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Abstract—Detection of small sea vessels in synthetic aperture
radar (SAR) images has received much attention in recent years
because the small vessels have weak scattering intensity and few
image pixels. The existing detection network structures are not well
adapted to small-scale targets, the polarimetric data are not prop-
erly utilized, and the sea–land segmentation process to remove land
false alarms is time-consuming. Regarding these problems, first, a
single low-level path aggregation network is designed specifically
for small targets. The structure reduces false alarms at the feature
level by finding suitable single-scale feature maps for detection and
adding a semantic enhancement module. Second, adaptive dual-
polarimetric feature fusion is proposed to filter the multichannel
features acquired by dual-polarimetric decomposition to reduce
feature redundancy. Third, a segmentation layer is added to the
network to shield the land from false alarms. The detection and
segmentation layers share the feature extraction and feature fusion
modules and are jointly trained by a joint loss. Finally, polarimetric
SAR detection and segmentation dataset containing small vessel
detection and sea–land segmentation labels is created with refer-
ence to the LS-SSDDv1.0 dataset, and experimental results on this
dataset verify the improvement of this proposed method over other
typical methods.

Index Terms—Feature fusion, polarimetric synthetic aperture
radar (SAR), sea–land segmentation, small vessel detection.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has an all-day, all-
weather observation and morphological detection capabil-

ity, allowing continuous monitoring of the ocean over long

Manuscript received January 1, 2022; revised February 18, 2022; accepted
March 8, 2022. Date of publication March 15, 2022; date of current version
April 4, 2022. This work was supported in part by the National Natural Science
Foundation of China under Grant 62171016 and Grant 61871413, and in part
by the Fundamental Research Funds for the Central Universities under Grant
buctrc202001. (Corresponding author: Fei Ma.)

Yongsheng Zhou, Feixiang Zhang, and Fei Ma are with the College
of Information Science and Technology, Beijing University of Chemi-
cal Technology, Beijing 100029, China (e-mail: zhyosh@mail.buct.edu.cn;
2019200710@mail.buct.edu.cn; mafei@mail.buct.edu.cn).

Deliang Xiang is with the Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China, and also with the Interdisciplinary Research Center for Artificial
Intelligence, Beijing University of Chemical Technology, Beijing 100029, China
(e-mail: xiangdeliang@gmail.com).

Fan Zhang is with the College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing 100029, China, and
also with the Interdisciplinary Research Center for Artificial Intelligence,
Beijing University of Chemical Technology, Beijing 100029, China (e-mail:
zhangf@mail.buct.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2022.3158807

periods of time without interference from clouds, fog, etc. [1]–
[3]. With the continuous development of SAR sensors (such
as Sentinel-1, Gaofen-3, Radarsat-2, etc.) and the increase of
publicly available datasets [4]–[8], a vast amount of researches
focus on the detection of sea vessels using SAR images [9]–[14].

One of the most commonly used methods for vessel detection
in SAR images is the constant false alarm rate (CFAR) [15]–[20].
CFAR is based on the statistical distribution of clutter and cal-
culates a threshold while maintaining a certain false alarm rate.
CFAR is widely used and easily integrated with methods such
as superpixels [21]. However, the calculation of the threshold
value is usually affected due to the complexity of the background
clutter. For polarimetric SAR image, some methods based on po-
larimetric decomposition have been proposed, and they exploit
the difference in polarimetric scattering characteristics between
the vessel target and the background clutter [22]–[25]. The
polarimetric decomposition is used to find the polarimetric fea-
tures that have a strong differentiation between background and
vessels to complete the detection. The existing vessel detection
methods are mostly based on scene-specific statistical properties
and are not robust enough in complex scenarios that consist of
land or strong sea clutter.

With the recent advancement in convolutional neural network
(CNN), many CNN-based detection algorithms have been devel-
oped and have achieved better results in various scenarios. They
can be generally divided into two broad categories: two-stage
and one-stage detection algorithm. The two-stage detection
algorithm, as its name suggests, consists of two steps. First,
a coarse extraction of the detection boxes is performed using
RPN [26]. The extracted detection boxes are then mapped to
feature maps and fed into ROI Pooling [26] or ROI Align [27].
Second, the regression and classification of the detection boxes
are performed. The representative two-stage algorithms in-
clude faster R-CNN [26], cascade R-CNN [28], double-head
R-CNN [29], etc. The one-stage detection method performs
regression and classification directly, without crude extraction as
the first part; so it has an advantage in terms of time consumption.
The representative one-stage algorithms include YOLO [30],
SSD [31], RetinaNet [32], YOLOv4 [33], YOLOX [34], etc.

To adapt to multiscale targets in optical images, it is a common
practice to adopt the FPN [35] with multiscale structure. How-
ever, the size of small vessels in SAR images differs significantly
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Fig. 1. False alarms (green rectangular boxes are vessel targets, and yellow
oval boxes are false alarms). (a) False alarms for clutter. (b) False alarms for
strong scatterers on land.

from that of targets in natural optical images, and detection layers
with large sensory fields are not suitable for detecting small
vessel targets. In addition, the target in an optical image usually
occupies the main part of the image and has a large gap with
other classes of objects, which does not easily produce more
false alarms. In contrast, due to interference from strong land
scatterers and sea clutter, SAR amplitude image vessel detection
is prone to more false alarms, some of which are shown in Fig. 1.

