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Abstract—Recent advances in remote sensing technology have
provided (very) high spatial resolution Earth Observation data
with abundant latent semantic information. Conventional data
processing algorithms are not capable of extracting the latent
semantic information form these data and harness their full poten-
tial. As a result, semantic information discovery methods, based
on data mining techniques, such as latent Dirichlet allocation and
bag of visual words models, can discover the latent information.
Despite their crucial rule, there are only a few studies in the field
of semantic data mining for remote sensing applications. This
article is focused on this shortage. Three different scenarios are
used to evaluate the semantic information discovery in various
remote sensing applications, including both optical and synthetic
aperture radar (SAR) data with different spatial resolutions. In the
first scenario, semantic discovery method correlated the semantic
perception of the user and machine to correct and enhance the
user defined Ground Truth map in very high-resolution RGB data.
The potential of the semantic discovery is evaluated for wildfire
affected area detection in Sentinel-2 data in the second scenario.
Finally, in the third scenario, the semantic discovery method is
utilized to detect the misclassifications as well as the patches with
ambiguous or multiple semantic labels in a Sentinel-1 SAR patch-
based benchmark dataset to enhance the robustness and accuracy
of the annotation in the dataset. Our results in these three scenarios
demonstrated the capability of the data-mining-based semantic
information discovery methods for various remote sensing.

Index Terms—Bag of visual words (BOVW), benchmark dataset,
data mining, Earth Observation (EO) semantics, Ground Truth
(GT) map, latent Dirichlet allocation (LDA), latent semantic
information discovery.

I. INTRODUCTION

EXTRACTING semantic and meaningful information is one
of the most important applications of remote sensing that

provides the necessary information for various exercises. Several
articles have suggested different methods for semantic informa-
tion discovery and Earth Observation (EO) image classification,
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based on the spectral information of the multispectral EO images
[1]–[4], amplitude and phase information of the backscattered
radar signal in synthetic aperture radar (SAR) images [4]–[6],
range point cloud information of LIDAR data [7], [8], and other
EO data, using many different algorithms.

Despite immense advancements in land cover classification
with EO images, semantically meaningful and comprehensive
information extraction is still a challenge. Unsupervised classi-
fication methods suffer from semantically meaningless classes
which can cause many semantic classes mixing in the classified
map, as well as not detecting the desired target semantic classes
[9]. On the other hand, supervised methods have the advantage of
providing semantically meaningful classes and give the full con-
trol to the analyst over the classification process [9]. However,
supervised methods require Ground Truth (GT) data for training.
Creating the GT map is not straightforward and cause several
challenges [10], [11]. Collecting GT data in remote locations
is costly and laborious. Besides, the quality of the GT map,
defined by different users/experts, is variable based on the user’s
experience, perspective, knowledge, and target application. But
the GT map influences the classification results, considerably
[10], [11]. Moreover, high-resolution and very-high-resolution
EO images contain abundant latent semantic information about
the land cover, which might get neglected through conven-
tional information extraction techniques. As a result, robust data
mining methods are necessary for latent semantic information
discovery in high- and very-high-resolution EO images.

By definition, data mining is “the discovery of interesting,
unexpected, or valuable structures in large datasets” [12]. It is an
interdisciplinary subfield of statistics, artificial intelligence, and
machine learning with an overall goal to discover latent patterns
and structures in the dataset for further use. Because of the
digitization and massive volume of the available data in various
fields, data mining techniques have attracted many interests
for different applications [13]. In the field of remote sensing,
hundreds of terabytes of EO data are being acquired by various
sensors with different characteristics every day. Considering the
huge archive of the EO data as well, an efficient approach for
handling and processing this data source is important. However,
data mining in remote sensing has not been exploited thoroughly
and a hug improvement gap exists in this field.

In the present article, two well-known data mining tech-
niques, latent Dirichlet allocation (LDA) and bag of visual words
(BOVW) models, are utilized for exploiting different EO data
and extracting latent semantic information from them. LDA is
a generative probabilistic model which has been proposed by
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Blei et al. [14] for text modeling. In image domain, LDA
models each image as a mixture of latent topics from a Dirichlet
distribution. LDA uses BOVW representation of the image for
this purpose and considers the visual words as topic representors.
LDA represents each image with a topic probability vector
through a generative procedure. LDA is completely unsuper-
vised and do not require any reference data, but provides an
interpretable intermediate representation of the data. In addition,
using LDA fulfill many conditions of the explainable machine
learning models, which is getting more attention in the artificial
intelligence fields [15].

