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Abstract—Full-polarimetric ground penetrating radar (FP-
GPR) can measure the ability of an object to change the polarization
of electromagnetic waves. Compared to the traditional GPR, it has
a stronger capability to identify underground objects. In recent
years, a series of polarization decomposition methods have been
applied to the FP-GPR data processing to obtain the polarimet-
ric attributes and enhance the capability of targets identification.
Different polarimetric attributes characterize different features of
a target but there is still no effective way to integrate these attributes
and take their respective advantages for target classification. In this
article, we propose a particle center AdaBoost (PCAD) method
and achieve the multiparameter adaptive target identification. The
experimental results indicate that the PCAD method can automat-
ically select suitable parameters during the training process for
different targets. Compared to the single-parameter classification
and the AdaBoost methods based on the traditional average and
Bagging method, the PCAD method presents higher correct rates in
classification. Finally, the proposed method is applied to landmine
detection. The results demonstrate that the landmine is a composite
scatterer that can generate surface scattering signals on its surface
and dipole and volume scattering signals from its interior; based
on the color-coded two-dimensional image by PCAD, we can dis-
tinguish landmines from other targets.

Index Terms—Full-polarimetric ground penetrating radar (FP-
GPR), identification, landmine detection, multiparameter.

I. INTRODUCTION

SUBSURFACE target identification is a significant applica-
tion of ground penetrating radar (GPR). For a long time,

imaging is the primary way to identify underground objects for
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GPR [1]–[3]. The migration method is one of the most mature
approaches to return the reflected and diffracted signals to their
original positions and reconstruct the subsurface image. The
geometric features obtained from the reconstructed image can be
applied to the target identifications [3], [4]. However, targets with
similar geometric features cannot be identified by the imaging
techniques [4]–[6]. Therefore, the full-polarimetric GPR (FP-
GPR) has been developed to detect underground objects. The
FP-GPR can measure the effects of the induced field rotation
(IFR) when the electromagnetic wave irradiate on the targets
[7], [8]. These effects are closely related to the shape of targets
and can be described using a Sinclair matrix [4]. By analyzing
the matrix, many polarimetric attributes beyond the geometric
features can be extracted and used for identifications.

In the early time, polarimetric techniques were applied
to fracture detection for both the ON-ground GPR and the
borehole radar [9]–[12]. Some researchers combined the po-
larimetric method with full waveform inversion to enhance
the fracture-detection capability [13]. On the other hand, the
polarimetric methods were also applied to the detection of
landmine and unexploded ordnance (UXO) [14]–[17]. These
works studied the polarimetric characterization of landmines
and UXOs and discussed the effects of the ground surface
on polarimetric features [18]. Besides, the polarimetric tech-
niques were also applied to subsurface pipe detection [19], [20].
These impressive works have greatly promoted the development
of FP-GPR.

In recent years, the polarimetric decomposition methods
originated from polarimetric synthetic aperture radar (SAR)
[21] were applied to FP-GPR [4]–[6], [22]. These techniques
can extract the polarimetric attributes from FP-GPR data and
largely improved the target identification capability of GPR.
Here, we introduce three classical decomposition methods for
example. H-Alpha decomposition is a classical polarimetric
analysis method based on mathematical constructions, which
can obtain two parameters, H and α, for classification [4],
[23], [24]. Apart from the research of target identification,
Dong et al. [7] also studied the effects of rough surface on the
H-Alpha analysis. Freeman decomposition (FD) is a type of
physical model-based decomposition method, which can obtain
the power of three basic scattering components [25]. The third
method is a scattering similarity based decomposition method
[26]. This method can automatically identify the major and
minor scattering mechanisms rather than the average scattering
mechanism of the classical H-Alpha method [27].

Polarimetric decomposition methods are in development and
more theories are proposed. However, these methods are all
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based on the theory of SAR. Since some differences of mea-
surement exist between GPR and SAR, such as the medium
and distance of propagation for electromagnetic waves, ob-
servation methods, and noise characteristics, the polarimetric
analysis methods used in SAR may not be suitable for GPR [28].
Therefore, we have proposed a particle center based method [28]
before to modified the H-Alpha identification method. Particle
center is a type of proposed data center, which is a better repre-
sentation of the sample with fewer effects of the outliers [28] and
can enhance the identification ability of FP-GPR. However, this
method is mainly for the double-parameters classification such
as the H and α features and has difficulties when it is promoted
to multiparameter identification. Since different polarimetric
parameters characterize different features of a target and there
is still no effective way to integrate these parameters and take
their respective advantages for target classification, developing a
multiparameter identification method is also an effective way to
improve the identification accuracy apart from the modification
of algorithms.