In order to improve the detection accuracy of small vessel
in SAR image and reduce the corresponding false alarm, many
methods have been proposed from different aspects.

1) Some scholars have made improvements to the CNN-
based detection algorithms from the aspect of network
structure. Zhang et al. [36] design a separate feature map
stitching mechanism instead of FPN for feature fusion
to improve the fusion effect. Gao et al. [37] use a high-
resolution feature map with a downsampling count of 4
times as the detection layer to improve the detection recall
of small vessel targets in SAR images. Cui et al. [9] also
perform detection on a high-resolution feature map with
a downsampling count of 4 times. Considering that high-
resolution feature maps as detection layers tend to cause
more false alarms, the corresponding semantic enhance-
ment modules (SEMs) are added to reduce false alarms.
However, the focus on high-resolution feature maps tends
to overlook the most suitable feature map scales for small
vessel detection in SAR images. High-resolution feature
maps are more useful for identifying the texture and edges
of small vessel targets, but it is a fairly time-consuming
process and more likely to cause false alarms without a
proper SEM.

2) Some scholars have made improvements to the CNN-
based detection algorithms by introducing multipolari-
metric features. Most CNN-based detection methods use
amplitude images for training and prediction. Zhang
et al. [23] demonstrate through extensive experiments that
polarimetric decomposition for polarimetric data can well

distinguish small vessel targets from background clutter in
some scenarios. Fan et al. [38] use polarimetric informa-
tion to enhance small vessel targets to effectively mitigate
the problem of miss detection and false alarms for small
vessel targets. However, the polarimetric enhancement
process simply synthesizes pseudocolor images and does
not make full use of the polarimetric information from
multiple channels.

3) In order to effectively reduce false alarms caused by strong
scatterers on land, some scholars have introduced CNN-
based semantic segmentation into sea–land segmentation
of SAR images and achieved better results [39], [40]. Liu
et al. [41] use a cascaded method in which the segmented
result map is first overlaid onto the original image for
land masking, and then the masked image is fed into the
detection. This process suffers from two problems. On
the one hand, the two tasks of sea–land segmentation and
target detection are not end-to-end and require separate
training and inference, which is time-consuming. On the
other hand, the two tasks are intrinsically correlated, and
the global semantic information of the sea–land segmen-
tation cannot be fully utilized in the cascaded process to
optimize the vessel detection model.

In this article, first, a single low-level path aggregation net-
work (S-LPAN) structure is designed for the characteristics of
small vessel targets in SAR images. Considering the size of small
vessel targets and the resolution of SAR images, a large number
of downsampling times is likely to cause the loss of texture and
edges of small vessel targets. The S-LPAN utilizes the feature
map with fewer downsampling times for detection, and an SEM
is designed to enhance the global semantic information of this
part of the feature map. Second, considering that amplitude im-
ages contain less information, dual-polarimetric decomposition
is performed on the dual-polarimetric image and a mixture of
components is extracted to enhance small vessel targets with
polarimetric information. However, feeding all features into
the network is bound to have feature redundancy. Therefore,
ADPFF is designed to adaptively fuse all input features, and the
convolution kernel parameters of ADPFF are updated according
to backpropagation to obtain the most suitable fusion parameters
for small vessel detection. Third, the cascaded approach to re-
move land false alarms is time-consuming and does not take full
advantage of the global semantic information of sea–land seg-
mentation. Therefore, a segmentation layer is added by sharing
the feature extraction and feature fusion parts and implements
sea–land segmentation and target detection in one network.
A joint loss function is also designed to optimize the vessel
detection model by using the high-level semantic information
extracted from the sea–land segmentation and to optimize the
vessel detection model while reducing the land false alarms.

In all, the main contributions of this article are as follows.
1) Considering the differences between SAR images and

conventional optical images, the S-LPAN detector is de-
signed for the characteristics of small vessel targets in SAR
images.

2) The Sentinel-1 dual-polarimetric data are polarimetri-
cally decomposed to enhance the features of small vessel
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Fig. 2. Overall structure of the method proposed in this article.

targets, and the polarimetric, amplitude, and mixture
components are adaptively fused to extract features, dis-
carding redundant information and reducing miss detec-
tions and false alarms of small vessel targets.

3) The sea–land segmentation layer is added to the overall
network to share feature extraction and feature fusion.
Compared to the cascaded approach, this method not only
reduces time consumption but also utilizes the semantic
information from the sea–land segmentation to optimize
the small vessel detection.

The rest of this article is organized as follows. Section II
presents the proposed method. Section III verifies the proposed
method by comparing it with other methods. Finally, Section IV
concludes this article.