Several articles have been carried out on semantic analysis
of EO images with LDA. For instance, Liénou et al. [16]
utilized LDA model for semantic annotation of satellite im-
ages with the semantic concepts defined by the user. In this
article, maximum-likelihood classifier is used to assign each
image patch to the semantic concepts based on the LDA topic
probabilities. Du et al. [17] suggested using LDA for change
detection in EO images. In this article, BOVW and LDA are used
for mid-level feature dimension reduction and representing two
multitemporal images in the topic space. Later, the multivariate
alteration detection method is applied to detect the semantic
changes between the topic representations of two multitemporal
images. Zhong et al. [18] used LDA in a multifeature fusion
approach to extract semantic information for scene classification
and semantic interpretation of high-resolution remote sensing
images. Li et al. [19] employed LDA to combine different
land cover products and achieve a harmonized land cover map.
Regionalized class co-occurrences in different land cover maps
are used in the LDA to generate the harmonized land cover label
for each pixel through statistically characterizing land attributes
from the class co-occurrences. In another article, Bahmanyar
et al. [20] used multimodal LDA for land cover classification
with SAR and multispectral satellite images. In this article, the
BOVW histograms of the SAR and multispectral image patches
are computed and simultaneously fed into the multimodal LDA,
which results in a joint latent data model of the land cover
topics. Karmakar et al. [15] used LDA for discovering the
latent structure of SAR data for content classification. The
explainability, feature independence, and unsupervision of LDA
model is discussed in this article. Furthermore, Espinoza-Molina
et al. [21] used LDA for vegetation dynamics representation and
change detection in EO image time series. In this article, the
latent structures of the normalized difference vegetation index
(NDVI) patches of the area are extracted and the divergence
between the latent structures is considered as a measure of
change. In addition, Lienou et al. [16] used LDA model for the
annotation of large satellite images, using semantic concepts
defined by the user. The simple features such as mean and
standard deviation for the LDA-image representation are used
in the maximum-likelihood method to classify the large unseen
satellite images. Furthermore, Karmakar and Datcu [22] utilized
BOVW and LDA models for representing EO images in word-
and topic-level and applied text-based search algorithms for fast
semantic search in EO images.

The main objective of this article is to evaluate the capabilities
of the data mining latent semantic analysis methods based on

LDA and BOVW models for latent semantic information discov-
ery in EO images with different scenarios (i.e., different EO data,
target purposes, data processing algorithms, and applications).
Therefore, three different scenarios with three different EO im-
age datasets were employed for semantic information discovery
of remote sensing images. As the first scenario, kernel-based
BOVW and LDA are applied on very-high-resolution (30 cm)
multispectral (three RGB bands) EO image for semantic infor-
mation discovery and enhancing the user-defined GT map in
order to achieve a better and more semantically comprehensive
classified map. Later, a similar procedure is employed with
coarser spatial resolution (10 m) multispectral (three RGB and
one infrared bands) images to detect wildfire affected areas.
And finally, in the last scenario, patch-based BOVW and LDA
are employed on initially annotated SAR patches to detect
misclassifications and errors in the initial classification results.
The contributions of this article can be summarized as follows:

1) The present article is not focused on classification, but
the main novelty and purpose is to adhere to the lack of
semantic data mining researches in remote sensing and
to demonstrate the applicability and value of data mining
techniques for latent semantic information discovery in
different contexts from EO images.

2) Many semantic classes in the EO images are hidden and
each user will have a biased interpretation of the scene,
based on their perception, semantic understanding, and
the target application. However, data mining techniques,
such as LDA, make the hidden information evident.

3) The benefits of two well-known data mining techniques,
LDA and BOVW models, for latent semantic information
discovery from EO images are comprehensively discussed
in various circumstances.

In Section II, a brief and basic theoretical background of the
models used in this article, BOVW and LDA, are given. The
datasets used for experimental verification and the three ex-
perimental scenarios with different EO data, algorithms, goals,
and target applications, as well as the obtained results and
discussions are explained in Section III. Finally, Section IV
summarizes the main points and draws a conclusion based on
the findings of the present article.

II. THEORETICAL BACKGROUND

In this section, the basic theoretical background of the BOVW
and LDA models are briefly explained.

A. Bag of Visual Words (BOVW) Model

BOVW is a well-known mid-level representation model
which is originally inspired from bag of words model in text
mining [23]–[25]. Bag of words model represents each docu-
ment with a histogram, corresponding to the frequency of each
keyword in the document [26], [27]. The resulting histograms
can be utilized for various applications, including document
categorization and subject detection.

Similarly, BOVW model represents each image with the
histogram of occurrences of the visual words in the image [24],
[25]. After low-level feature extraction from the EO image,
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visual words have to be constructed in the BOVW model. The
most frequently used technique for visual words construction is
clustering techniques, especially well-known and simple cluster-
ing algorithm, K-means [28], [29]. Alternatively, random visual
dictionary can be employed for visual words construction [30].

After constructing the visual dictionary, each pixel in the
image assigns to the closest visual word in the low-level feature
space. Later, a quantization technique represents the image with
a histogram, corresponding to the frequency of each visual word
in the image.

Usually, BOVW model is applied in the patch level for patch-
based categorization [24], [28], [31]. However, kernel-based
BOVW can provide pixel-based representation of the image
[32]. In the kernel-based BOVW, an arbitrary weighted kernel
is used and the BOVW histogram of the area covered by the
kernel is assigned to the central pixel in the kernel. After sliding
the kernel window over the image and repeating the procedure
for all the pixels in the image, each pixel will be represented
by a separate BOVW histogram [32]. These histograms can be
utilized for categorization and classification of the image.

B. Latent Dirichlet Allocation (LDA) Model

In text mining, LDA considers each document as a com-
position of different words that determine the topic of that
document. Another assumption of LDA is that each topic is rep-
resented by several words. With these assumptions, LDA maps
the documents to the topics through assigning the words of the
document to the topics in a Dirichlet distribution. Particularly,
LDA assumes that each document is a distribution of topics and
each topic is a distribution of words in Dirichlet distribution
[14], [16], [22].

