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CGC-NET: Aircraft Detection in Remote Sensing
Images Based on Lightweight Convolutional

Neural Network
Ting Wang , Xiaodong Zeng, Changqing Cao, Wei Li, Zhejun Feng, Jin Wu , Xu Yan, and Zengyan Wu

Abstract—In the past few years, aircraft detection in remote
sensing (RS) images has been an important research hotspot, and
it is very crucial in plenty of military applications. Based on the
high computational cost of the model and numerous parameters,
deep convolution neural networks-based algorithms have excellent
performance in the aircraft detection task. However, it is still
difficult to detect aircraft due to the complex background of RS
images, various types of aircraft, and so on. In addition, it is difficult
and costly to make labels for satellite-based optical RS images.
Consequently, we propose an end-to-end lightweight aircraft de-
tection framework called CGC-NET (a network based on circle
grayscale characteristics), which can accurately detect aircraft with
a few training samples. There are only a small number of trainable
parameters in CGC-NET, which greatly reduces the need for large
datasets. Extensive evaluations indicate the excellent performance
of CGC-NET, in which the F-score can reach 91.06% and the model
size is only 0.88 M. Therefore, CGC-NET can be used to accurately
detect aircraft targets simply and effectively.

Index Terms—Circle frequency filter (CFF), deep learning
framework, few-shot learning, lightweight convolutional neural
network (CNN), small samples.

I. INTRODUCTION

W ITH the rapid development of remote sensing (RS)
technology and the ever-increasing of spatial resolution

of RS images, the number of RS images has exploded. Object
detection is of increasing interest to researchers as it can provide
valuable information for a high-level semantic understanding of
RS images. Aircraft detection in RS images is one of the main
tasks of object detection, and it is widely used in various fields.
It is helpful for airline supervision, scheduling airport flights,
etc. Especially in the military field, it is of great importance to
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the estimation of the battlefield situation and the formulation of
military decisions.

The past few decades have witnessed the development of
aircraft detection algorithms. In the light of the feature extractor
used, aircraft detection algorithms in RS images can be divided
into traditional methods and CNN-based methods [1]. Tradi-
tional methods include Viola–Jones detector [2], Histogram of
Gradients (HOG) [3]+ support vector machines (SVM) [4], etc.
These methods usually use a sliding window to select the region
of interest (ROI). Extract hand-crafted features from the ROI,
and then use machine learning algorithms to classify them.

CNN-based methods use CNN to extract deep features, which
can capture more local and global information. Deep CNN has
made significant progress in aircraft detection with its powerful
learning capabilities [5]–[8].

The poor robustness of hand-crafted features has led to tra-
ditional methods being less capable of detecting aircraft in
complex scenes. The CNN-based method also faces two chal-
lenges in aircraft detection. First, the performance of CNN-based
methods will be limited, in the case of relatively small samples.
Second, most of the available CNN-based models are resource-
hungry, and the detection performance is improved by increasing
the width, depth, and resolution of the network. Therefore, a
lightweight network based on few-shot learning [9] should be
proposed to address the above problems.

Cai and Su propose an unsupervised circle frequency filter
(CFF) algorithm [10] to detect aircraft. The CFF algorithm first
calculates the amplitude value of each pixel according to (2)
and then sets a fixed threshold to filter out the pixels below the
threshold. Finally, the candidate pixels are clustered to get the
detection result. The algorithm can obtain good aircraft detection
results without any training samples.

When the CFF algorithm is used to detect aircraft on our
dataset, two problems emerged: many false alarms and inaccu-
rate localization. Therefore, we combine the powerful feature
extraction capabilities of CNN-based methods with the simplic-
ity and ability of traditional methods to detect targets with small
samples to solve these two problems. As a result, a lightweight
aircraft detection algorithm named CGC-NET is provided. The
proposed method uses amplitude filtering to select candidate
pixels of interest. CGC-NET has a powerful feature extraction
and representation capability, which can remove a lot of false
alarms and improve the localization accuracy of the center of
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the aircraft. Hence, the proposed method can produce excellent
detection results.

Evaluation results of CGC-NET show that the F-score can
reach 91.06% and the model size is only 0.88 M. It can be seen
that CGC-NET obtains better results than CornerNet and Faster
R-CNN with a small training set.