II. METHODOLOGY

The overall structure of the proposed method is shown in
Fig. 2, which consists of an adaptive dual-polarimetric feature
fusion (ADPFF) module, an S-LPAN with an SEM, and a mul-
titasking head for sea–land segmentation and vessel detection
with a dilate encoder (DE) module. In this section, the S-LPAN
structure with SEM designed for the difference between small
vessel targets in SAR images and optical images is first de-
scribed. It then details how ADPFF is used to fuse multichannel
polarimetric information for the enhancement of small vessel
targets. Finally, it describes how a joint loss function can be
designed to optimize the vessel detection model using sea–land
segmentation during training.

A. S-LPAN

The conventional feature extraction and feature fusion parts
are shown in Fig. 3. The commonly used feature extraction
networks include VGG [42], ResNet [43], Inception [44],

Fig. 3. Conventional feature fusion structure.

Fig. 4. Improved feature fusion structure for small vessels in SAR images.

DenseNet [45], etc. Some experiments have proved that CSP-
Darknet53 [33] performs better as a feature extraction module
in the detection task; so it is used for feature extraction in this
article. C2, C3, C4, and C5 are the feature maps extracted by the
feature extraction network, and the downsampling times under
the feature map scale are 4, 8, 16, and 32. The FPN part is the
top-down feature fusion. F3, F4, and F5 are the feature maps after
FPN, and the downsampling times are 8, 16, and 32. With the
proposed PAN [46] structure, most networks add the bottom-up
PAN structure to the FPN to obtain the P3, P4, and P5 feature
maps. These three scales of feature maps constitute the three
detection layers of multiscale detection, corresponding to the
downsampling times of 8, 16, and 32. The relationship between
these layers is as follows:

Ci = down (Ci−1) i = 3, 4, 5 (1)

Fj−1 = concat (Cj−1, up (Fj)) j = 4, 5,F5 = C5 (2)

Pk = concat (Fk, down (Pk−1)) k = 4, 5,P3 = F3 (3)

wheredown is 2 times downsampling,up is 2 times upsampling,
and concat is feature stitching. However, due to the limitation
of SAR image resolution, small vessel targets are much smaller
in size than most optical images and are susceptible to interfer-
ence from clutter and some near-shore strong scatterers; so this
structure is not very suitable for small vessel detection in SAR
images.

For small vessel detection, some scholars [9], [47] have im-
proved the feature fusion part. As shown in Fig. 4, the resolution
of the detection feature map is increased to reduce the miss
detections of small vessel targets by adding F2 and P2 layers
with a downsampling time of 4. However, there are two problems
with increasing the number of high-resolution detection layers.
On the one hand, the computational effort increases dramatically.
For an image of 800 × 800 pixels, the size of the P2, P3, P4,
and P5 feature maps are 200 × 200, 100 × 100, 50 × 50, and
25 × 25 pixels. With the addition of the P2 layer, the size of the
overall detection layer increases to 4.048 times than the original
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Fig. 5. Feature map visualizations at different scales.

Fig. 6. Single low-level path aggregation network structure.

size. On the other hand, the utilization of high-resolution feature
maps tends to introduce more redundant information, which can
easily cause false alarms.

The visualization of the feature maps P2, P3, P4, and P5 is
shown in Fig. 5. The comparison between the original image and
the feature image of small vessel targets shows that the texture
and edges of the vessels are clearer in P2 than in the others.
P3 also shows the position and texture edges of the targets and
without flaps and trails. P4 and P5 only show the approximate
position of the vessel targets and do not provide information on
the size and shape of the vessels.

As shown in Fig. 6, the single-scale detection structure in
S-LPAN is designed to reduce redundant computations and
better detect small vessels in SAR images. P3 feature map
contains texture and position information, which has the effect
of suppressing flank and wake trails in SAR images, and is,
therefore, selected as the detection layer. Considering that the
lower detection layer lacks some semantic information, an SEM
is added after P3 to enhance the semantic information in the P3
layer.

The main structure of the SEM is shown in Fig. 7. The
spatial pyramid pooling [48] increases the perceptual field of
the feature map using maximum pooling. In [33], it is experi-
mentally demonstrated that the maximum pooling with kernels
of 5, 9, and 13 can effectively improve the detection accuracy.
Therefore, the maximum pooling with kernels 5, 9, and 13 is
used in the SEM and the pooled feature maps are spliced with

Fig. 7. Structure of semantic enhancement module.

Fig. 8. Polarimetric decomposition.

the original feature maps. The texture and position information
of the original feature map is retained while increasing the
perceptual field to obtain more global semantic information.

Through subsequent experiments, it is demonstrated that the
proposed S-LPAN structure can effectively improve the detec-
tion of small vessels in SAR images and reduce the computa-
tional effort by combining only a single detection layer with an
SEM.

B. ADPFF

The amplitude image only contains intensity information. For
some land-based strong scatterers with similar intensity to small
vessel targets and scenes with more complex sea conditions, it
is difficult to distinguish them. In order to enhance the feature of
small vessel targets, polarimetric decomposition is utilized to ob-
tain multiple features of the data, making it possible to enhance
the vessel targets while suppressing the clutter background and
various types of noise.