In order to apply LDA in image domain, an analogy between
the text and image domain terminologies is necessary. A word
in text can be the equivalent of a visual word (i.e., from BOVW
model) in the image, which itself corresponds to a segment
or a window of pixels. Additionally, a text document can be
analogous to the image [16], [22].

LDA assumes that the image I is a mixture of N visual words
wn and starts with randomly assigning the topics to each word
and improves this assignment through approximate inference
algorithms such as Gibbs sampling [33] and variational expec-
tation maximization [16]. Probability of each topic in each image
in the LDA is calculated through the generative process as the
following steps:

1) If K is the number of the topics, choose a K-dimensional
Dirichlet random variable θi ∼ Dirichlet(α).

2) For each visual word wn, do the following:
a) Choose a random topic zn ∼ Multinomial(θ).
b) Choose a word wn from p(wn|zn, β), a multinomial

probability conditioned on the topic zn.
And the likelihood of the image with the LDA model is

computed as

p (w|α, β) = ∫ p(θ|α)
(

N∏
n = 1

∑
zn

p
(
zn|θ

)
p(wn|zn, β)

)
dθ.

(1)

In the abovementioned procedure, α and β are Dirichlet
distributions that determine the distribution of the topics in the
image and visual words in the topic, respectively. The goal of
the learning procedure is to find the α and β parameters which
maximize the likelihood for all the images in the training dataset.

The reasons behind choosing the LDA model in this article
are as follows:

1) LDA is completely unsupervised and do not require any
reference data. Supervised methods require semantically
annotated reference data which is not available in many
practical cases. Besides, the available GT maps are usually
biased by the creator’s perception, semantic understand-
ing, and target application [34], and will affect the results
of the information discovery method. Unsupervised meth-
ods help with the unavailability and correctness of the GT
maps.

2) LDA provides an interpretable intermediate semantic rep-
resentation of the data in the form of topic maps, which
gives an educated guess and initial information about the
study area.

3) Despite the undeniable success of machine learning and
deep learning methods, many of these algorithms are usu-
ally considered as a black box without any explanation of
how the model functions and what are the reasons behind
the decisions of the model. The demand for the explainable
machine learning models are increasing and some studies
claim explainability as a prerequisite for the scientific
value of the model’s outcomes [15], [35]. It has been
showed in [15] that the data mining with LDA satisfies
three main aspects of the explainable machine learning as
defined in [35], including transparency, interpretability,
and explainability.

III. EXPERIMENTAL SCENARIOS

In this article, three different scenarios have been employed
to evaluate the potential of the data mining semantic analysis
based on the BOVW and LDA models for latent semantic infor-
mation discovery from EO images. First, this section describes
the datasets used in this article, and later, demonstrates the
experimental results in each scenario.

A. Dataset

In order to consider various remote sensing contexts, three
different EO datasets with diverse characteristics are employed
in this article. The first dataset is a subset of the United States
Geological Survey (USGS) very-high-resolution aerial imagery.
The aerial image is acquired in RGB bands over San Francisco
Bay, USA, in September 2008, with the spatial resolution of
0.3 m [36]. This dataset is used in this article as the very-
high-resolution (submeter) RGB EO imagery. Very detailed
observations such as individual trees, cars, and buildings, as
well as their shadows complicate the processing of this type of
data.

Sentinel-2 is a multispectral spaceborne imagery mission as
a part of the Copernicus program, which measures the Earth
surface with 13 different spectral bands with 10, 20, and 60 m
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TABLE I
SAR DATA SPECIFICATIONS

SM = StripMap, SLC = single look complex.

spatial resolutions. Moreover, Sentinel-2 data are publicly avail-
able and can be accessed free of charge through the Copernicus
datahub.1 In comparison to the first dataset, Sentinel-2 data have
coarser spatial resolution and consequently, small targets (e.g.,
individual trees or cars and their shadow) are not observable,
however, more spectral bands provide more information and
enable us to extract more semantic details about the land cover
of the area. The wildfire in Çınarpınar forest unit, Andırın,
Kahramanmaras¸ in Turkey, which occurred in October 2019 and
affected about 47.43 ha Pinus brutia forest [37] is selected as the
case study. Three subsets, covering the wildfire area, acquired in
July 2019 (before the wildfire), October 2019 (a few days after
the wildfire), and April 2020 (several months after the wildfire),
are used. Four spectral bands with 10-m resolution (three RGB
and one NIR bands) were selected to be used in this article.

SAR systems provide informative EO images with unique
characteristics and different nature from the optical data. As
a result of the nonvisual nature of the SAR images, visual
inspection for semantic interpretation of the data will not provide
detailed and accurate information. An SAR dataset is used as
the third dataset in this article to evaluate the performance of
the semantic data mining techniques for semantic discovery
in SAR EO images. Sentinel-1 is an SAR imagery mission
as a part of the Copernicus program. Sentinel-1 measures the
Earth surface with C-band frequency and up to 5 m × 5 m
spatial resolution based on the operation mode [38]. Besides,
Sentinel-1 SAR data are also accessible, free of charge, through
the Copernicus datahub. In this article, three Sentinel-1 SAR
images acquired in high-resolution StripMap (SM) mode over
Chicago and Houston in the USA and Sao Paulo in Brazil
are used. Table I summarizes the features of the SAR scenes
used in this article. Sentinel application platform [39] is used