The crucial contributions of this article are presented as fol-
lows.

1) We develop a lightweight end-to-end framework to extract
the gray value features on the circumferential, which in-
creases the robustness of the features. The experimental
results demonstrate the effectiveness of this framework.

2) CGC-NET only uses CNN to obtain a part of the features
of the input image. Thus, it considerably reduces trainable
parameters and improves the inference speed while almost
not losing detection accuracy.

3) CGC-NET only needs a small number of samples to
train, which greatly reduces the manual annotation of the
dataset.

4) The proposed method is pixel-level, which is capable of
locating the center of the aircraft with high accuracy,
especially for small targets.

The rest of this article is organized as follows. Section II
outlines some works on aircraft detection. The theoretical back-
ground of CGC-NET is illustrated in Section III. Section IV
presents the details of CGC-NET framework and illustrates its
implementation in Section V. Finally, Section VI concludes this
articles.

II. RELATED WORKS

Aircraft detection has been extensively studied for decades.
This section will briefly review some works associated with
object detection and aircraft detection. Most of these object
detection methods can also be used to detect aircraft objects
only.

Based on the development process of the object detection
algorithms, they can be classified into traditional algorithms and
deep CNN-based algorithms. Most traditional object detection
algorithms use hand-crafted rules to extract features [11], while
deep CNN-based algorithms adopt CNN.

A. Traditional Object Detection Algorithms

Early object detection methods are mainly based on template
matching [12], [13], which can only detect objects with relatively
simple spatial location relationships.

The subsequent object detection methods are principally
based on the geometric representation and the statistical clas-
sification of appearance features, such as NN [14], SVM [4],
Adaboost [2].

Thereafter, a large number of local feature descriptors for
object detection have emerged, such as Haar-like features [15],
LBP [16], SURF [17], SIFT [18], and HOG [3]. Subsequently, a
great deal of effort is devoted to exploring approaches to group
descriptors into higher level representations in object detection,
such as spatial pyramid matching [19], Bag of Words [20], and
Fisher Vector [21].

Deformable part-based model [22] is the pinnacle of the
traditional object detection and the championship of the Pascal
VOC 2007-2009 challenge [23]. This method is a component-
based detection method, which has strong robustness to the
deformation of the object and has become the core part of many
machine vision algorithms.

Although traditional methods have achieved good detection
results, they are often more complicated in design and unable to
extract high-level deep features of the image, which limits the
accuracy and speed of detection.

B. Deep CNN-Based Object Detection Algorithms

Compared to traditional methods, deep CNN-based algo-
rithms have powerful feature representation capabilities [24],
to reach state-of-the-art detection accuracy.

In 2012, AlexNet [25] demonstrated tremendous success in
image classification. Subsequently, researchers used deep CNNs
for object detection, yielding the classical R-CNN [26] model.
This method generates a large number of region proposals on the
input image. SVM classifies the features extracted by the CNN
so that the class to which the feature belongs can be determined.
Boundary regression is used to obtain the exact region where the
object is located. R-CNN [26] outperforms traditional methods
significantly, creating an era of object detection.

YOLO [27] eliminates the step of generating candidate re-
gions and performs regression and classification directly on
the original image. Although it sacrifices a certain accuracy,
it greatly speeds up the inference process.

The two methods above belong to two major branches of
object detection: two-stage and one-stage methods. The biggest
difference is whether the candidate regions are generated or
not. The representation of the two-stage method is R-CNN [26]
series, involving Fast R-CNN [28], Faster R-CNN [29], Mask
R-CNN [30], R-FCN [31], Cascade R-CNN [32], etc. The one-
stage method is represented by the YOLO [27] series (YOLO
v2 [33], YOLOv3 [34], YOLOv4 [35], etc.) and SSD [36]
series (SSD [36], DSSD [37], etc.), consisting of FCOS [38],
CornerNet [39], CenterNet [40], RefineDet [41], ExtremeNet
[42], EfficientDet [43], etc.

Faster R-CNN [29] uses a Region Proposal Network to gener-
ate region proposals, which enormously saves inference time. It
is an end-to-end network that can meet real-time requirements.
At the moment, Faster R-CNN [29] is still an essential branch
of object detection methods.