We focus on both the multiparameter analysis and the modi-
fication of identification methods and have proposed a multipa-
rameter adaptive target identification method for FP-GPR based
on a particle center AdaBoost (PCAD) method. AdaBoost is a
type of classical ensemble learning algorithm that can obtain
a strong classifier using a linear combination of several weak
classifiers with different weights [29]. In the iterations, the
weights of the weak classifiers are computed one by one and
the samples misclassified by the previous weak classifier will be
focused on in the iteration of the next weak classifier. Finally, a
strong classifier can be constructed whose classification error
will be less than or equal to the minimum error of all the
weak classifiers. This ensemble learning algorithm is greatly
suitable for the multiparameter classification and, in this article,
each polarimetric parameter can provide one weak classifier.
However, similar to other ensemble learning algorithms, the
performance of the AdaBoost method greatly depends on the
selection of weak classifiers and is much sensitive to the outliers
in the training sample [30]. Therefore, the Bagging method [31],
random forest method [32], and the attribute Bagging method
[33] were proposed to enhance the selection of weak classifiers.
Besides, it was also verified that selecting only some of the
weak classifiers may perform better than using all of them so
the selective ensemble learning was proposed [33], [34].

In this article, we propose a PCAD method. This method starts
with searching for the location of the particle center in a sample.
The sum of distances between the particle center and all sample
points is adopted as the loss function. By using the particle
swarm optimization (PSO) method [35], the minimum of the
loss function can be easily solved. Subsequently, the original
data can be projected into a new domain by computing the L1
norm of the original dataset and the particle center. In the new
domain, the attributes selection and weak classifiers determina-
tion for subsequent AdaBoost training can be simultaneously
and automatically implemented. Finally, both the new dataset
and the weak classifiers are applied to the AdaBoost training to
obtain the final strong classifier.

The proposed method has the following advantages.
1) By using the particle center processing, the effects of the

outliers in the training samples are greatly decreased.
2) The weak classifiers obtained from the new dataset after

particle center processing have higher accuracy, which
will lead to the higher accuracy of the final strong classifier.

Fig. 1. Four types of antenna combinations of FP-GPR [7].

3) By using the particle center method, the adaptive selec-
tions of weak classifiers are achieved.

In general, the proposed PCAD method achieves the multipa-
rameter target identification of FP-GPR, enhances the accuracy
of the classical AdaBoost method, and simultaneously solves
both the problems of outliers and the automatic selections of
weak classifiers. Besides, by comparisons, we prove that the
proposed PCAD method is more advanced than the classic
Bagging AdaBoost (BAD) method. In the application part, we
apply the PCAD method to landmine detection. Based on the
PCAD classification results, we generate a color-coded two-
dimensional (2-D) image that can present the different scattering
mechanisms of the surface and interior of a landmine and help
to identify it.

The rest of this article is organized as follows. Section II
introduces the polarimetric attributes used in this article. Sec-
tion III is about the methodology of the proposed PCAD method.
In Section IV, the proposed PCAD method is applied to the
landmine detection test. Section V discusses the superiority of
the proposed method by comparing it with the traditional average
and the classic BAD methods. Finally, Section VI concludes this
article.

II. POLARIMETRIC ATTRIBUTES FOR IDENTIFICATION

A. H-Alpha Attributes

The FP-GPR uses four types of antenna combinations to
perform the measurements. The four types of data can construct
the Sinclair matrix [S] [21]

S =

[
SHH SHV
SVH SVV

]
(1)

where H and V represent the horizontal polarization and vertical
polarization, respectively. The four components correspond to
the collected data using the four types of antenna combinations
in Fig. 1.

The scattering vector used in H-Alpha decomposition is de-
fined as [4], [7], [28], [36]

kP =
1√
2
[SHH + SVV SHH − SVV 2SHV ]

T
. (2)
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Subsequently, we can obtain a 3 × 3 coherency matrix [T]
and its singular value decomposition form [7], [21], [23]

[T ] = kP · kP ∗ =
3∑

i=1

λieie
T
i (3)

ei =
[
cosαi sinαi cosβie

jδi sinαi sinβie
jγi

]T
(4)

where the symbol∗ denotes conjugate transpose and λi and ei
represent eigenvalues and eigenvectors, respectively, i = 1, 2, 3.
The αi, βi, δi, and γi are the parameters of the dominant
scattering mechanism and are made to enable a probabilistic
interpretation of the scattering process. The pseudo probability
is defined as pi = λi/(λ1+λ2+λ3) [7]. Furthermore, the average
scattering angle α and the polarimetric entropy H can be
calculated as follows [37]:

α =
3∑

i=1

piαi (5)

H = −
3∑

i=1

pilog3 pi. (6)

The entropy H is a measure of randomness of scattering mech-
anisms, and the angle α characterizes the scattering mechanism
[23], [24].

B. Freeman Attributes

FD is a type of physical model-based, three-component de-
composition method [25]. The scattering vector used in FD is
defined as

kL =
[
SHH

√
2SHV SVV

]T
. (7)

Subsequently, we can obtain a 3 × 3 covariance matrix [C]
[5], [22], [25], [38]

[C] = kL · k∗L =

⎡
⎣ |SHH|2

√
2SHHS

∗
HV SHHS

∗
VV√

2SHVS
∗
HH 2|SHV|2

√
2SHVS

∗
VV

SVVS
∗
HH

√
2SVVS

∗
HV |SVV|2

⎤
⎦ .