1[Online]. Available: https://scihub.copernicus.eu/

for extracting the intensity information from the single look
complex (SLC) SAR images. Later, the SAR scenes are divided
into 289 760 nonoverlapping patches of 100 × 100 pixels. The
patch size is chosen considering the semantic integrity, and
meaningfulness (i.e., based on the semantic classes), and to be in
accordance with the other well-known Sentinel-1 SAR datasets
such as [40]. No further preprocessing (including multilooking
or slant range to ground range conversion) is applied on the SAR
patches and the intensity values are used directly. As a result,
each 100×100 pixel SAR patch covers approximately 170 m
× 430 m or 250 m × 360 m (range × azimuth, based on the
acquisition beam of the scene) on the ground [41]. A total of 1274
patches are annotated manually, using the visual inspection via
Google Earth, in seven semantic classes including agriculture
(AG), forest (FR), high density urban areas (HD), high rise
buildings (HR), low density urban areas (LD), industrial regions
(IR), and water regions (WR).

B. Scenario 1: Submeter Resolution Land Cover Mapping

The main objective of the first scenario is to demonstrate the
capability of the semantic data mining techniques for identifying
the neglected semantic classes and correcting the user-defined
GT map in submeter resolution EO data to correlate the semantic
perception of the user and the machine. For this purpose, the first
dataset, USGS RGB image with 0.3-m spatial resolution is used.
In the first step of this experiment, five semantic classes includ-
ing buildings, roads, vegetation, water, and shadow are visually
identified in the subset and the user-defined GT map is created.
Kernel-based BOVW histograms of the scene are computed
according to the procedure explained in the Section II-A [32].
In the BOVW model, K-means clustering algorithm is used to
construct the visual words and the number of the visual words set
to 20, considering the size of the image and histograms. Besides,
a 15×15 weighted kernel is used to increase the influence of
the closer pixels. The constructed histograms are fed into the
well-known support vector machine (SVM) for classification
and the five-class classified map is produced. The RGB image
with the user-defined GT regions for five semantic classes and
the resulting five-class classified map are illustrated in Fig. 1.

In the next step, the constructed pixelwise BOVW histograms
are fed into the LDA model with different number of the topics
(i.e., 5, 8, 10, and 20 topics) and the topic maps are produced.
LDA is a probabilistic topic model and the output of the LDA will
be a vector of T probability for each pixel or segment, where T is
the number of the topics. The topic with the highest probability
is considered as the topic of the pixel to produce the topic maps.
Fig. 2 illustrates the topic maps with different number of the
topics.

A comprehensive comparison between the semantic classes
identified by the user in the five-class classification and the
LDA topic maps has been carried out to identify the neglected
semantic classes. The first topic map is produced with five
topics (i.e., the same as the number of the semantic classes in
the user-defined GT map) to compare the differences between
the semantic perception of the user and the machine. In this
topic map, the constructed areas (i.e., buildings and roads) are

https://scihub.copernicus.eu/
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Fig. 1. USGS RGB aerial image with labeled GT regions and classified map
with five semantic classes.

Fig. 2. LDA topic maps with various topic numbers. More latent semantic
structures are visible in comparison to the five-class classified map.

Fig. 3. Examples of the new identified semantic classes through the visual
interpretation of the LDA topic maps for (a) vegetation and (b) shadow classes.

represented by one topic. Water and some dark vegetation areas
are represented by the same topic and the three remaining topics
are for the shadow areas and two different vegetation covers.
The huge differences between the user-defined semantic classes
and the topics, identified by the LDA model, demonstrate the
distinct perception of the user and machine learning methods
of the semantic information in the image. As a result, using se-
mantic information discovery methods to correlate these distinct
understandings is necessary for robust data processing in various
remote sensing applications.

With eight topics, water is almost isolated and is less mixed
with dark green vegetations. Constructed areas are still in the
same topic, but the shadow areas are separated into two different
topics, based on the darkness of their background. When the
number of the topics is increased to 10, roads and buildings
are separated, but there are many small redundant segments,
representing different vegetation covers, which have decreased
the smoothness and quality of the topic map. Increasing number
of the topics to 20 does not help with the better representation of
the scene; besides, it increases the small redundant vegetation
segments.

According to the applied visual semantic analysis on the topic
maps, the five-class user-defined GT is corrected and an eight-
class GT is produced. The resulting GT map is semantically
more meaningful and more comprehensive. Fig. 3 illustrates an
example of the identified semantic classes through the semantic
information discovery. In the corrected GT map, the vegetation
class is divided into three classes, including green dense trees,
yellowish vegetation, and sparse vegetation. The green dense
trees class includes the dense trees with dark green leaves, the
yellowish vegetation class includes the trees and other plants
with light green leaves, and the sparse vegetation class includes
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Fig. 4. Radar chart for LDA mean probabilities with eight topics for each
semantic class in the corrected GT.

the sparse grass and isolated small bushes and shrubs. Moreover,
the shadow class is divided into two dark and light shadow
classes. The dark shadow class represents the shadows in closed
areas (e.g., between trees or buildings), where there is no other
source of light, whereas the light shadow class represents the
shadows in open areas (e.g., roads) that are illuminated by
diffused and indirect light sources.

