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Remote Sensing Image Scene Classification
by Multiple Granularity Semantic Learning
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Abstract—Remote sensing image scene classification faces chal-
lenges, such as the difference in semantic granularity of different
scene categories and the imbalance of the number of samples,
which cause the wrong features learning for deep convolutional
networks (DCNs). This article proposes a multiple granularity se-
mantic learning network (MGSN), including multiple granularity
semantic learning (MGSL) and nonuniform sampling augmenta-
tion (NUA) modules. Specifically, the MGSL module makes full use
of different granularities of semantic information of scenes, guiding
the network to learn global and local features simultaneously. And,
the relationship between semantic features of different granularity
has been explored, based on which the learning of coarse-grained
features helps to improve the learning of fine-grained semantic
features. It shows that learning fine-grain semantics can inhibit
learning coarse-grain semantic features. The NUA module com-
bines sampling and sample augmentation to balance the sample
distribution, which can avoid overfitting caused by oversampling.
The proposed MGSN achieved state-of-the-art classification accu-
racy on two large-scale remote sensing image scene classification
datasets, Million-AID and NWPU-RESISC45. Under 10% and
20% training samples of the NWPU-RESISC45 dataset, MGSN
achieves 91.92% and 94.33% top-1 accuracy, respectively. In exper-
iments conducted on the Million-AID dataset, the proposed MGSN
performed best among 18 DCNs. In comparison to the baseline,
FixEfficientNet, MGSN improved the accuracy of top-1 and top-5
by 10.63% and 5.47%, respectively, with low complexity costs.

Index Terms—Deep convolutional networks (DCNs), multiple
granularity semantic learning (MGSL), remote sensing image scene
classification, imbalance of sample number.

I. INTRODUCTION

R EMOTE sensing image scene classification [1]–[4] has
been widely used in fields [5], such as land surveying,
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nature monitoring, and urban planning [6]. It has made great
progress [7], [8] with the development of deep learning [9], [10]
and automatic machine learning [11], such as a neural archi-
tecture search (NAS) technology [12]. Nevertheless, challenges
remain [13], [14], such as differences in semantic granularity
and imbalanced samples, across scene categories [15].

Differences of semantic granularity refer to the existence
of both fine- and coarse-grained annotations. Fig. 1(a) shows
remote sensing image scenes, which are with coarse-grained
labels, whose annotations are corresponding to global content
information, while Fig. 1(b) shows scenes, which are with
fine-grained labels, corresponding to local region content in-
formation. The existence of remote sensing scenes labeled with
different semantic granularity requires deep convolutional net-
works (DCNs) to simultaneously learn global and local features.
Current image scene classification schemes extract features, and
then perform classification. Feature extraction networks, such
as AlexNet [16], VGGNet [17], GoogleNet [18], ResNet [19],
EfficientNet [20], RegNet [21], and FixEfficientNet [22], turn
images into a C ×H ×W feature map, that is, subsampled as a
1× C feature vector after average or max pooling. A classifier
outputs the probability of different scene classes according to
the feature vector. It is worth noting that the classifier shares
weights for feature vectors from different remote sensing scenes.
It is difficult for a classifier to simultaneously learn multiple
granularity semantic information and features of different scale
regions.

Class sample imbalance is common in remote sensing image
scene classification [23], [24]. As shown in Fig. 2, on the
Million-AID dataset, some scene classes are with rich samples
and some scene classes are with poor samples. There is a great
difference in sample numbers across different categories. And, it
can easily lead to wrong feature learning for DCNs. Few samples
are not enough to support DCNs learning robust features of the
corresponding category scene. Sampling methods are usually
used to reduce the imbalance in the data or optimization space.
Oversampling [25] and undersampling [26] are commonly used
to balance category samples in the data space. However, over-
sampling usually causes overfitting because of repeated samples,
and undersampling may miss valuable information. Sampling in
the optimization space is used to balance the focus on category
scenes. Tan et al. [27] believed that the learning of wrong
features of categories with poor samples for DCNs is usually
due to suppression of categories with rich samples, which
get far more negative than positive gradients during training.
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Fig. 1. Semantic granularity difference of different scenes in the Million-AID [13] dataset leads to wrong feature learning of FixEfficientNet. (a) Annotation
semantic of scenes with coarse-grained labels corresponds to global region information. (b) Annotation semantic of scenes with fine-grained labels corresponds to
local region information. (c) Visualization of feature map shows that FixEfficientNet only learned local feature of “building” and ignored global features, which
lead to misclassification.