(8)
The [C] is considered to be composed of three matrices, which

can be represented as follows [5], [22], [25], [38]:

[C] = [Cs] + [Cd] + [Cv]

= fs

⎡
⎣ |b|2 0 b

0 0 0
b∗ 0 1

⎤
⎦+ fd

⎡
⎣ |a|2 0 a

0 0 0
a∗ 0 1

⎤
⎦+

fv
8

[
3 0 1
0 2 0
1 0 3

]

=

⎡
⎣ fs|b|2 + fd|a|2 + 3fv

8 0 fsb+ fda+ fv
8

0 2fv
8 0

fsb
∗ + fda

∗ + fv
8 0 fs + fd +

3fv
8

⎤
⎦ (9)

where [Cs], [Cd], and [Cv] correspond to the covariance matri-
ces of the surface-like scattering, the double-bounce scattering,
and the volume scattering, respectively [5]. fs, fd, and fv denote
the energy of the SVV signals for the three types of scatterings,
respectively. Besides, a and b represent the data of SHH/SVV

for the double-bounce scattering and the surface scattering,
respectively [25]. Combining (8) and (9), we can obtain an

equation set, which is given by [5]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fs|b|2 + fd|a|2 + 3fv
8 = |SHH|2

fsb+ fda+ 3fv
8 = SHH · S∗

VV

fs + fd +
fv
8 = |SVV|2

fv
8 = |SHV|2.

(10)

By solving the equation set, a, b, fs, fd, and fv can be obtained.
Subsequently, the power of three types of scattering can be
derived [5], [38] ⎧⎨

⎩
Ps = fs

(
1 + b2

)
Pd = fd

(
1 + a2

)
Pv = fv.

(11)

The PS, PD, and PV are the Freeman attributes used in our
method.

C. Polarimetric Similarity Attributes

The polarimetric similarity attributes are based on the scat-
tering vector in (2) and the coherency matrix [T] in (3), which
is given by [26], [27]

rs =
k∗P [T ] kP

trace (kP · k∗P )× trace ([T ])
(12)

where kp is the Pauli scattering vector of a canonical scatterer,
[T] represents the coherency matrix computed using the FP-GPR
data of a measured scatterer, trace(·) denotes the trace operation
of a matrix [27], and rs characterizes the similarity between the
canonical scatterer and the measured scatterer [27].

Considering three canonical scatterers, i.e., a surface-like
scatterer, a double-bounce scatterer, and a volume scatterer, their
Pauli scattering vectors are given by⎧⎨

⎩
kPs =

[√
2 0 0

]
kPd =

[
0
√
2 0

]
kPv =

[
0 0

√
2
]
.

(13)

Since the three vectors in (13) are mutually orthogonal, the
corresponding similarity attributes, i.e., rss, rsd, and rsv, satisfy
[27]

rss + rsd + rsv = 1. (14)

The rss, rsd, and rsv are the polarimetric similarity attributes
used in our method.

III. PCAD METHOD

A. Construction of Strong Classifier in PCAD Method

Based on Section II, we can obtain eight polarimetric at-
tributes dataset, which can be represented as follows:

D = [H,α, Ps, Pd, Pv, rss, rsd, rsv] . (15)

The first step is to compute the particle center of D using
the PSO iteration method. The key idea is to use sufficient
particles to represent the random solutions. We first suppose
the coordinate and velocity of mth particle at ith iteration{

xi
m =

(
xi
m1, x

i
m2, . . . , x

i
m8

)
vim =

(
vim1, v

i
m2, . . . , v

i
m8

) (16)

where x and v represent the position and velocity of a particle,
which are 8-D corresponding to the eight attributes in (15).
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The initialization of (16) uses the normally distributed random
numbers.

The sum of distances between the particles in (16) and all
sample points in (15) is adopted as the loss function

Fit(xi
m) =

N∑
n=1

√√√√ 8∑
j=1

(
xi
mj −Dnj

)2
(17)

where j represents the dimension of the particles in (16) and N is
the number of samples in (15). During the iterations, the value of
Fit for each particle is computed. At ith iteration, we can obtain
the minimum Fit of each particle from 1th to ith iterations and
the position with the minimum Fit is represented using Xi

m{
Xi

m = argmin Fit(xm)
xm = x1

m, x2
m, . . . , xi

m.
(18)

Simultaneously, we can also obtain the minimum Fit of all
particles from 1th to ith iterations and the position with the
minimum Fit is represented using PCi{

PCi = argminFit(Xi)
Xi = Xi

1, X
i
2, . . . , X

i
m.