The method of polarimetric decomposition is generally based
on quad-polarimetric SAR data. The polarimetric scattering
characteristics of the target are decomposed into several com-
binations of the fundamental scattering mechanisms. Detection
is then performed based on the target characteristics obtained
from the decomposition [49]–[51].

Compared to quad-polarimetric data, dual-polarimetric data
are simpler to obtain and have a larger swath, allowing for
monitoring of a larger sea area. The polarimetric information
obtained by polarimetric decomposition of dual-polarimetric
data can effectively increase the input information for vessel
detection [52], [53]. Therefore, the Sentinel-1 dual-polarimetric
data in SLC format is used in this article. The process of
polarimetric decomposition of Sentinel-1 dual-polarimetric data
is shown in Fig. 8.

The Sentinel-1 SLC format data are first multiviewed with a
range direction factor of 3 and an azimuth direction factor of 1.
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This step is to make the target scale in SAR image closer to
the real scene scale distribution. Then the polarimetric matrix
conversion is done on the multiview processed data to obtain the
C2 matrix, and then the C2 matrix is decomposed. The H/A/α
decomposition [54] is a method to decompose the polarization
coherence matrix into polarization entropy H, inverse entropy
A, and average scattering angle α. The decomposition equation
is defined as

C2 = [U2]

[
λ1 0
0 λ2

]
[U2]

∗T (4)

where λ1 and λ2 are the eigenvalues and U2 is the eigenvector.
The corresponding polarization channels can be obtained by
calculating different polarimetric components, where the po-
larimetric entropy component is calculated as

H = −
2∑

i=1

Pi log2 (Pi) (5)

where Pi is the relative scattering intensity of the scattering
process i. The polarization entropy describes the randomness of
the scattering process, which is a reflection of the relationship
between the eigenvalues λ1 and λ2 as follows:

Pi =
λi

λ1 + λ2
. (6)

The anisotropy component is defined as

A =
λ1 − λ2

λ1 + λ2
. (7)

The mean scattering angle component is defined as

α =
2∑

i=1

Piαi. (8)

The mixing components are obtained from the two decompo-
sition components: H and A. The four mixing components are
H ∗ A, (1−H)∗A, H ∗(1− A), and (1−H)∗(1−A), respectively.
The (1−H)∗(1−A) channel corresponds to the case where only
one main scattering mechanism exists (low entropy and low
anisotropy degree). The H ∗(1− A) channel characterizes the
random scattering process (high entropy and low anisotropy).
The H ∗ A channel corresponds to the case where there are two
scattering mechanisms with similar probabilities (high entropy
and high anisotropy). The (1−H)∗A channel corresponds to the
case where there are two scattering mechanisms, one of which
is the dominant scattering mechanism (low or medium entropy)
and the other with medium probability (high anisotropy).

Examples of the amplitude image, H/A/α polarimetric de-
composition components, and mixed components for a total of
ten channels are shown in Fig. 9.

There is feature redundancy in the amplitude image, polari-
metric decomposition image, and mixed component image with
a total of ten channels fed directly into the feature extraction
network. In order to extract effective features that are useful for
detecting small vessel targets and reduce feature redundancy,
ADPFF is proposed, which consists of three components: adap-
tive fusion of amplitude, adaptive fusion of polarization, and
adaptive fusion of mixed components.

Fig. 9. Sentinel-1 SLC data amplitude, polarimetric decomposition, and mixed
component channels.

Fig. 10. Adaptive fusion of amplitude channels.

Fig. 11. Adaptive fusion of polarization channels.

The amplitude adaptive fusion is shown in Fig. 10. The
VH and VV amplitude channels are convoluted separately.
The convoluted feature maps are stitched together and passed
through Softmax to obtain the fusion coefficient matrix. The
fusion coefficient matrices λVV and λVH are then multiplied with
the corresponding points of the original channel separately and
finally summed to obtain the fused channel. The polarimetric
adaptive fusion is performed on the polarization channels Alpha,
Anisotropy, Entropy, and Lambda as shown in Fig. 11. Mixed
component adaptive fusion is performed on the four channels
H ∗ A, (1−H)∗A, H ∗(1− A), and (1−H)∗(1−A) as shown
in Fig. 12. The fusion is similar to amplitude adaptive fusion,
except that the number of channels fused is increased.

Their fusion equations are defined as

FAmp = λVV × FVV + λVH × FVH (9)
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Fig. 12. Adaptive fusion of mixed component channels.

Fig. 13. Amplitude channel, polarization channel, and mixed component
channel are stitched together as the input feature.