YOLOv3 [34] has some incremental improvements on YOLO
[27] and YOLO 9000 [33], and its processing speed has been
considerably improved. It takes only 22 ms to process an image
[34]. For small objects, YOLOv3 [34] integrates multiscale
information, resulting in superior detection accuracy.

RefineDet [41] consists of two interconnected modules that
imitate the structural design of the two-stage detection model,
but it belongs to the one-stage method. It incorporates the
advantages of Faster R-CNN [29] and SSD [36] while achieving
higher accuracy and speed.

CornerNet [39] is a new one-stage object detection method.
It converts object detection into the detection of a pair of
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key points. The backbone used for feature representation is fol-
lowed by two prediction modules, one for predicting the top-left
corner and the other for the bottom-right corner. Grouping all the
prediction points yields the bounding boxes of all the objects.
This method greatly simplifies the output of the network and
eliminates the anchor boxes.

EfficientNet [44] uses a composite scale expansion method
to simultaneously scale all backbone, feature networks, and
box/class prediction networks with the uniform resolution,
depth, and width. The backbone of EfficientDet [43] is Efficient-
Net [44] with the addition of a simple and effective weighted
bidirectional feature pyramid network as its neck. On several
datasets, EfficientDet emerges as the state-of-the-art approach
with fewer parameters and higher inference speed.

He et al. [45] propose a lightweight network (DABNet) to
perform cloud detection. The network has only 4.12 M param-
eters and 8.29 G multiadds. The detection accuracy of DABNet
[45] is high, its detection boundary is extremely clear and the
false alarm rate is quite low. It proposes a deformable contextual
feature pyramid module that can improve the multiscale feature
representation capability. DABNet [45] achieves state-of-the-art
performance in cloud detection.

Most of the above object detection frameworks can be used for
aircraft detection and achieve excellent detection results. How-
ever, most of these networks have a huge number of parameters
and require large labeled datasets to be trained to obtain decent
detection performance.

C. Aircraft Detection Algorithm in RS Image

Aircraft detection from RS images with complicated back-
grounds is a challenging task. In the field of object detection,
deep CNN has achieved a remarkable breakthrough. Therefore,
in recent years, researchers have focused on deep CNN-based
aircraft detection [5], [46], [47].

OE-FCN [48] is an end-to-end network for addressing the
intraclass variance of aircraft in RS images. It brings in an online
exemplar mining mechanism in the CNN and adopts exemplars
to characterize the distinct intraclass features of the aircraft. As
a result, accurate and fast aircraft detection is achieved.

Concerning very high-resolution RS images, Zhang et al.
[49] propose a weakly supervised aircraft detection algorithm.
The model can simultaneously extract proposals and locate
aircraft with only an image-level training dataset. This weakly
supervised framework can alleviate the cost of human annotation
without degrading detection accuracy.

X-LineNet is a novel model [50] that has been used to detect
aircraft in RS images. It transforms aircraft detection into the
detection and clustering of a pair of intersecting lines, so that
richer information can be learned. Among the one-stage aircraft
detection algorithms, X-LineNet is state-of-the-art and has con-
siderable detection accuracy with advanced two-stage detectors.

III. THEORETICAL ANALYSIS

In general, the aircraft can be distinguished based on the
grayscale, texture, shape, and pattern of the RS images. Most
aircraft are similar in shape, consisting of a fuselage and

Fig. 1. (a) Intersection of the aircraft fuselage and the wingspan is approxi-
mated as a rectangle. (b) Circle on the aircraft, the size of the original image is
1024 × 958. The center of the circle is the center of the rectangle in (a), and the
radius of the circle is 220 pixels. (c) Gray value curve of 72 pixels on the circle.

two wings. The connecting part of the aircraft fuselage and
wingspan can be approximated as a rectangle, which is shown
in Fig. 1(a). It is assumed that the centroid of the rectangle
in Fig. 1(a) is the center of the aircraft. It is then considered
to be the center of a certain circle shown in Fig. 1(b). The
diameter of this circle is greater than the length and width of
the rectangle while being smaller than the length of the fuselage
and wingspan of the aircraft. Seventy-two pixels are uniformly
extracted clockwise from this circle, and its gray value curve
is shown in Fig. 1(c). These gray values exhibit a particular
characteristic of 4–5 peaks and 4—5 troughs [10], named the
circle grayscale (CG) characteristic. The number of peaks and
troughs depends on the position and direction of the aircraft. A
circle does not have the CG characteristic if its center is not on
the center of the aircraft. Accordingly, aircraft can be detected
from complex and cluttered backgrounds depending on whether
the circle has this unique characteristic.