(19)

At each iteration, Xi
m and PCi are obtained and substituted

into the following formulas to renew the positions and velocities
of particles and finally solve the minimum of (17):{

vi+1
m = wvim + c1r1

(
Xi

m − xi
m

)
+ c2r2

(
PCi − xi

m

)
xi+1
m = xi

m + vi+1
m

(20)
where w is the inertia weight, r1, r2 are two random numbers
between 0 to 1, and c1, c2 are learning factors [28]. The iteration
continues till the variation of PC is less than a threshold μ

8∑
j=1

∥∥PCi
j − PCi−1

j

∥∥ ≤ μ. (21)

When the function converges, PC is the particle center we
need and a new dataset can be generated using the L1 norm of
the original dataset in (15) and the particle center PC

Z = |D − PC| . (22)

Subsequently, every point in Z is assigned to a sample weight
and the original sample weights are the average values, which
is given by

ηk = (ωk1, ωk2, . . . , ωkN ) =

(
1

N
, . . . ,

1

N

)∣∣∣∣
k=1

(23)

whereω, k, and N represent the sample weight, the iteration time,
and the number of the training sample, respectively.

In this article, the maximum of k is eight, since we use eight
attributes. At each iteration, the error of the weak classifier is
computed as follows:

ek =

N∑
n=1

ωkn · sign (1− ynhk (Zn)) (24)

where hk represents the weak classifier in the kth iteration, hk(Zn)
= {–1, +1}, Zn denotes the nth sample in (22), yn = {–1, +1}
is the label of the training sample and is known in advance, and
–1 and +1 represent the true and false about whether a sample
belongs to the class.

According to the error ek, the weight of kth weak classifier
can be derived, which is given by

βk =
1

2
ln

(
1− ek
ek

)
. (25)

Simultaneously, according to whether a sample is correctly
classified (ynhk(Zn) = 1) or wrongly classified (ynhk(Zn) = –1),
the sample weight in (23) can be renewed as follows:{

ηk+1 = ηk

2(1−ek)
ynhk (Zn) = 1

ηk+1 = ηk

2ek
ynhk (Zn) = −1.

(26)

Finally, combining the weak classifiers hk, the weight βk, and
the particle center PC, the presentation of the strong classifier in
the PCAD method is given by

PCAD (Dnew) =

Nk∑
k=1

βk · hk (|Dnew − PC|) (27)

where Nk is the number of hk. For a new dataset Dnew, which
is waiting for identification, the identification accuracy can be
directly obtained by (27).

B. Simultaneous and Automatic Selection and Determination
of Weak Classifiers in PCAD method.

Formula (27) indicates that, apart from PC, another key of
the PCAD method is the weak classifiers hk. As (26) shows,
when ek < 0.5, for a correctly classified sample, its weight
will decrease in the next iteration, and for a wrongly classified
sample, its weight will increase in the next iteration. It means
that the samples misclassified by the previous weak classifier
will be focused on in the iteration of the next weak classifier.
However, if ek > 0.5, which means the weak classifier can
not improve the quality of classification results, the weights
of the wrongly classified samples will decrease whereas the
weights of the correctly classified samples will increase. In this
case, the iteration will be time-consuming and unstable and the
identification accuracy of the obtained strong classifier will be
affected. Therefore, it is important to determine the best weak
classifiers and select only some of the attributes that have better
performance. It is usually difficult to simultaneously implement
the automatic determination and selection of weak classifiers.
However, the proposed PCAD method can easily solve the
problem after the projection of (22).

Fig. 2 illustrates two examples of the determination and selec-
tion of weak classifiers for two attributes. The histograms with
four colors are the data samples of four types of targets generated
by (22). To identify the blue target, we change the radius of the
classifier (see the x coordinates in Fig. 2) and compute the error
curves, which are given by

Ek (r) =∑N1

n1=1 sign
(
Z1
n1

− r
)
+
∑4

t=2

∑Nt

nt=1 sign
(
r − Zt

nt

)
∑4

t=1 Nt

(28)

where Z1–Z4 represent the data of blue, orange, yellow, and
purple targets in Fig. 2, respectively, r denotes the radius of the
weak classifier, and Nt represents the number of samples in Zt.
The red curve in Fig. 2 shows the relation between the error rate
and the radius. The optimal weak classifier can be determined
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Fig. 2. Examples of the determination of a weak classifier for a parameter. The four color represent four datasets and the dataset with blue color is the set to be
classified by the weak classifier. (a) Example of included attribute and weak calssifier. (b) Example of excluded attribute.

Fig. 3. Four typical targets used in the experiment. (a) Metallic sphere.
(b) Metallic cylinder. (c) Metallic dihedral. (d) Metallic multibranch scatterer.

as follows:

hk (Z) =

{
1 Z ≤ argminEk(r)
−1 Z > argminEk(r)

. (29)

The dashed line in Fig. 2(a) indicates the radius with minimum
error, which is the optimal weak classifier for the parameter.
However, the minimum of the error curve in Fig. 2(b) is at
r = 0 and no weak classifier can be determined. Therefore, the
attribute of Fig. 2(b) is not proper for identifying the blue target
and will be excluded in the subsequent computation. In general,
the attributes selection process can be represented as follows:{

Included arg min Ek(r) > 0
Excluded arg min Ek(r) = 0

. (30)

IV. IMPLEMENTATION

A. FP-GPR Data Acquisition

The FP-GPR data of four typical targets shown in Fig. 3 are
collected in the laboratory. The four targets are a metallic sphere,
corresponding to the surface-like scatterer; a metallic cylinder,

Fig. 4. Stepped frequency ultrawide-bandwidth FP-GPR system.