FPol = λAlpha × FAlpha + λAnisotropy × FAnisotroey

+ λEnropy × FEntropy + λLambda × FLambda (10)

FMix = λH∗A × FH∗A + λ(1−H)∗A × F(1−H)∗A + λH∗(1−A)

× FH∗(1−A) + λ(1−H)∗(1−A) × F(1−H)∗(1−A) (11)

where Fx represents the x channel to be fused, FAmp, FPol,
and FMix represent the fused amplitude channel, polarization
channel, and mixed component channel, respectively. Assuming
(i, j) is the coordinate of the corresponding point on the different
channel features, for amplitude adaptive fusion

λVV[i, j] + λVH[i, j] = 1. (12)

For polarimetric adaptive fusion and mixed component adaptive
fusion

λAlpha[i, j] + λAnisotropy[i, j] + λEntropy[i, j]

+ λLambda[i, j] = 1 (13)

λH∗A[i, j] + λ(1−H)∗A[i, j] + λH∗(1−A)[i, j]

+ λ(1−H)∗(1−A)[i, j] = 1. (14)

As shown in Fig. 13, the input features are obtained by
stitching the amplitude channel, polarization channel, and mixed
component channel obtained by ADPFF. A convolution opera-
tion exists in the adaptive fusion part. Since the parameters of
the convolution can be updated from the backpropagation, the
fusion coefficient matrix can be continuously updated during
iterative training, resulting in a fusion coefficient matrix that

Fig. 14. Simplification of the sea–land segmentation process.

facilitates small vessel detection. The ADPFF can not only
reduce feature redundancy but also make full use of the effective
features of multiple polarization channels. It improves the degree
of differentiation between small vessel targets and sea clutter and
near-shore strong scatterers.

C. Sea–Land Segmentation

In order to reduce the land false alarms, a sea–land segmenta-
tion module is usually added to mask the land before the vessel
target detection. The conventional processing step of adding a
sea–land segmentation module is shown in the cascaded process
in Fig. 14. First, the input SAR image is segmented by land
and sea, and then the land is blacked out on the original image
according to the mask obtained from the sea–land segmentation.
Finally, the processed original image is fed into the vessel
detection network to obtain the final detection results.

However, there are two problems with the cascaded segmen-
tation and detection process. On the one hand, the two tasks
are not end-to-end and require separate training and inference,
which is very time-consuming. On the other hand, the intrinsic
correlation of the individual tasks is not fully exploited in the
cascaded segmentation and detection process.

It is worth noting that by adding a segmentation layer to the
vessel detection network, the two tasks of small vessel detection
and sea–land segmentation can be achieved simultaneously. In
this structure, the sea–land segmentation network and the vessel
detection network share two parts: feature extraction and feature
fusion. In order to optimize both tasks, a joint loss is proposed in
this article. Through joint training, the global semantic informa-
tion of sea–land segmentation is introduced into the optimization
process of the small vessel target detection model, which makes
it easier for the detection model to distinguish the land false
alarms.

However, this joint training also raises some problems. The
feature map should not be downsampled too many times to pre-
vent the loss of small vessel target features [41], [55]. However,
the sea–land segmentation task requires more downsampling
to obtain global semantic information to optimize the semantic
segmentation model, which contradicts the design of the small
vessel detection network. It is necessary to design a separate
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Fig. 15. Architecture of dilate encoder.

Fig. 16. Perceptive field for different dilation rates of the dilate convolution.

module that is not shared with vessel detection in order to
enhance the global semantic information for sea–land segmen-
tation. Therefore, a DE is added before the segmentation layer
to enhance the semantic information of the segmentation layer
feature maps, and the overall structure of the DE is shown in
Fig. 15.

The DE module takes advantage of the larger perceptive field
of the dilate convolution. The dilate convolution can increase the
perceptive field without changing the scale of the feature map.
The coverage of the dilate convolution can be adjusted by the
dilate rate parameter d of the normal convolution. Fig. 16 shows
the coverage of the dilate convolution with dilate rate d of 2 and
3, respectively, during the convolution process. Compared with
the regular convolution, the addition of the dilate convolution can
make the DE have a larger perceptual field, which is beneficial
to enhance the global semantic information of the sea–land
segmentation.

D. Joint Loss

In order to optimize both sea–land segmentation and small
vessel detection models in a single network structure, a joint

loss function is designed in this article. Compared with the two
tasks trained and optimized separately, the joint loss of sea–
land segmentation and small vessel detection allows to introduce
global semantic information from sea–land segmentation into
the optimization process of small vessel detection.

Considering the small size of the vessel targets contained in
the dataset, the GIoU [56] loss is used as a regression loss for
vessel detection. It can effectively filter out those high-quality
detection results that are closer to the labeled boxes. The GIoU
loss is calculated as

lossGIoU = 1− IoU +
C − (A ∪B)

C
(15)

where C is the smallest convex set of A and B. The IoU is
defined as

IoU =
|A ∩B|
|A ∪B| . (16)

For the classification part, only small vessel targets need to
be distinguished from the background; hence, a binary cross-
entropy function is used

losscls = − 1

n

n∑
i=1

[t log u+ (1− t) log(1− u)] (17)

where t is the value of the detection label: 0 for the background
and 1 for the vessel.u is the output of the detection layer network
via the Sigmoid function, while n is the number of samples
detected.