Fourier principle shows that: any sequence or signal of contin-
uous measurement can be expressed as an infinite superposition
of sine wave signals of different frequencies. Sine has a unique
property—fidelity, which is not shared by the original signal. In
other words, if a sine signal is an input, the output is also a sine
signal. During this process, only the amplitude and phase may
change, the frequency and waveform remain the same. Hence,
we substitute the original signal with sine and cosine signals,
which is helpful for the computer to process the original signal
more simply.

It is supposed that one-dimension array pk (k = 0, 1, 2, …,
N − 1) is the gray value of the pixels uniformly extracted
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clockwise on the circle centered at (i, j), and R is the radius of
this circle. The discrete Fourier transform (DFT) of the original
signal pk is as follows:

P =

N−1∑
k=0

pke
−j 2π

N kn(k = 0, 1, 2 . . . N − 1). (1)

With the help of Euler’s formula, the DFT formula in ex-
ponential form is converted to the Cartesian coordinate system.
The Fourier transformed array is squared to obtain the amplitude
value. The larger the amplitude value, the more likely it is that
the circle area is an aircraft

Amplitude =

(
N−1∑
k=0

pk cos
2π

N
kn

)2

+

(
N−1∑
k=0

pk sin
2π

N
kn

)2

.

(2)
Here, n is the period of the sine and cosine functions in (2).
In RS images, the viewpoint is usually from the sky down to

the ground [51]. Therefore, the aircraft is lying on the image,
which makes them rich and diverse in detection. This will bring
some difficulty to aircraft detection. However, CGC-NET has
rotation invariance [52]. As shown in Fig. 2, the circle centered
on the center of the aircraft still has the CG characteristic after
the image is rotated by different angles. CGC-NET detects the
aircraft based on the CG characteristic and therefore it has
rotation invariance [52]. Thus, the complexity of the proposed
method is greatly decreased, and the number of samples to be
learned is reduced.

According to the statistical results, the original signal has
about four periods. Therefore, based on the Fourier transform
principle, set n in (1) and (2) to 4. A circle centered on the center
of the aircraft has a large amplitude, while a circle not centered on
the aircraft has a small amplitude. As the amplitude is the square
of the result acquired from the DFT, the amplitudes for circles
of the aircraft centers and nonaircraft centers vary significantly.
Then, we can set a threshold in accordance with this property to
filter out a portion of the input data, which is called amplitude
filtering. Therefore, amplitude filtering will greatly reduce the
amount of input data for the following networks.

IV. FRAMEWORK IMPLEMENTATION

The flowchart of CGC-NET is depicted in Fig. 3. CGC-NET
consists of three portions: amplitude filtering, detection
network training, and nonmaximum suppression (NMS) [53].
The detailed implementation of our method is illustrated in
Algorithm 1.

The first part is amplitude filtering. First, a black border is
added to the input image to ensure that the center of the aircraft
on the edge of the image can be fetched. Then, each pixel in
the image is used as the center of a circle with the radii of 3,
10, 17, and 35 (obtained by statistics when generating the data).
Ninety points are taken uniformly on each of the four circles, and
their grayscale values form a two-dimensional (2-D) array with
a size of 4 × 90. Before feeding the input data into CGC-NET,
the amplitude sum of the array is calculated according to (2)
and normalized to between 0 and 255. Setting the threshold to
80 so that pixels with amplitude less than the threshold can be

Fig. 2. Rotation invariance of CGC-NET. (a1) Aircraft image with black
borders. (a2), (a3) are the images of (a1) after rotating counterclockwise by
120° and 240°, respectively. (b) Take 90 points on a circle with the center of the
aircraft as the center, and the gray value changes regularly.

filtered out, thus allowing a significant reduction in the amount
of data. This threshold is based on extensive experiments and
ensures that no object is lost in the amplitude filtering phase.
The amplitude filtering is very fast to compute, thus there is no
necessity to design a network specifically to extract ROIs or pro-
posals, which saves time in the inference process. The remaining
data is normalized by subtracting the mean and dividing it by
the standard deviation. Normalization of the raw data can raise
the convergence speed and the performance of the model. At the
same time, it can prevent gradient explosion.