corresponding to the linear scatterer; a metallic dihedral, corre-
sponding to the double-bounce scatterer; and a metallic multi-
branch scatterer, corresponding to the volume scatterer. The
four targets are immersed in a dry sand trough. The experiment
uses a stepped frequency ultrawide-bandwidth FP-GPR system
(see Fig. 4). The frequency band used in the measurement is
800–4000 MHz. The antenna array is as Fig. 1 shows. The
obtained FP-GPR data are shown in Fig. 5. Subsequently, by
performing the H-Alpha, Freeman, and polarimetric similarity
decomposition, we extract eight polarimetric parameters for the
data of four typical targets, which are shown in Fig. 6. The α
values are normalized by dividing by 90, as the theoretical α is
within 0–90.

B. PCAD Processing Results

The first step is to obtain the particle center of the eight-
dimensional datasets in Fig. 6. Here, we present the process of
convergence in particle center computations in Fig. 7 to better
illustrate the operation of the PCAD method. To clearly observe
the process, Fig. 7 only shows two dimensions of the data. The
points with four colors are the particles for representing random
solutions of particle centers for four datasets of different classes.
Fig. 7(a) shows the initialized positions of particles generated by
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Fig. 5. FP-GPR data of the four typical targets. (a) Metallic sphere. (b) Metallic cylinder. (c) Metallic dihedral. (d) Metallic multibranchscatterer.

Fig. 6. Extracted eight polarimetric parameters for the data of four typical targets. (a) Metallic sphere. (b) Metallic cylinder. (c) Metallic dihedral. (d) Metallic
multibranch scatterer. The α values are normalized by dividing by 90, as the theoretical α is within 0–90.

Fig. 7. Process of convergence in particle center computations shown by two dimension of the datasets in Fig. 6. (a) Initialized positions of particles generated
by normally distributed random numbers. (b)–(f) Positions of particles after 5, 10, 20, 50, 100 times iteration, respectively.
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Fig. 8. Determination of weak classifiers for the data of the sphere based on particle center method.

Fig. 9. Determination of weak classifiers for the data of the cylinder based on particle center method.

normally distributed random numbers and Fig. 7(b)–(f) presents
the positions of particles after 5, 10, 20, 50, 100 times iteration,
respectively. The results clearly show that, as the computation
proceeds, the particles of four classes gradually converge at four
points. These four points are right the particle centers we need
and can be used to project the original data to the new domain.

Subsequently, we analyze the eight polarimetric attributes in
detail, respectively, and perform the weak classifiers determi-
nations. Figs. 8–11 presents the analysis for the sphere, cylin-
der, dihedral, and multibranch scatterer, respectively. Similar to
Fig. 2, the histograms in Figs. 8–11 show the distributions of the
samples relative to the particle centers. The blue, orange, yellow,
and purple histograms correspond to the statistics of the sphere,
cylinder, dihedral, and multibranch scatterer, respectively. The
red curves indicate the error curves computed using (19); the
black points and the black lines represent the minimums of
the error curves and the optimal radius of the weak classifiers,
respectively.

Fig. 8 aims to identify the data of sphere targets, i.e., the blue
histogram. The error curves of parameters H, Pv, and rsv are
monotonically increasing and the minimums of the error curves
appear at the position of radius = 0. In these cases, the weak
classifiers are nonexistent. Therefore, the parameters α, Ps, Pd,
rss, and rsd have better performance when identifying the sphere
targets. Besides, the minimums of the errors for the parameters
α, Ps, Pd, rss, and rsd are all less than 0.5, which correspond to
the requirements for weak classifiers discussed in Section III-B.
Similarly, the parameters α and rsd are selected for the cylinder
target; the parameters H, α, Pd, Pv, rss, rsd, and rsv are selected
for the dihedral target; the parameters H, Pd, Pv, and rsv are
selected for the multibranch scatterer.

Table I summarizes the attributes selection results, the sin-
gle parameter identification accuracy, and the multiparameter
identification accuracy using the AdaBoost method. For each
target, the accuracy after AdaBoost is greater than the accuracy
of single parameters. For the targets of the sphere, cylinder,
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Fig. 10. Determination of weak classifiers for the data of the dihedral based on particle center method.

Fig. 11. Determination of weak classifiers for the data of the multibranch scatterer based on particle center method.

and multibranch scatterer, the accuracies of single classifiers are
excellent enough, so that the boosts of the AdBoost method are
much low. However, for the dihedral target, the single parameter
accuracies are approximately about 60% and 70% whereas the
multiple parameter accuracy reaches 87.88%. This result verifies
that the combination of weak classifiers can indeed promote
identification accuracy.

C. Application in Landmine Detection

In this section, the well-trained PCAD classifier is applied
to landmine detection. Fig. 12(a) presents the type-72 plastic
antitank landmine used for data acquisition and Fig. 12(b)
and (c) shows the obtained FP-GPR data before and after
Kirchhoff migration, respectively. The migration processing is
adopted aiming to improve the quality of imaging. The length

of the surveying line and distance interval are 0.7 m and 0.01
m, respectively; the time window and the number of sampling
points are 5 ns and 512, respectively; the radar frequencies are
from 800 to 4000 MHz.