The cross-entropy function is often used as a loss function
for semantic segmentation. However, when performing sea–land
segmentation, there are only two categories: sea and land; so the
binary cross-entropy is also used for the classification loss of
sea–land segmented pixels with the following equation:

lossseg = − 1

n

n∑
i=1

[y log s+ (1− y) log(1− s)] (18)

where y is the true value of the sea–land segmentation: 0 for sea
and 1 for land, s is the output of the segmentation layer through
the Sigmoid function, andn is the number of segmented samples.

The joint loss of sea–land segmentation and target detection
is shown below, with the values of losstotal involved in the final
parameter update

losstotal = lossGIoU + losscls + lossseg . (19)

III. EXPERIMENTAL RESULTS AND EVALUATION

In order to assess the effectiveness of the proposed method,
a polarimetric detection and segmentation dataset (P-DSD) are
produced. The required environment and hyperparameter set-
tings for the experiments are then presented, and ablation exper-
iments are carried out for each module. Finally, the experiments
are compared with other well-known detection algorithms.

A. Dataset Description and Parameter Settings

The P-DSD is annotated by 15 large scene Sentinel-1 SLC im-
ages with a resolution of 10 m and contains small vessel detection
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Fig. 17. P-DSD labels.

labels with sea–land segmentation labels. The dataset detection
labels are annotated with reference to LS-SSDDv1.0 [57]. First,
the VV amplitude images are extracted from the SLC format
data, and then the vessel detection frames are labeled according
to the GRDH data labels. The coordinates of the left-top and
right-bottom corners of the vessel are stored in the detection
box labels. Finally, the vessel slices containing the ground truth
of the labeled box are obtained by updating the coordinates of
the left-top and right-bottom corners of the vessel according to
the location of the slice while cropping the large image.

The differences between the P-DSD dataset and LS-
SSDDv1.0 dataset are as follows.

1) The P-DSD dataset is annotated with SLC format data,
which allows polarization matrix conversion and polari-
metric decomposition. The LS-SSDDv1.0 dataset is an-
notated with GRDH format data, which only contains
amplitude information and cannot extract polarization
information.

2) The P-DSD dataset contains both vessel detection la-
bels and sea–land segmentation labels. The LS-SSDDv1.0
dataset contains only vessel detection labels.

3) The P-DSD dataset eliminates the background during the
cropping process, and each image contains the vessel
target. Nine thousand images in LS-SSDDv1.0 dataset
contain a large number of background images.

The definition of small vessels in this article refers to the
definition in LS-SSDDv1.0 dataset, where M is defined as the
number of pixels of an image, and then the vessel with a label box
area less than M × 0.37% is defined as small vessel target. The
number of pixels of the images in P-DSD dataset is 800 × 800;
so the vessel with a label box area less than 800×800× 0.37%
= 2368 is defined as small vessel targets.

The small vessel detection boxes and the sea–land segmen-
tation mask labels are shown in Fig. 17. The dataset contains
a total of 5026 annotated small vessel targets. The aspect ratio
statistics and area statistics of the annotated boxes are shown
in Figs. 18 and 19. It can be seen from the figures that most
of the vessel targets in this dataset have annotated boxes with
an area smaller than 2368 pixels, and, thus, the vessel targets
in the P-DSD dataset can all be defined as small vessels. In
order to meet the input scale of the network, a sliding window
crop is required. The final cropping results in 902 training slices

Fig. 18. Vessel size distribution.

Fig. 19. Length and width distribution of vessels.

and 595 testing slices. Considering the small number of valid
training sets containing vessel targets, the test set is used as the
validation set during the training process.

The proposed method is based on the Pytorch deep learning
framework. The parameters are set empirically as in1, where
they are tested and proved to be effective. The optimizer is
stochastic gradient descent with momentum. The initial learning
rate is set to 1e-3. Momentum is set to 0.9 and the weight
decay is set to 5e-4. The scatter plot in Fig. 19 shows that
the aspect ratio of the small vessel target is balanced and
there are no extreme aspect ratios. Therefore, the anchors
are set to [1:1, 1:2, 2:1] for three aspect ratios, the anchor
size is set to 15, the epoch is set to 100, and the learning
rate is reduced to 0.0005 at the 50th epoch to facilitate the
search for the optimal model. The training process is shown in
Algorithm 1.

As the labels of sea–land segmentation and vessel detection
are different, the losses need to be calculated separately dur-
ing the training process. Since there is no difference between
summing the losses when derived separately and when added

1[Online]. Available: https://github.com/ultralytics/yolov5

https://github.com/ultralytics/yolov5
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together and then derived. The segmentation loss is first back-
propagated, and then the vessel detection loss is backpropagated.
The gradients are accumulated to a preset value of 64, and then
the parameters are updated. The advantage of gradient accumu-
lation training is that it enables large batches to be trained even on
machines with small memory. This helps to mitigate oscillations
in losses during training and allows for faster acquisition of the
best model.

B. Evaluation Metric

Precision, recall, and average precision (AP) are used to assess
the performance of vessel detection models, which are calculated
as

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

AP =

∫ 1

0

P (R)dR× 100% (22)

where TP (true positives), FP (false positives), and FN (false
negatives) refer to the number of vessel targets correctly pre-
dicted, the number of vessel targets incorrectly predicted, and
the number of vessel targets predicted to be nonvessel targets,
respectively. AP describes the area under the precision–recall
(PR) curve. It is a tradeoff between the two metrics and shows
the performance of the different methods.