In order to demonstrate the different LDA representations for
each semantic class, a radar chart is used. Fig. 4 represents the
mean probability for each topic in each semantic class for the
LDA with eight topics (same as the number of the semantic
classes in the corrected GT). In this radar chart, each axis repre-
sents a topic and the chart of each semantic class is represented
with different color. Fig. 4 manifests the similarities as well as
the evident differences between different semantic classes. For
instance, the chart of the two shadow classes are very similar
because of the similar nature of the classes, but have apparent
differences, as the dark shadow class has the highest probability
in topic 3, while the light shadow class has the highest probability
in topic 5. Some other semantic classes are more distinctive.
For example, the yellowish vegetation class has a very high
probability in topic 2 and buildings class has a high probability
in topic 7.

Finally, the BOVW histograms are used in the SVM classifier
with the corrected GT map to produce the eight-class classified
map. The new classified map includes the semantic classes of
buildings (B), roads (R), green trees (G), yellowish vegetation
(Y), sparse vegetation (S), water (W), dark shadow (D), and
light shadow (L). Fig. 5 represents the RGB image with the GT
regions for eight semantic classes and the eight-class classified
map.

Fig. 5. USGS RGB aerial image with the corrected GT labels and classified
map with eight semantic classes.

Fig. 6. Example of the enhanced classification results in the eight-class clas-
sification with the corrected GT map: (a), (d), and (g) RGB images, (b), (e), and
(h) five-class classified maps, (c), (f), and (i) eight-class classified maps.

The classified map with the corrected semantic classes pro-
vides more information regarding the various types of vegetation
in the scene. Besides, the separation between the dark and light
shadow can be utilized for retrieving the information in the
shadow covered areas. These results demonstrated the capability
of the data mining semantic analysis to correlate the semantic
perception of the user and the machine to enhance the data
processing algorithms.

Moreover, comparing the five-class and eight-class classified
maps, it can be indicated that a more semantically compre-
hensive GT map not only can help to identify the neglected
semantic classes and achieve a semantically more meaningful
classified map, but also can enhance the general performance
of the classifier and decrease the misclassification. Fig. 6 shows
three examples of the five- and eight-class classified maps as well
as their corresponding RGB images. For instance, in the first row
of the Fig. 6, the eight-class classified map not only detected
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Fig. 7. Eight-class pixelwise classification using SVM classifier (a) without
and (b) with the kernel-based BOVW representation.

different types of the vegetation cover, but also decreased the
misclassification between the constructed areas and vegetation
covered areas. Similarly, in the second row, the eight-class
classified map not only separated the shadows with different
backgrounds, but also decreased the misclassification between
two constructed areas (i.e., buildings and roads).

The main purpose of this article is semantic discovery and
detecting the neglected semantic information in the EO data. As
a result, well-known classification quantitative measures cannot
comprehensively evaluate the performance of the model. For
instance, comparing the classification accuracies of the two
classified maps is not possible because of the different semantic
classes of the classified maps, and the classification accuracy
comparison will not evaluate the capability of the model for
semantic discovery. However, comparing the overall accuracy
and the false-positive rate of the classified maps demonstrate
that the semantic data mining has increased the overall accuracy
of the classification by about 3% and the false-positive classified
samples are decreased by about 2% for each class (average) in
the eight-class classified map.

Moreover, comparing the classification algorithms is not the
main purpose of this article, but a comparison between the
classified maps, with and without using the kernel-based BOVW
representation, is carried out. The classification results are illus-
trated in Fig. 7. Both of these classified maps are pixelwise and
have been classified through the same procedure; however, using
the kernel-based BOVW representation improved the classifica-
tion results, noticeably.

As a conclusion, the first scenario demonstrated the huge dif-
ferences between the semantic understanding of the user and the
machine (i.e., data processing algorithms), which necessitates
the data mining latent semantic information discovery models

Fig. 8. Sentinel-2 RGB images of the study area in the Çınarpınar forest unit,
Andırın, Kahramanmaras¸ Turkey (a) before, (b) few days after, and (c) several
months after the wildfire.

for remote sensing applications. The main purpose of the first
scenario was to evaluate the potential of the semantic analysis for
identifying neglected semantic classes and correcting the user-
defined GT map in submeter resolution EO data to correlate the
semantic perception of the user and the machine. The obtained
results demonstrated that the semantic analysis of the EO images
can be used for GT map correction, which will enhance the
classified map and achieve a semantically more comprehensive
classification.

C. Scenario 2: Sentinel-2-Based Forest Fire Monitoring

The main objective of the second scenario is to evaluate the
potential of the data mining semantic analysis to detect particular
phenomena (e.g., natural disaster) in EO images with coarser
spatial resolution and publicly available EO data. As described
in Section III-A, Sentinel-2 EO images of the wildfire incident in
the Çınarpınar forest unit, Andırın, Kahramanmaras¸ in Turkey,
in October 2019, are used in this scenario. Fig. 8 illustrates the
RGB images of the subsets. Two images for after the incident
are chosen to evaluate the possibility of detecting the affected
areas a few days after the wildfire (when there are evidences and
marks of the incident), as well as the affected area after removing
the wildfire marks (when the affected area is transformed to the
unvegetated area).

In the first experiment, only three spectral bands in the visible
portion of the electromagnetic spectrum (RGB bands) are used.
In the first step, the kernel-based BOVW histograms of the
subsets are created [32]. The same parameters as the previous
scenario are used in the BOVW model. The LDA is trained with
all of the histograms from all three scenes and the topic maps
with different number of the topics are created. LDA model with
five topics resulted in better topic maps and will be used in the
rest of the experiments in this scenario.