It is distinct that, in the three radargrams of different
polarization modes, the positions of the maximums of the signals
from the landmine are different in arriving time. We extract three
A-scan signals, which are marked with blue lines in Fig. 12(c)
and show them in Fig. 13. The signals from the landmine are
circled with red rectangles [see Fig. 12(c)], which can be further
divided into two regions (see Fig. 13). The maximums of the
signals from the landmine are within region 1 for the HH and
VV radargrams but within region 2 for the HV radargram. In
region 1, the amplitude of HV signals are far weaker than those
of HH and VV signals, which can be interpreted to be the signals
from the surface of the landmine; in region 2, the amplitudes
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TABLE I
SELECTION OF POLARIMETRIC ATTRIBUTES AND ACCURACY COMPARISONS

Fig. 12. Application of PCAD in landmine detection. (a) Type-72 antitank landmine used for data acquisition. (b) and (c) Obtained FP-GPR data before and after
Kirchhoff migration, respectively.

Fig. 13. Extracted signals whose positions are marked with blue lines in
Fig. 12(c). Red rectangles correspond to those in Fig. 12(c). (a) HH polarization.
(b) HV polarization. (c) VV polarization.

of the signals of three polarization modes are similar and the
volume scattering may dominate in this region, which can be
interpreted to be the signals from the interior of the landmine.
Similar to the metallic multibranch scatterer in Fig. 3(d), the
complex structure in the landmine will generate the IFR effects
and will increase the amplitude of the cross-polarisation signals.

Subsequently, we applied the well-trained PCAD classifier to
the processing of the data in the red rectangles in Fig. 12(c),
which means the data contain both region 1 and region 2.
The PCAD classification results are shown in Table II, which
demonstrate that the signals from the landmine mainly contain
surface (71.33%), volume (32.81%), and dipole (18.31%) scat-
terings and the surface scattering dominates. Since we have
observed that the polarization components of the radar data
are different in regions 1 and 2, we further obtain the data
distributions by the arriving time after PCAD classification.
The results in Fig. 14 demonstrate that the points with surface
scattering mainly distribute in 2–3.4 ns whereas the points with
the other three types of scatterings are mainly in 3.4–4.3 ns. The
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TABLE II
PCAD CLASSIFICATION RESULTS OF LANDMINE DATA

Fig. 14. Data distributions by the arriving time after PCAD classification.
(a) Points with surface scattering. (b) Points with dipole scattering. (c) Points
with double-bounce scattering. (d) Points with volume scattering.

distributions of different polarization components are consistent
with the analytic results in Fig. 13.

Fig. 15(a) presents the FP-GPR radargrams extracted from the
red rectangles in Fig. 12(c). Based on the PCAD classification
results, we give the data points in this region with different
colors and obtain a color-coded 2-D image in Fig. 15(b). Since
the points with double-bounce scattering are far fewer than the
points with other scatterings, they are excluded in the color-
coded 2-D classification image. Besides, we merge the points
with dipole and volume scatterings (marked with blue color) as
they are both in region 2 and are much fewer than the points
with surface scattering (marked with red color). The points with
the mixture of three types of scatterings are marked with yellow
color. Comparing the magnified radargrams with the color-coded
2-D image with PCAD classification results, we find that the
points with surface scattering (red points) are coincident with the
strong signals in HH and VV polarization radargrams and locate
in the shallow part of the images, representing the signals from
the surface of the landmine; the region with dipole and volume
scatterings (blue points) are of the similar shape with the strong
signals in HV polarization radargrams and distribute in the deep
part of the images, representing the signals from the interior
of the landmine. In general, the results are consistent with the
analytic results in Fig. 13 and demonstrate that the landmine is a
composite scatterer that can generate surface scattering signals
on its surface and dipole and volume scattering signals from its

interior. The results propose a new way to identify the landmine
using the PCAD method.

V. DISCUSSION

A. Effects of the Particle Centers

In this section, we discuss the effects of the particle centers
in targets identification. First, we test the traditional AdaBoost
method without particle center processing. Fig. 16 presents two
examples of computing the weak classifiers for the α parameter
of the cylinder data (see the orange histogram in Fig. 16).
Fig. 16(a) presents the result of the proposed PCAD method
whereas Fig. 16(b) shows the result of the traditional AdaBoost
method without particle center processing. The particle center
processing can project the original data into a new domain where
the target samples to be identified are concentrated close to 0.
Therefore, in Fig. 15(a), only one weak classifier(r < 0.06) is
needed to identify the orange data and the error is less than 0.1.
However, the target data in Fig. 16(b) is surrounded by the other
data and two weak classifiers are needed to identify the orange
histogram. The error curve 1 with red color is computed using
(28), whereas the error curve 2 with blue color is computed using
the following formula:

E ′
k (r) =∑N1

n1=1 sign
(
r − Z1

n1

)
+
∑4

t=2

∑Nt

nt=1 sign
(
Zt
nt

− r
)

∑4
t=1 Nt

.