Fig. 2. Class sample imbalance of the Million-AID dataset. Some scene
classes are with rich sample (red). And, some scene classes are with poor sample
(blue).

To reduce this suppression may help to learn robust features
for DCNs.

In this article, we propose a multiple granularity semantic
learning network (MGSN), including multiple granularity se-
mantic learning (MGSL) and nonuniform sampling augmenta-
tion (NUA) modules. The MGSL module reduces wrong feature
learning caused by semantic granularity differences in remote
sensing scenes. We regard the classification of remote sensing
image scenes with different granularity semantic annotations
as a question of multiple semantic granularity feature learning.
The combination of semantic granularity features represents
different categories of remote sensing scenes. Illustration of
generation of multiple granularity semantic annotations is shown
in Fig. 3. The node list of each path from the root to leaf in the
directed tree corresponds to the multiple annotations of a single
remote sensing scene. From root to a leaf node, the annotation
semantic granularity is from coarse to fine, and the correspond-
ing semantic region is from global to local. Multiple classifiers
are used to predict multiple granularity semantic information in
parallel. Different from current methods, the proposed method

learns multiscale region features by setting learning objectives
at the semantic level. It learns multiscale region features on
a single-scale feature map and does not rely on the heuristic
network structure design. The MGSL module has following
three advantages.

1) It can learn global and local region features on a single-
scale feature map at the same time.

2) Additional hyperparameters are not needed.
3) It does not depend on characteristics of different scenes or

statistical information, and it has strong generalization.
The NUA module combines oversampling and sample aug-

mentation, which cooperate. Oversampling makes up for the
disadvantage that sample augmentation aggravates class sample
imbalance, and sample augmentation makes up for the disad-
vantage that oversampling easily leads to overfitting.

The main contributions of this article are as follows.
1) The proposed MGSL module guides the network to learn

multiscale region features on a single-scale feature map.
And, we also explored the relation between semantic fea-
tures of different granularity, founding that coarse-grained
feature learning helps to improve the learning of fine-
grained semantic features, while fine-grained semantic
feature learning can inhibit the learning of coarse-grained
semantic features.

2) The proposed NUA module reduces class sample imbal-
ance through sample augmentation, which can effectively
guide the network to learn robust features of remote sens-
ing scenes with strong generalization.

3) MGSN effectively improves DCN performance in the
presence of semantic granularity differences and class
sample imbalance. It achieved state-of-the-art classifi-
cation on two large-scale remote sensing image scene
classification datasets: 1) Million-AID; and 2) NWPU-
RESISC45. In experiments on the Million-AID large-
scale remote sensing image scene classification dataset,
the proposed method improved top-1 accuracy by 10.63%
and top-5 accuracy by 5.47% when compared with the
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Fig. 3. Generation of multiple granularity semantic annotations of remote sensing scenes in the Million-AID dataset. Nodes of each path from root to leaf in the
directed tree correspond to multiple annotations of a single remote sensing scene. From root node to leaf node, the annotation semantic granularity is from coarse to
fine. Target prediction classes are in leaf nodes. For example, nodes of the blue path are multiple granularity semantics of the “basketball court” scene. Its multiple
granularity semantic annotation is shown in the blue-dotted frame. From coarse- to fine-grained are “public service land,” “sports land,” and “basketball court.”
And specifically, “basketball court” is its target prediction class.

baseline FixEfficientNet. Under 10% and 20% train-
ing samples of the NWPU-RESISC45 dataset, MGSN
achieves 91.92% and 94.33% top-1 accuracy, respectively.