Fig. 9 demonstrates the LDA topic maps with five topics, using
only the RGB spectral bands, for the three scenes. The wildfire
area, a few days after the incident [see Fig. 8(b)], is represented
with a separate topic [see Fig. 9(b)]. This topic is not present in
the topic maps before and several months after the incident and
only represents the wildfire affected area. In the topic map of
the scene several months after the wildfire, LDA represented
the affected areas and some other unvegetated areas by one
topic (same topic as the unvegetated areas before the incident).
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Fig. 9. Topic maps with five topics, using only the RGB spectral bands for
(a) before, (b) few days after, and (c) several months after the wildfire.

Fig. 10. Topic maps with five topics, using the RGB and NIR spectral bands
for (a) before, (b) few days after, and (c) several months after the wildfire.

The wildfire has destroyed the vegetation cover of the affected
area and the LDA correctly categorized the affected area into
the same topic as the unvegetated areas. However, LDA with
only RGB spectral bands was not successful to detect the wild-
fire affected area several months after the incident from other
unvegetated areas. The obtained results show the capability of
the semantic analysis for detecting and categorizing the wildfire
shortly after the incident, as well as the affected areas. Moreover,
the differences in the other areas between the topic maps are due
to the different imaging times. Apparently, the vegetation cover
varies during the different seasons, i.e., July, October, and April.

In the next experiment, the NIR band of the Sentinel-2 is added
to evaluate the effect of the NIR spectral imagery. Fig. 10 rep-
resents the topic maps with five topics for this experiment. The
LDA model has categorized the affected areas by the wildfire
into the same topic for the scenes a few days and several months
after the incident [Fig. 10(b) and (c)]. As a conclusion, adding
the NIR band has enabled the model to distinguish the wildfire
affected area and the unvegetated area even several months
after the incident, which is very difficult to detect even through
the visual inspection by the user. Besides, the vegetated areas
are categorized into more topics in comparison to the previous
experiment with only RGB spectral bands, which indicates the
effect of the NIR band in the vegetation categorization.

In the last experiment of this scenario, the NDVI is calculated
and used alongside the RGB and NIR spectral bands for topic
maps preparation. NDVI is a well-known vegetation index which
is calculated according to (2), using the red and NIR spectral
bands. NDVI is a useful index which measures the greenness
and density of the vegetation [37]. Very low values of NDVI
(<0.1) represent unvegetated areas such as rocks and bare soil,

Fig. 11. Topic maps with five topics, using the RGB and NIR spectral bands
and NDVI for (a) before, (b) few days after, and (c) several months after the
wildfire.

sparse vegetation areas usually have moderate NDVI value (0.1
< NDVI < 0.5), and higher NDVI (0.5 < NDVI < 1) is the
indication of higher density green vegetation [37]

NDVI =
(NIR − Red)
(NIR + Red)

. (2)

Fig. 11 represents the topic maps with five topics, using RGB
and NIR spectral bands as well as the NDVI. Comparing the
obtained results in Figs. 10 and 11, adding the NDVI did not
help with the better detection of the wildfire in the LDA model,
however, slight differences in the categorization of the vegetated
area is visible, which is the effect of the NDVI information on
vegetation density measurement.

As a conclusion in this scenario, using only the semantic
analysis technique can detect the affected areas a few days
after the incident, using only the RGB spectral bands. In the
image after several months, the semantic analysis technique
correctly categorized the affected areas in the same category
as the unvegetated areas, since the wildfire eliminated the veg-
etation cover [visible in the RGB image in Fig. 8(c)]. However,
adding the NIR or NDVI bands has enabled the semantic analysis
method to detect the wildfire affected area, even in the image
several months after the incident. The semantic analysis method
has been able to extract latent semantic information which is
even difficult to detect by the user via visual inspection, such
as wildfire affected area after transforming to the unvegetated
regions [Figs. 8(c) and 10(c)]. Therefore, the semantic analysis
is useful to discover the relevant spectral bands for better target
detection in the remote sensing applications. Additionally, this
experiment illustrated that utilizing the relevant spectral bands
is important in semantic analysis.

D. Scenario 3: Sentinel-1 Patch-Based Annotation Analysis

SAR systems provide informative EO images with unique
characteristics. Due to the different nature of the SAR imagery
systems, in many case studies, the conventional machine learn-
ing algorithms are unable to achieve comparable results as they
obtain with the optical data. Despite the remarkable advances
in the SAR data processing techniques, semantic information
extraction from SAR data is still a challenge [42]. Moreover,
deep learning methods have provided immense opportunities



ASIYABI AND DATCU: EARTH OBSERVATION SEMANTIC DATA MINING 2615

TABLE II
NUMBER OF THE CLASSIFIED PATCHES IN EACH SEMANTIC CLASS

for various computer vision applications, and due to their re-
markable performance they have attracted wide attention in the
remote sensing data processing community [43], [44]. However,
due to the various challenges, the huge potential of deep learning
methods for SAR data processing remains unexploited [44]. One
of the main challenges in this field is the scarcity of semantically
annotated SAR data, whereas deep learning methods require
high number of the annotated training data [44].