(31)

The extreme points of the two error curves can determine the
two weak classifiers (i.e., r > 0.46 and r < 0.58). However, the
extreme points are not the minimums of the two error curves
and are difficult to extract automatically. Besides, in Fig. 16(b),
the error of the weak classifier 1 is approximately 0.3, which is
much higher than the error in Fig. 16(a); the error of the weak
classifier 2 is approximately 0.6, which is beyond 0.5 and is
unusable according to the analysis in Section III-C. Therefore,
particle center processing can reduce the number of weak
classifiers and elevate their accuracy.

B. Comparison Between Particle Center and Traditional
Average

We have analyzed that the particle center processing can map
the original data into a new domain where the target samples to be
identified are concentrated close to 0 and the weak classifier can
be reduced to one. However, the mapping using the traditional
average can also achieve the same goal so the comparison be-
tween the particle center and the traditional average is performed
in this section. The procedure is similar to the proposed PCAD
method in Section III-B and the only change is that the particle
centers are replaced by the simple average of the data.

The identification accuracy of the single-parameter method
and the average-based multiparameter method are also presented
in Table I to compare with the results of the proposed method.
The results show that both the single-parameter and multiparam-
eter identification accuracy for the particle center-based method
are higher than those of the average-based method, but the
differences are not evident. Because the FP-GPR data used in
the computations are collected in the laboratory environment,
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Fig. 15. Landmine identification results and analysis. (a) FP-GPR radargrams extracted from the red rectangles in Fig. 12(c). (b) Color-coded 2-D image with
PCAD classification results.

Fig. 16. Examples of the determination of weak classifiers for the α parameter of the cylinder data. (a) Result of the proposed PCAD method. (b) Result of the
traditional AdaBoost method without particle center processing. The four color represent four datasets and the dataset with orange color is the cylinder data to be
classified by the weak classifier.

the outliers in the data are few and their effects are not evi-
dent enough to present the advantages of the particle center.
To illustrate, we simulate the cases with different effects of
outliers and compute the averages and the particle centers of
the data to compare their sensitivities to the outliers.

Firstly, a dataset Da1 and an outlier dataset Da2 are generated
using the formula as follows:{

Da1 = |ε1 + δ1 · randn(n1)|
Da2 = (ε2 + d) + δ2 · |randn(n2)| (32)

where randn(·) represents the Gaussian distribution function.
Parameters ε1,2, δ1,2, and n1,2 denote the means, standard devi-
ations, and the numbers of samples, respectively. We set ε1 =
0, ε2 = 150, δ1 = 50, δ2 = 20, n1 = 100, and n2 = 20. d is
the variable parameter and is set to 1–200, which controls the
distance between the normal dataset and the outlier dataset. The
initial distributions of Da1 and Da2 are shown in Fig. 17(a).

The blue and orange histograms represent the normal dataset
and the outliers dataset, respectively. The normal data Da1
concentrate between 0 and 50 and the outlier data Da2 are close
to Da1. The parameter d varies from 1 to 200 and Fig. 17(b)–(f)
presents the distributions of Da1 and Da2 when d = 40, 80, 120,
160, and 200, respectively. The distances between the normal
data and the outliers data increase from (a) to (f). Simultaneously,
the traditional averages and particle centers of the joint dataset
of Da1 and Da2 are computed, which are presented in Fig. 18.
The results demonstrate that when the distances between the
normal data and outliers increase, the particle center will stay
in the region that the normal data concentrate in whereas the
traditional averages will move away from the region of normal
data. Therefore, the traditional averages are much more sensitive
to outliers. In this article, we choose to use the particle centers to
perform the multiparameter target identifications. If the training
data are of low quality, the proposed method can also reduce the
effects of outliers and perform the identifications.
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Fig. 17. Distributions of the data in the test of outliers. The blue and orange histograms represent the normal dataset and the outliers dataset, respectively. (a)–(f)
Selected six cases when the parameter d varies from 1 to 200. (a)–(f) Correspond to d = 1, 40, 80, 120, 160, and 200, respectively. The distances between the
normal dataset and the outliers dataset increase from (a) to (f).

Fig. 18. Comparison of the sensitivity to the outliers between the parti-
cle centers and the traditional averages. When the outliers move away from
the normal data, the traditional averages will change but the particle centers
will stay.

C. Comparison With BAD Method

To illustrate the advancement of the proposed PCAD method,
we compare it with the BAD method [31], which is also a mod-
ification of the traditional AdaBoost method. Fig. 19 compares
the theories of the two methods. As Fig. 19(a) shows, the key
of the BAD method is to sample with release from the initial
dataset to generate a large number of subsets; subsequently, the
AdaBoost procedures are performed for each subset to obtain a
result; the final result is generated by the voting of the results
from all the subsets. The method aims to reduce the impact of
outliers by a large number of subsets.