The second part is the detection framework. An end-to-end
lightweight model called CGC-NET is proposed for aircraft
detection. It just consists of three convolutional layers, two
pooling layers, one dropout layer, and one dense layer.

The first convolutional layer defines a feature detector so
that the network can only learn a feature. Since the length of
the input data is 90, we set the kernel size to 45 to extract as
many CG characteristics as possible. The learning capacity of 1
filter is very limited, so we define 75 filters. This results in 46
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Fig. 3. Block diagram of the proposed method. The layers “Conv1D” represent one-dimensional convolution.

Algorithm 1: CGC-NET.
Require: A network CGC-NET, a labeled aircraft
detection dataset Tr and test data Te.

Step 1: Amplitude filtering
1. Add a black border to each input image.
2. Take each pixel on the original image as the center and

take the circles with radii of 3, 10, 17 and 35.
3. Evenly take the gray values of 90 points on each circle

to form a 4 × 90 array.
4. Amplitude filtering: According to Eq. (2), the

amplitude is calculated for each array. Set an
appropriate threshold to filter out data whose
amplitude is lower than the threshold.

Step 2: Train the detection network
Repeat
5. Randomly select a batch from the remaining data after

amplitude filtering.
6. Optimize CGC-NET and update the network

parameters following Eq. (3).
Until convergence
Step 3: Process the detection results
7. Obtain the detection result on Te utilizing the trained

network CGC-NET.
8. NMS is used to filter out redundant bounding boxes

with lower scores.
9. Mark the final result on the original image with circles.

The radius of the circle is the one with the highest
amplitude among the four selected radii.

diverse features. The output is a 75×46 matrix with each column
containing a filter weight, and each filter contains 75 weights.

The output of the first layer is fed into the second layer. Similar
to the first layer, 75 filters with a kernel size of 30 are defined
on the second layer for training. The output is a matrix with a
size of 46 × 75.

To deprecate redundant information and simplify the network,
a MaxPooling layer of size 3 is added. As a consequence, the
amount of output data is decreased by two-thirds.

To learn higher level features, a 1-D CNN layer is chosen. Its
output matrix size is 6 × 150. To further apply dimensionality
reduction to the input data, an AveragePooling layer is deployed.
The output is a vector of length 150, which means that each
feature detector has one single weight.

The Dropout layer removes the neurons in the hidden layer
at random so that the fully connected network is sparsified to
some extent. This renders the network less sensitive to subtle
variations in the data, thereby boosting the detection accuracy
of unknown data. The output is still a vector of length 150.

The dense layer is activated by the Softmax function, which
will minimize the length of the vector to 2. The proposed
method converts aircraft detection into a binary classification
problem, so two categories, “aircraft” and “nonaircraft,” need
to be predicted. Hence, the output represents the probability of
each of the two classes happening.

CGC-NET uses Adam optimizer [54], which can be regarded
as a fusion of RMSprop [55] and stochastic gradient descent
[56] with momentum. It is a binary classifier, so binary cross-
entropy is employed as the loss to train the network. The loss is
as follows:

L = − 1

N

N∑
i=1

yi · log (p (yi)) + (1− yi) · log (1− p (yi))

(3)
where y is the label (1 for aircraft, 0 for nonaircraft) and p(yi)
is the predicted probability that the ith input data is aircraft.
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Fig. 4. (a) Multiple boxes on each target after direct classification and regres-
sion. (b) Result of (a) after the Soft-NMS algorithm suppresses the redundant
frame.

Fig. 5. Intersection over union.

The third part is NMS. As shown in Fig. 4(a), multiple boxes
are obtained on the same object after CGC-NET. In order to
keep only one optimal box on the same target, the Soft-NMS
algorithm [57] removes some redundant boxes during the test
period. The result of filtering out redundant data through the
NMS algorithm is exhibited in Fig. 4(b).