II. RELATED WORKS

There are mainly three types of remote sensing image scene
classification methods. One is based on multiscale feature learn-
ing, must learn multiple-scale region features and feature aggre-
gation. One is based on discriminative features representation.
Another is based on key region feature learning, and usually uses
saliency detection and an attention mechanism.

A. Feature Aggregation-Based Methods

Feature aggregation-based methods [30], [31] aggregate mul-
tiscale features from different layers of DCNs as the classifier
input. This can improve the ability to learn multiscale region fea-
tures for DCNs, but their aggregation is mainly a heuristic design
that involves superparameters, such as the selection and number
of layers, merging modes of features, and fusion weights. Yang
and Ramanan et al. [29] regarded multiscale feature aggregation
as the construction of a directed acyclic graph. After average
pooling, multiscale features are merged by add. Compared with
the use of a single-scale feature, multiscale feature aggregation
improves the top-1 accuracy by 4.3%, and it achieves 56.2%
top-1 accuracy on the SUN397 dataset. To reduce information
redundancy and feature exclusion in feature aggregation, Sun
et al. [28] proposed a bidirectional gate network for adaptive
weighted feature fusion with 95.48% accuracy on the AID [32]
remote sensing image scene classification dataset. Multiscale

feature aggregation requires more parameters and more training
data, which increases the difficulty of learning for DCNs. In SPP-
net [33], spatial pyramid pooling and side supervision strategies
are proposed to fuse multiscale features based on pretrained
AlexNet. And, it achieved 84.64% classification accuracy under
20% training samples on the NWPU-RESISC45 dataset.

To effectively fuse mid-level and high-level features with the
low-level ones, ACR-MLFF [34] proposed a novel multilevel
feature fusion network to adaptively reduce channel dimension-
ality. In [35], a self-attention-based deep feature fusion method
is used to aggregate deep layer features and emphasize the
weights of the complex objects of remote sensing scenes. It uses
a pretrained convolutional neural network to extract the abstract
multilayer features, and a nonparametric self-attention layer is
proposed for spatial-wise and channel-wise weightings, which
enhances the effects of spatial responses of the representative
objects. When 10% or 20% samples of the NWPU-RESISC45
dataset are used for training, it achieves 84.38% and 87.86%
classification accuracy, respectively. TFADNN [36] uses a two-
stream architecture [37] to aggregate deep learning features
and general features, named nonlinear encoding bag-of-visual-
words.

B. Discriminative Features Representation-Based Methods

Discriminative features representation is important for remote
sensing image scene classification. In BoCF [38], a novel feature
representation method, named bag of convolutional features, is
proposed for scene classification. It uses off-the-shelf convolu-
tional neural networks to generate visual words. And, SCCov [6]
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uses covariance pooling to exploit the second-order informa-
tion contained in multiresolution features, which allows the
convolutional neural networks to achieve more representative
feature learning. When 20% samples of the NWPU-RESISC45
dataset are used for training, it achieved 92.10% classification
accuracy. To address the problems of within-class diversity and
between-class similarity, D-CNNs [39] combined deep learning
and metric learning together to design a new discriminative
objective function that could guide CNNs to learn discriminative
features representation. In this mode, images from the same
scene are mapped closely to each other, and images of different
scene classes are mapped as far as possible. When 20% samples
of the NWPU-RESISC45 dataset are used for training, D-CNNs
achieved 91.89% classification accuracy. DLA-MatchNet [40]
learns discriminative representations and a proper metric for re-
mote sensing scenes in a few-shot manner and it achieves 81.63%
classification accuracy under the case of five-way five-shot.