We use the dataset in Section IV-A to test the BAD method.
The BAD method usually uses a voting procedure to determine
the final identification result and less abundant types of targets
will be ignored. It means that the BAD method has a premise that

the target to be classified should have only one type and it can
not identify the composite target like a landmine. Therefore, this
method can not obtain the subsurface distribution of different
types of scatterings or the 2-D color-coded image generated in
Section IV-C.

To make the results of the BAD method comparable with the
proposed PCAD method, we use the average accuracy of all
the subsets to represent the accuracy of the BAD method. In
the test of the BAD method, there are two important parameters
to specify, i.e., the number of subsets and the sampling rate,
which are set to 1–1000 and 10–100%, respectively. Fig. 20
presents the relation between the number of subsets and the
average accuracy when the sampling rate is set to 30%. The
results demonstrate that when the scales of subsets are small (less
than ∼300), the accuracy varies intensely; when the numbers
of subsets exceed 300, the accuracy goes flat. Therefore, a
large number of subsets are necessary to obtain relatively stable
results. However, even the number of subsets reaches 1000, the
accuracy of the BAD method is much lower than that of the
PCAD method.

Fig. 21 illustrates the relationship between the sampling rate
and the average accuracy when the number of subsets is set
to 1000 in the BAD method. The results show no evident
relationship between these two items so, for the BAD method,
we may need to determine the best sampling rate through many
times experiments.

Besides, Fig. 20 demonstrates that generating more large
number of subsets can indeed enhance the stability and accuracy
of the AdaBoost method but it can also make the computation
more time-consuming. The running time of the BAD method
and the proposed PCAD method are compared in Fig. 22,
which indicates that the BAD method is more time-consuming
with more subsets. If considering at least 300 subsets is nec-
essary to obtain relatively stable results, the running time of
the BAD method is more than five times that of the PCAD
method. The details of the computation platform are shown in
Table III.
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Fig. 19. Comparison between the BAD and the proposed PCAD methods. (a) Flowchart of the BAD method. (b) Flowchart of the proposed PCAD method.

Fig. 20. Variations of average accuracy with the increasing number of subsets
for four types of targets by the BAD method. The sampling rate in Bagging
operation is set to 30%. (a) Metallic sphere. (b) Metallic cylinder. (c) Metallic
dihedral. (d) Metallic multibranch.

TABLE III
COMPUTATION PLATFORM

The proposed PCAD method needs less running time because
the procedure is more simple. As Fig. 19 shows, it only uses the
particle center mapping to generate one new dataset rather than

Fig. 21. Relationship between the average accuracy and the sampling rate
in Bagging operation for four types of targets. The number of subsets is
set to 1000. (a) Metallic sphere. (b) Metallic cylinder. (c) Metallic dihedral.
(d) Metallic multibranch.

a large number of subsets in the BAD method. The aims of the
operations in the red rectangle in Fig. 19 are similar, which are to
reduce the impact of outliers. Essentially, the sampling operation
in the Bagging method can also be seen as the searching of the
sample center, but this method does not know, which data are
the outlier, so it need to randomly generate a large number of
subsets to determine the positions of outliers and reduce their
interference by the voting operation.

On the contrary, the PCAD method can accurately locate the
position of the main body of the data using the inversion method
and subsequently exclude the interference of outliers. Besides, as
the blue rectangle in Fig. 19 shows, the particle center mapping
simultaneously achieves the adaptive selection of attributes and
weak classifiers, which is beyond the ability of the previous BAD
method.
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Fig. 22. Comparison of running time for the BAD and the proposed PCAD
method.

In general, compared to the BAD method, the proposed PCAD
method has the following advantages.

1) PCAD method can identify the composition of a complex
target whereas the BAD method can not achieve this goal.

2) PCAD method has higher accuracy than the BAD method.
3) The BAD method has two important parameters to test

and specify whereas the PCAD method has no parameter
to set up.

4) To obtain relatively more stable results, the BAD method
will cost several times of running time than that of PCAD
method.

5) PCAD can directly suppress the interference of outliers
by one-time inversion whereas the BAD method need to
generate a large number of subsets to achieve the same
goal.

6) PCAD method can simultaneously achieve the adaptive
selection of attributes and weak classifiers, which is be-
yond the ability of the BAD method.

VI. CONCLUSION

In this article, we propose a PCAD method and achieve the
multiparameter adaptive target identification of FP-GPR. The
FP-GPR data of four types of targets are obtained and used for
the training of the PCAD classifier. The experimental results
demonstrate that the PCAD method can automatically select
suitable parameters during the training process for different
targets; compared to the single-parameter classification, the
correct rates of the classification for the four targets are
improved by PCAD. Further analysis verified the superiority
of PCAD to the AdaBoost method based on the traditional
average when dealing with outliers. When compared to the
classic BAD method, the PCAD method is more advanced.
In the application part, the proposed method is applied to the
landmine detection and the color-coded 2-D image by PCAD
is obtained for identification. The results demonstrate that the
FP-GPR signals from the landmine contain different scattering
modes, which are with different arrival time; the surface of the
landmine can produce the surface scattering signals whereas its
complex internal structure can generate approximately equal
amounts of dipole and volume scattering signals. Based on
these features, we can distinguish landmines from other targets.
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