The process of Soft-NMS is as follows. First, the bounding
boxes with the highest scores are chosen. Subsequently, T is
taken as the IOU (intersection over union) threshold, and the
boxes with IOU greater than or equal to T are eliminated. Here,
the predicted circle is converted into its bounding rectangle
to calculate its IOU. The process of NMS ensures that the
bounding box with the maximum score is left so that the center
of the aircraft can be precisely located. As shown in Fig. 5,
IOU calculation is used to measure the overlap between two
proposals. Finally, the above processes are repeated among the
unprocessed boxes. In our experiments, T is set to 0.

The confidence score is as follows:

Si =

{
Si, IOU (M,Bi) < T
Si (1− IOU (M,Bi)) , IOU (M,Bi) ≥ T

(4)

where Bi is the ith bounding box, Si is the score of Bi, and M
is the box with the maximum score.

After the above process, mark the selected circle with the
highest score on the test image. Comparing the amplitude values
of the input data of 4 radii, the radius corresponding to the

Fig. 6. Label file of the image that we collected.

Fig. 7. (a) Grayscale values of the pixels on the circumference of the positive
sample. (b) Grayscale values of the pixels on the circumference of the negative
sample. (c) Feature map of (a) output by conv1d_3. (d) Feature map of (b) output
by conv1d_3.

maximum amplitude value is the radius of the circle. Thus, the
aircraft detection results are obtained.

V. EXPERIMENTS

A. Experimental Data and Evaluation

To evaluate CGC-NET, we have made a corresponding
dataset, which contains 419 RS images. There are a total of 2132
aircraft on the images. To further evaluate the generalization
ability of CGC-NET, RSOD [58] and UCAS_AOD [59] datasets
are used to test our method. RSOD dataset includes 4993 aircraft,
while UCAS_AOD dataset contains 7482 aircraft. The image
size in these two datasets is different. But there is no need to scale
the image to the same size. Because CGC-NET is applicable to
images of any size, and the image is not directly fed to the model.
The gray values on the circle are extracted pixel by pixel to form
a 2-D array with a size of 4 × 90, as shown in Fig. 7(a) and (b).
The size of the 2-D array is fixed and the 2-D array can be directly
fed to the model.

The aircraft is manually marked as (x, y, r) in our training
set, where (x, y) are the coordinates of the center of the circle
and r is its radius. Since most object detection algorithms use
the groundtruth box to represent the target. Therefore, in order
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TABLE I
SUMMARY OF CGC-NET

to compare the performance of CGC-NET with other methods,
the collected images are also manually marked as (xmin, ymin,
xmax, ymax) like RSOD and UCAS_AOD datasets. As shown
in Fig. 6, (xmin, ymin) is the coordinates of the top left corner,
and (xmax, ymax) is the coordinates of the bottom right corner.

Our self-made dataset is divided into two parts, about 40%
is the training set and 60% is the test set. The training set has
160 images containing 765 aircraft. Manual annotation of large
datasets is usually costly and unreliable. However, CGC-NET
only needs a small number of training samples to obtain pleas-
ant aircraft detection results, which just compensates for this
shortcoming.

To quantitatively measure the performance of CGC-NET, Pre-
cision, Accuracy, Recall, and F-score are employed as metrics.
The model size and inference time are used to evaluate the
efficiency of the proposed method, and generally the smaller
the better.

B. Implementation Details

The proposed model is implemented in Keras 2.3.1. The
operating system is Ubuntu 18.04. The hardware platform is
Intel(R) Xeon(R) CPU E5-2623 v4 @ 2.60GHz and NVIDIA
Corporation GP102GL [Quadro P6000] for accelerating model
training. The preset training parameters are as follows: the
learning rate is 0.001, and the training epoch is 20.

The summary of CGC-NET is listed in Table I. The summary
contains the layers and their order in the model, the output shape
of each layer, and the parameters of the model.

Some intermediate visual results are given in Fig. 7 to know
if CGC-NET can learn CG characteristics. (a) and (b) are the
grayscale values of the pixels on the circumference of the
positive and negative samples, respectively. Both positive and
negative samples are arrays of 4∗90. Positive samples have at
least one of the four rows of the array with CG characteristics.
While the negative sample is haphazard and does not have CG
characteristics. (c) and (d) are the (a) and (b) feature maps output
from Conv1d_3, respectively. It can be seen that the feature maps
of the positive and negative samples are easier to distinguish than
the original images.

