
perform comprehensive comparisons of changed regions and
semantic categories. Compared with other methods, the SSESN
best identified changed regions and categories. More specifi-
cally, Image-pair2 shows large-scale changes between water and
agricultural areas. Only SSESN correctly predicted the changed
regions and categories; all other methods failed. In addition,
other image pairs reflect small-scale changes between artificial
surfaces and agricultural areas. Owing to the interference of
some details (such as trees in agricultural areas), the prediction
results generally contained noise. Although small-scale changes
were more susceptible to effects such as being misidentified as
noise, the SSESN reliably provided more accurate contour de-
tails. Benefiting from more effective aggregation and extraction
of semantic information, the SSESN determined more accurate
semantic categories in all image pairs.

D. Ablation Study

In order to further validate the effectiveness of the proposed
SSFA and CA, we performed an ablation study on the HRSCD
and CDD datasets. Without changing the experimental param-
eter settings, SSFA and CA were added to the baseline model
to perform the ablation study. The baseline model corresponds
to the method without SSFA and CA modules. As shown in
Table IV, on the HRSCD dataset, adding SSFA increased the
mIOU by 7.9% and the Kappa coefficient by 3.9%; adding
CA increased the mIOU and the Kappa coefficient by 8.9%
and 5.7%, respectively. The complete SSESN model exceeds
the baseline model by 12.8% on the mIOU score and 8.6% on
the Kappa score. Results on the CDD dataset reveal a similar
conclusion. Compared with the baseline model, the complete
SSESN model has better performance on P, R, and F1 scores
with the improvement of 5.0%, 5.1%, and 5.1%, respectively.
In summary, SSFA and CA improved the model performance of
our method for BCD and SCD tasks, and the quantitative results
confirmed the effectiveness of our proposed modules.

In addition, Fig. 6 shows the visualization results of the abla-
tion study. With CA existed alone, the model extracted the cor-
rect change region from the three image pairs. However, the lack

of semantic aggregation information in SSFA led to the model
producing errors in change category prediction (Image-pair2).
With SSFA presented only, the model produced incorrect results
when predicting the changed regions. Therefore, semantic and
spatial information fused by SSFA cannot be appropriately de-
coupled. The visualization results further demonstrate the value
of the proposed SSFA and CA structures.

V. CONCLUSION

In this article, we propose an end-to-end SSESN for the
SCD of VHR images called SSESN. The SSESN retains and
integrates rich spatial and semantic information simultaneously
and gives more accurate predictions of changed regions and se-
mantic categories through our designed SSFA and CA modules.
Experimental results show that the proposed model achieves
competitive results with the existing state-of-the-art methods on
the CDD and HRSCD datasets. In the future, we will further
explore the fusion of spectral information for SCD and develop
a method suitable for hyperspectral SCD.
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