The main purpose of the third scenario is to utilize the data
mining semantic analysis for enhancing the annotation quality
of the SAR benchmark datasets. As a result, the performance of
the semantic analysis for enhancing the semantic categorization
of SAR image patches is evaluated in this scenario. Three SAR
scenes acquired by Sentinel-1 (Section III-A) are used in this
article. In the first step, the mean and standard deviation of the
Gabor features in six directions (1/6π, 1/3π, 1/2π, 2/3π, 5/6π, and
1/π) and four filter sizes (3 × 3, 7 × 7, 11 × 11, and 19 × 19) are
computed for each patch and used as the low-level features [45].
SVM classifier, with histogram intersection kernel, is utilized
to classify the SAR patches into seven semantic classes using
the Gabor features. Histogram intersection kernel is selected
through trial-and-error between different well-known kernels
for SVM classifier. Fig. 12 represents the HH polarization
SAR images and initially classified scenes. The classification
overall accuracy reaches over 80% and the number of the
patches classified in each of the semantic classes are shown
in Table II.

Several obvious classification errors are noticeable in the clas-
sified patches. In the next step, BOVW- and LDA-based semantic
analysis is used in this article to identify and remove the clas-
sification errors and enhance the annotation of the patches. For
this purpose, patch-based BOVW histograms are constructed for
each of the patches. Similar to the previous scenarios, 20 visual
words are constructed by k-means algorithm. However, due to
the patch-based processing in this scenario, patch-based BOVW
is used, instead of the kernel-based model (Section II-A and [24],
[28], [31], [32]). The BOVW histogram of the training patches,
which are used in the initial training stage of the SVM classifier
(1274 patches), is used to train the LDA model with seven topics.
Number of the topics is chosen with several trials and comparing
the perplexity and coherence of the topic models, as well as

Fig. 12. HH Polarization SAR images and initially classified maps with SVM
classifier and Gabor features for (a) and (d) Chicago, (b) and (e) Houston, and
(c) and (f) Sao Paulo scenes.

considering number of the semantic labels in annotation of the
SAR patches. Table III demonstrates the number and percentage
of the patches in each semantic class for each LDA topic. Zero
patches are categorized in topics 3 and 4, which make them
redundant, however, reducing the number of the topics did not
remove redundant topics (e.g., there were still two redundant
topics with five topics) and increased the perplexity of the topic
model. Furthermore, seven semantic classes were defined in the
initial annotation of the dataset. As a result, seven topics have
been chosen to carry out the experiments in this scenario.

Correct and accurate semantic class labels of the SAR patches
are not available, as a result, several patches of each semantic
class in each topic is inspected visually, as well as comparing
with the Google Earth image of the area. For this purpose, several
random patches from each semantic class and in each LDA topic
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TABLE III
NUMBER AND PERCENTAGE OF THE CLASSIFIED PATCHES IN

EACH SEMANTIC CLASS

are reviewed (e.g., at least 20 patch per topic for the topics with
more than 20 patches) to identify the topics with correct se-
mantic label in each class. The patches categorized in the topics
with incorrect semantic label will be removed from the dataset.
Table IV illustrates HH (above) and HV (below) polarizations
of two typical example patches for each of the topics in each
semantic class. The topics that considered incorrect in each class
and are removed from the dataset are shown with red color in
Table IV, and the other topics with correct semantic labels are
shown with green color.

For instance, topic 1 for almost all of the classes represents
the patches with water regions that are mixed with land, harbor,
or ships. As a result, the patches categorized in the topic 1 will be
removed for all of the classes, except for the WR class. The other
topics in the WR class represent the patches containing mostly
agriculture, bare soil, and some other mixed patches that will
be removed. For the AG class, after removing the patches from
the first topic, the remaining topics mostly represent agricultural
fields with some variations in the crop, density, etc. that should
be maintained in the AG class. Topic numbers 2 and 6 in the FR
class consist of mixed patches, mostly with agricultural field,
and should be removed, but the patches in the topics 5 and 7 will
remain in the FR class.

The semantic labels from the constructed areas are the most
complex patches with the most frequent errors. The only topic
with correct semantic labels for the HD patches is topic 5.
The other topics in this class are mixed patched, mostly with
low density and industrial areas. Similarly, in the HR class, the
patches categorized in topics 2 and 5 will remain and the other
topics will be removed as they include several patches from
industrial fields as well as other urban areas. LD class includes
higher number of the patches in the SAR scenes in this article and
after this visual semantic analysis, the patches represented by the

Fig. 13. Classified maps with SVM classifier and Gabor features after the
semantic analysis which removed the misclassified patches and patches with
ambiguous and mixed semantic labels for (a) Chicago, (b) Houston, and
(c) Sao Paulo scenes.

topics 5 and 7 remain in this semantic class. The patches from the
IR class, which are categorized in the topic numbers 2 and 5 are
most correctly labeled patches of this class and will remain with
this semantic label, whereas the other patches of this class are
mostly representing mixed classes such as different vegetation
covers, roads, and farm houses in the agricultural fields which
should be removed.

As a result of the abovementioned procedure, number of the
patches will be reduced and the size of the dataset will be
decreased by about 9.7%. However, this procedure enhances
the dataset in terms of less incorrectly classified patches, as well
as less mixed patches consisting of multiple semantic classes.
Fig. 13 represents the patches in the scenes where the removed
patches are represented by the black color. Apparently, the
removed patches mostly consist of the mixed and ambiguous
patches such as water patches with ships, shallow water areas
with the effect of the sediment or above water surface vegetation,
beach and harbor, edge patches, roads, and other mixed patches
with ambiguous semantic label, as well as the misclassified
patches as a result of the confusion between water surface and
flat agricultural fields, and between various constructed areas.