TABLE II
COMPARISON OF DETECTION PERFORMANCE OF DIFFERENT AIRCRAFT

DETECTION ALGORITHMS

C. Comparison With State-of-the-Art and Classic Methods

1) Quantitative Analysis: To compare the performance of
CGC-NET with the classic method Faster R-CNN [29], it is
retrained on our training set. Its backbone is VGG16 that pre-
trained on the Imagenet [60] dataset, which is a natural scene
dataset containing 1.2 million images. We finetune the Faster
R-CNN with the training set. The maximum number of iterations
is 2000 to ensure that there is no overfitting.

CornerNet [39] is a one-stage detector with high detec-
tion accuracy. It does not need to generate anchor boxes,
which greatly reduces the computational complexity. To use
CornerNet-squeeze [61] on our dataset, the model pretrained
with 500k iterations on the COCO dataset [62] is trained on our
training set.

Table II shows the performance of CGC-NET and other state-
of-the-art methods on our dataset. CGC-NET has a significant
advantage over other models in detection performance. Without
pretraining on any other dataset, our method can yield a 91.06%
F-score, which is much higher than Faster R-CNN, CornerNet-
squeeze, EfficientDet, and CFF. Meanwhile, the number of
parameters of the proposed method is about 1/622 of Faster
R-CNN, about 1/145 of CornerNet-squeeze, and about 1/236
of EfficientDet. The existing aircraft detection methods usually
employ multiple convolutional layers in the backbone for feature
representation of the whole image, so the computational cost
is generally large and the accuracy is high. Our method uses
only three 1-D convolutional layers to extract partial features of
the image, which can keep the computational cost very small
without degrading the detection accuracy. This ensures that the
overall structure of CGC-NET is lightweight.

The UCAS-AOD [59] is divided into two parts, where 800
images are considered as the training set and the other 200 as
the test set. With each aircraft as the crop center, each image is
cropped into three different sizes. In this way, the training set
contains more than 15000 images. CornerNet and X-LineNet
are trained on this training set, and the results on the test set
are shown in Table III. CGC-NET is trained only on our small
self-made training set which contains 765 aircraft and tested
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TABLE III
COMPARISON OF THE AVERAGE PRECISION OF DIFFERENT AIRCRAFT

DETECTION METHODS ON THE UCAS-AOD DATASET

TABLE IV
COMPARISON OF THE INFERENCE TIME (S) OF DIFFERENT AIRCRAFT

DETECTION METHODS

on the entire UCAS-AOD dataset [59] to obtain the results in
Table III.

As shown in Table III, the average precision of CGC-NET
is higher than CornerNet [39] and lower than X-LineNet [50].
However, the average precision of the proposed method is the
detection result on the whole UCAS-AOD dataset. As a result,
CFF-NET has a competitive average precision compared to
X-LineNet. The size of X-LineNet [50] is much larger than
CGC-NET. The model size of X-LineNet [50] is 745 M for
backbone 104-hourglass, 207 M for backbone ResNet-101, and
98 M for backbone DLA-34.

The inference time can be used to evaluate the complexity
of the model. The smaller the parameters and calculations, the
more efficient the models are and the shorter the inference time
[45]. In Table IV, the inference times of these methods are also
evaluated. The inference times are calculated for images of sizes
305 × 296, 1280 × 659, and 1044 × 915, respectively. It can
be found that for small images, the inference time of CGC-NET
is much lower than that of Faster R-CNN but larger than that
of CornerNet-squeeze and CFF. However, for large images, the
inference time of CGC-NET is comparable to or even smaller
than that of CornerNet-squeeze. This may be due to the fact that
most of the area in an RS image is the background and the area
of the aircraft is only a tiny part. Most of the data are filtered
out in the preprocessing stage of the proposed method, so the
inference time decreases.

Among these methods, CGC-NET has the smallest number
of parameters and calculations. Since the input data are prepro-
cessed in the proposed method, the inference time is a little large.
In the subsequent study, we will optimize the preprocessing
part of the proposed method and the structure of CGC-NET to
diminish the inference time and enhance the detection accuracy.