For the sea–land segmentation, pixel accuracy (PixAcc) and
mean intersection over union (MIoU) are used and calculated as

PixAcc =
TP

TP + FN
(23)

MIoU =

[
TP

TP + FP + FN
+

TN
TN + FN + FP

]/
2 (24)

where TP is the number of pixels of land segmented as land,
FP is the number of pixels of sea segmented as land, TN is the
number of pixels of sea segmented as sea, and FN is the number
of pixels of land segmented as sea.

TABLE I
COMPARISON OF DETECTION RESULTS FOR DIFFERENT FEATURE MAPS

Fig. 20. Comparison of precision–recall curves with different downsampling
times.

Fig. 21. Comparison of AP for detection at different feature scales.

C. S-LPAN

As the feature map is continuously downsampled, the se-
mantic information is continuously enhanced and the position
and texture information is continuously diminished. Usually, the
detection algorithms use multiscale feature maps as the detection
layer and finally combine the detection results. The small vessel
targets in SAR images are small in size and do not vary greatly
in scale; so a suitable feature map scale can be selected for
single-scale detection to reduce calculations. Table I shows the
results obtained by using different scales of feature maps as a
single detection layer, where stride is the downsampling time
compared to the original image.

From the results in Table I and the PR curve in Fig. 20, it
can be seen that using the P3 feature map with a downsampling
time of 8 as the detection layer improves the AP more than other
features maps. It is also clear from the curves in Fig. 21 that
P3 is most suitable for small vessel detection in SAR images.



2528 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE II
COMPARISON OF SEM MODULE EXPERIMENTS

Fig. 22. Comparison of precision–recall curves of P3, PAN, and P3+SEM.

Compared to the results of the P2 feature map, P3 has higher
precision accuracy, indicating that false alarms are effectively
reduced.

The global semantic information of the high-resolution
single-layer feature map is insufficient. To alleviate this problem,
SEM is proposed for the semantic enhancement of P3. The
comparison results of the SEM module are shown in Table II.

In Table II, PAN is the conventional multiscale feature map
detection, P3 is the single-scale feature map detection, and
P3+SEM is the single-scale feature map detection with the
addition of the SEM module. The results show that the recall of
P3 is higher, but the precision is lower. The addition of the SEM
module increases the precision by 2.05%. SEM can effectively
reduce false alarms by enhancing the semantic information in
the single detection layer and is more effective than multiscale
detection of PAN.

The PR curve in Fig. 22 shows that P3+SEM maintains the
high recall of P3, while the gap with PAN in precision gradually
decreases, which can balance the precision and recall well.

In order to verify that the S-LPAN is not only better for the
detection on small vessels but also applicable to the detection
of other sizes of vessels, the public dataset, SAR ship detec-
tion dataset (SSDD), [58] is employed for experimental vali-
dation. The SSDD dataset images are mainly from RadarSat-2,
TerraSAR-X, and Sentinel-1 sensors. It contains HH, HV, VV,
and VH polarizations and has a resolution of 1–15 m. There are
1160 images, including 928 images in the training set and 232
images in the test set. According to the definition in the SSDD
dataset, Area is the number of pixels of a vessel detection box,
and the vessel category is determined based on the value of Area:

1) small vessel targets: Area < 1000;
2) medium vessel targets: 1000 ≤ Area ≤ 8000;
3) large vessel targets: Area > 8000.

TABLE III
COMPARISON OF EXPERIMENTAL RESULTS ON SSDD DATASET

Fig. 23. Comparison of inshore detection results. (a) Detection results of
conventional PAN method. (b) Detection results of S-LPAN method.

Fig. 24. Comparison of offshore detection results. (a) Detection results of
conventional PAN method. (b) Detection results of S-LPAN method.

The experimental results are shown in Table III. It can be seen
that the S-LPAN structure designed in this article outperforms
the conventional PAN structure in terms of AP metrics in the
SSDD vessel detection dataset containing multiple scales.

Some test result images are shown in Figs. 23 and 24, where
“Small” represents small vessels, “Medium” represents medium
vessels, and “Large” represents large vessels. The false alarms
and miss detections for medium and large vessels are com-
parable to those of the traditional method. The effectiveness
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TABLE IV
ABLATION EXPERIMENTS OF ADPFF

Fig. 25. Comparison of precision–recall curves of amplitude training, all
polarization channel training and ADPFF training.

of the S-LPAN structure for small vessel detection is further
demonstrated.

D. ADPFF

One contribution of this article is ADPFF. To analyze the
contribution of the ADPFF module to small vessel detection, a
series of comparative experiments are carried out as shown in
Table IV.