After removing the patches categorized in wrong LDA
topics, another visual review has been carried out among the
remaining patches. The results illustrated that there are still
misclassified patches, however, the errors in the classification,
as demonstrated in Fig. 13, decreased dramatically and many
mixed patches with ambiguous or multiple semantic labels are
removed.

The accuracy and false-positive rate of the classification
is computed for before and after the semantic analysis us-
ing the manually annotated patches. The overall accuracy is
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TABLE IV
EXAMPLE PATCHES FOR EACH TOPIC FROM EACH SEMANTIC CLASS

In each example, the above image is the HH and the below image is the HV polarization.
Green and red color represents the topics that remained or removed, respectively, in each class after the semantic analysis.
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improved by about 2%. The semantic class classification ac-
curacy improvement was more prominent for water class as
many mixed patches are removed from this class. However,
the agriculture class was the only class that the classification
accuracy is decreased (about 1%) after the semantic analy-
sis. This is because of the high diversity of the agricultural
patches (different crops, different crop growth level, and differ-
ent sowing direction). Moreover, the average false-positive rate
is also decreased by about 2% for each class after the semantic
analysis.

Several articles have been dedicated to develop annotated
benchmark dataset for machine learning and deep learning
models in remote sensing and many of them have faced the
problem of mixed patches and patches with ambiguous seman-
tic labels [40], [46]–[48]. The explained semantic information
discovery method can help to enhance the developed bench-
mark remote sensing datasets and resolve the abovementioned
challenges.

IV. CONCLUSION

Discovering latent semantic information from (very) high-
resolution EO images is necessary to harness the capabilities
of the advanced remote sensing technologies. There is a huge
improvement area in the field of semantic data mining for various
remote sensing applications in the literature. Data-mining-based
semantic information discovery techniques including LDA and
BOVW models are employed in this article with different remote
sensing datasets to extract the latent semantic information from
EO images for various applications.

Utilizing kernel-based BOVW representation and LDA topic
model has enabled us to correct and enhance the user-defined
GT map and identify the neglected semantic classes in very-
high-resolution (0.3 m) USGS aerial imagery with RGB optical
bands. The corrected GT map resulted in a more semantically
meaningful and comprehensive classified map as well as less
misclassification errors.

Additionally, RGB and NIR spectral bands of the Sentinel-2
optical imagery with coarser spatial resolution (10 m) are used
in the semantic information discovery technique to detect the
affected areas in the wildfire, a few days and several months
after the incident. The results demonstrated the capability of
the semantic discovery method to detect various phenomena
(e.g., wildfire affected area) in EO optical imagery. Additionally,
this scenario demonstrated the capability of the data mining
semantic analysis to detect the relevant spectral bands with more
informative data for the target application.

Furthermore, three scenes from the Sentinel-1 SAR imagery
with SM imaging mode are divided into 100× 100-pixel patches
and a few patches are annotated manually into seven semantic
classes via visual inspection and Google Earth images. Gabor
texture features and the well-known SVM classifier are used
for the initial annotation of the patches. Later, the data mining
semantic information discovery method is utilized to clean the
annotated dataset and remove the misclassified patches, as well
as removing the patches with ambiguous or multiple semantic
labels.

The conducted experiments in this article demonstrated the
following remarks:

1) The main objective of this article is focused on the seman-
tic data mining for various remote sensing applications and
to demonstrate the latent semantic information discovery
method with various EO images in different remote sens-
ing case studies.

2) Conventional machine learning methods are not capable of
extracting the latent semantic information from advanced
remote sensing imagery systems with abundant semantic
information.

3) There is a huge difference between the semantic per-
ception of the user and the machine, and data mining
semantic analysis can be used to correlate these semantic
understandings to enhance the classification results.

4) Well-known data mining techniques are capable of ex-
tracting meaningful semantic information from various
EO images and enhancing the results of the remote sensing
practices in different contexts.

5) Land cover classification in very-high-resolution EO im-
ages can be semantically enhanced in terms of a more
comprehensive classified map and less classification errors
through semantic discovery methods.

6) Different natural phenomena, including wildfire affected
areas, can be detected accurately and practically in EO
images through semantic analysis methods, even in the
situations that are difficult to detect through visual inspec-
tion by the user.

7) Data mining latent semantic information discovery tech-
niques are capable of enhancing the annotated benchmark
datasets by means of detecting the mixed patches with
ambiguous semantic labels and the misclassified patches
in an annotated dataset.

The experiments carried out in this article demonstrated the
immense capabilities of semantic data mining techniques for
various remote sensing contexts. However, more inspections are
necessary to evaluate the competence of the semantic analysis
methods in future articles. The performance of the models
should be investigated with larger scale datasets to evaluate
the generalizability of the method for generating high-quality
training EO data for machine learning algorithms. Additionally,
more reliable quantitative evaluations are necessary to assess the
effect of the semantic data mining on the classification results.
Experiments with well-known EO classification datasets with
reliable GT maps for this purpose should be carried out in the
future articles.
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