2) Qualitative Analysis: Fig. 8 illustrates a comparison of
the detection results of the various methods on our dataset. The
detection results of some representative images are selected,
containing images with weak targets, small targets, multiple tar-
gets, and complex and cluttered backgrounds. The comparison
reveals that the detection performance of the proposed method
is better and relatively more targets are correctly detected. The
proposed method and CornerNet-squeeze are comparable in the
ability to accurately locate targets, and both are better than
Faster R-CNN. There may be two reasons why the detection
performance of CornerNet-squeeze is lower than the proposed
method. First, CornerNet-squeeze is pretrained on the COCO
dataset [62], but COCO [62] is a natural scene dataset and
does not contain RS images. Second, our RS image training
set contains a small number of images and only one category,
which is not enough to exploit the powerful learning ability
of CornerNet-squeeze and may cause overfitting. Meanwhile,
compared with Faster R-CNN and CornerNet-squeeze, CGC-
NET has a lightweight structure with only 2.3 M parameters.
CGC-NET is only trained on our self-made dataset, but the
detection accuracy on UCAS_AOD [62] and RSOD [58] is still
high. Therefore, CGC-NET has good generalization ability.

In summary, CGC-NET has a strong detection performance.

D. Experimental Results and Discussion

There are 13842 aircraft in the test set, of which 13753 aircraft
can be detected with the proposed method. Among them, 12564
aircraft can be successfully detected, indicated as TP. There are
1189 nonaircraft targets marked as aircraft by CGC-NET and
1278 aircraft unmarked. As a consequence, FP equals 1189 and
TN equals 0.

Table II is a quantitative comparison of different detection
methods. For the four methods, the greater the Precision, Ac-
curacy, Recall, and F-score, the smaller the Missing Alarm
and False Alarm, the better the detection results. The F-score
of CGC-NET is much larger than CFF, Faster R-CNN, and
CornerNet-squeeze, which shows that CGC-NET has good de-
tection performance and noise suppression ability.

The results in Table II show that CGC-NET achieves better
performance than CFF, Faster R-CNN, and CornerNet-squeeze.
More specifically, the F-score of CGC-NET is 15.46% higher
than CFF, 11.18% higher than Faster R-CNN, 12.54% higher
than CornerNet-squeeze, and 3.39% higher than EfficientDet.
The model size of Faster R-CNN is 547.254 M [63], which
is approximately 622 times of CGC-NET. The model size of
CornerNet-squeeze is 128 M [64], which is approximately 145
times of CGC-NET.

The proposed method still has good detection performance in
some complex scenarios, but there are still some noticeable mis-
classifications, especially in regions that also have obvious CG
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Fig. 8. (a1)–(d1) are the detection result of CGC-NET. (a2)–(d2) are the detection result of Faster R-CNN. (a3)–(d3) are the detection result of CornerNet.

characteristics. Subsequently, we will optimize the algorithm
in three aspects of preprocessing, model structure, and post-
processing to further enhance the performance of the proposed
method.

VI. CONCLUSION

An end-to-end lightweight CNN framework is proposed in
this article for detecting aircraft targets in RS images with a few
samples. During the training process, only a few parameters need
to be learned. Theoretical proof and experiments have been pro-
vided to show that CGC-NET is effective. Experimental results

show that the F-score of CGC-NET is 11.18% higher than that
of Faster R-CNN and 12.54% higher than CornerNet-squeeze.
There are 13842 aircraft in the test set, and 12564 aircraft can
be correctly detected with CGC-NET, accounting for 90.77% of
the test set. At the same time, the model size of CGC-NET is
only 1/622 of Faster R-CNN and 1/145 of CornerNet-squeeze.

REFERENCES

[1] J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the evalu-
ation and design of photonic devices,” Nature Rev. Mater., vol. 6, no. 8.
pp. 679–700, 2021.



2814 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[2] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Apr. 2001, pp. 511–518.

[3] N. Dalal and B. Triggs, “Histograms of oriented gradients for human de-
tection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
Jun. 2005, pp. 886–893.

[4] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines: An
application to face detection,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., Jun. 1997, pp. 130–136.

[5] H. Wu, H. Zhang, J. Zhang, and F. Xu, “Fast aircraft detection in satellite
images based on convolutional neural networks,” in Proc. Int. Conf. Image
Process., Sep. 2015, pp. 4210–4214.

[6] Q. Wu et al., “Improved mask R-CNN for aircraft detection in remote
sensing images,” Sensors, vol. 21, no. 8, pp. 1–13, 2021.
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