In Table IV and Fig. 25, “Amplitude” means that VV chan-
nels are used for training and testing, and “10channel” means
that all amplitude channels, polarization channels, and mixed
component channels are overlaid for training and testing. The
experimental results show that the addition of polarimetric and
mixed component channels can effectively improve the precision
and recall of small vessel detection, and the AP is increased by
3.08%. This further shows that the polarimetric information can
enhance the characteristics of small vessel targets and reduce
missed detections and false alarms. Moreover, the combined in-
formation of ten channels contains more redundant information.
The input features of the three channels are obtained by ADPFF
and the AP is improved by 3.83%, further demonstrating the
effectiveness of the proposed ADPFF module.

E. Sea–Land Segmentation

Implementing both vessel detection and sea–land segmen-
tation tasks in one network can save the time of training and
inference. In addition, the global semantic information of sea–
land segmentation can be introduced to optimize vessel detection
by combining sea–land segmentation losses with small vessel
detection losses through backpropagation.

Table V shows the vessel detection results for the single loss
training model and the joint loss training model. The comparison

Fig. 26. Comparison of sea–land segmentation results (where the red line is
the result without DE and the green outline is the result with DE in contours).

Fig. 27. Comparison of precision–recall curves for ablation experiments.

TABLE V
COMPARISON OF SINGLE AND JOINT TRAINING

of the results shows that the joint loss optimization improves
in both precision and recall, with recall improved by 6.79%,
effectively alleviating the problem of missed detection. AP is
improved by 3.33%, and the overall performance of the model
is also effectively improved.

Considering that the semantic segmentation task requires
deeper global semantic information compared to the small vessel
detection, the DE module is designed to enhance the global se-
mantic information of the sea–land segmentation part. Table VI
shows the ablation experiments of the DE module. It can be seen
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Fig. 28. Comparison with some detection results of relevant benchmark methods. (a) Faster R-CNN. (b) Cascade R-CNN. (c) Double-head R-CNN. (d)YOLOv3.
(e) Our methods.

TABLE VI
ABLATION EXPERIMENTS OF DE

that the inclusion of DE can effectively improve the PixAcc and
mIoU of the model.

In the real scene detection process, there is no vessel target
in the central part of the land without rivers. The comparison

of the partial segmentation results in Fig. 26 shows that the
segmentation result in the central part of the scene is better
with addition of DE than without DE, indicating that the global
semantic information of the model is enhanced after the addition
of DE, and the global information of the land is learned better.
Thus, the central part of the land is all correctly segmented.

F. Overall Results and Method Comparison

The results of the ablation experiments for each module
proposed in this article are shown in Table VII.



ZHOU et al.: SMALL VESSEL DETECTION BASED ON ADPFF AND SEA–LAND SEGMENTATION IN SAR IMAGES 2531

Fig. 29. Comparison with some detection results of relevant benchmark methods. (f) YOLOv4. (g) YOLOX. (h) PP-YOLO. (i) TPH-YOLOv5. (e) Our methods.

Through the superposition of multiple modules, the final AP
reaches 77.30%. A comparison of the PR curves for the ablation
experiment is shown in Fig. 27. The green curve indicates the
effect of all modules in this article, and it is clear from the curves
that the area enclosed by the green curve is larger than the other
curves. The effectiveness of the improved modules proposed is
further verified.

To demonstrate the superiority of the proposed method, a
series of experiments are conducted on the P-DSD dataset
using several of the best-known algorithms, including faster

R-CNN [26], cascade R-CNN [28], double-head R-CNN [29],
YOLOv3 [59], YOLOX [34], YOLOv4 [33], PP-YOLO [60],
TPH-YOLOv5 [61]. Among them, PP-YOLO and TPH-
YOLOv5 are newer algorithms that perform well on small
targets.

The results are shown in Table VIII. The proposed method
outperforms the current well-known algorithms in terms of recall
and AP on the P-DSD dataset. Some visual results are shown in
Figs. 28 and 29. It is also clear from the figures that the proposed
method has a significantly lower false alarm on land compared to
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TABLE VII
ABLATION EXPERIMENTS OF THE PROPOSED METHOD

TABLE VIII
COMPARISON WITH BEST-KNOWN METHODS

other algorithms and the missed detection of small vessel targets
is also mitigated.

IV. CONCLUSION

In this article, a small vessel detection method based on
adaptive bipolar feature fusion and sea–land segmentation in
SAR images is proposed. An S-LPAN module for small vessel
detection in SAR images is designed to address the differences
between natural optical images and SAR images. The complex-
ity of the network is reduced by visualizing the feature map and
experimentally finding the most suitable feature map for single-
scale prediction, and the SEM is used for semantic enhancement.
In addition, to enhance the features of small vessel targets, the
ADPFF module is designed to fuse the amplitude, polarization,
and mixed component channels of the dual-polarization decom-
position to obtain effective input features. Finally, a sea–land
segmentation module is introduced. Through joint training,
the global semantic information extracted from the sea–land
segmentation is used to optimize the small vessel detection
model and improve the discrimination of land false alarms.
Experimental results on the detection and segmentation dataset
P-DSD constructed in this article demonstrate the effectiveness
of the proposed method in reducing false alarms and missed
alarms.
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