C. Saliency Detection and Attention-Mechanism-Based
Methods

Saliency detection and attention-mechanism-based methods
distinguish different remote sensing scenes by learning fea-
tures of key regions. Increasing the weights of some key
objects in a scene can reduce misclassification in complex
remote sensing environments. Zhang et al. [41] proposed a
saliency guided information sampling strategy, which removes
redundant information and retains saliency region information
to improve the performance of DCNs. The proposed method
achieved state-of-the-art classification accuracy on the UC
Merced dataset [42]. Attention-mechanism-based methods im-
prove classification performance by increasing the focus of
DCNs on local key regions. Wang et al. [43] proposed an atten-
tion recurrent convolutional network to selectively focus on key
regions of scenes, extracting only their deep features. When 50%
data of UC Merced were used to train the network, it obtained
96.81% classification accuracy. During multilayer and pooling,
a large amount of important information is lost, resulting in the
insufficient ability of the extracted features to represent objects.
To improve the feature extraction and generalization abilities of
deep neural networks, EAM [44] proposed an enhanced attention
module. It achieved 94.29% accuracy on the NWPU-RESISC45
dataset.

However, these methods ignore the learning of global seman-
tic information in remote sensing scenes. Although focusing
on key local regions can improve DCNs’ fine-grained classifi-
cation ability, it leads to misplaced attention on local features
of global information-oriented scenes with coarse-grained la-
bels. Scenes in Fig. 1(c) have the coarse-grained label “dry
field”. From a human perspective, their semantic content is
“land” in a global region. However, visualization of feature
map FixEfficientNet [22] output shows that the network only
learned local semantic information “building” instead of global
semantic information “land”. Learning global and local semantic
information of remote sensing scenes is difficult, but important
to improve the robustness of DCNs in complex remote environ-
ments.

III. PROPOSED METHOD

Fig. 4 shows the framework of the proposed MGSN, which
includes following three parts.

1) The NUA module balances samples of different remote
sensing scene categories.

2) The feature extraction module extracts features from every
input remote sensing scene image and outputs its feature
map ZO.

3) The MGSL module uses 1× 1 convolution (Conv) to split
multiple granularity semantic features from ZO, from
which multiple classifiers predict multiple granularity se-
mantic information of corresponding scenes.

Final loss in training consists of multiple granularities se-
mantic losses, making possible multiple granularity semantic
and multiple scale region feature learning in backpropagation.

A. NUA Module

The NUA module balances samples of different category
scenes, including the sampling and augmentation stages, com-
bining oversampling and augmentation to help DCNs learn
robust and distinguishable features of remote sensing scenes.
Oversampling can make up for the class sample imbalance
caused by sample augmentation, and the latter can make up for
overfitting caused by oversampling. This differs from current
sampling methods in the calculation of sampling probabilities
of different categories.

Sampling probabilities of categories are relative in the NUA
module. Fig. 4 shows the calculation pipeline. The maximum
number of samples of category k is

Mk−max = max(nk). (1)

And, the sampling probability of the kth category scene is

pk =

{
Mk−max−nk

nk
, Mk−max

2 < nk ≤ Mk−max

1, 1 ≤ nk ≤ Mk−max
2

(2)

where nk is the number of samples in the kth category.
The fewer the samples of a remote sensing scene category,

the higher the sampling probability of each sample in it. When
nk is less than Mk−max

2 , each sample is selected, and when nk is
equal to Mk−max, no sample is selected.

The augmentation increases the number and diversity of cate-
gory scene samples. The number of augmentations of a sample is
calculated as �Mk−max−nk

nk
�. Illustration of different scene images

augmentation is shown in Fig. 5, for example, “ground track
field” scene image, “oil field” scene image, “apron” scene image,
and “quarry” scene image. From left to right, the first column is
the original scene image. Columns 2–4 are augmented images. In
order of priority, types of augmentation include rotation, center
crop, and their combination. The rotation angle of a scene image
is an integer multiple of 23. The proportion of center crop order
is 1

2 and 2
3 . After merging augmented and original samples, the

numbers of samples tend to be balanced across categories.
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Fig. 4. Framework of the proposed MGSN. (a) Nonuniform Sampling Augment: This module balances samples of different remote sensing scene categories.
(b) Feature Extraction-EfficientNet: Features are extracted from every input remote sensing scene image. (c) MGSL: This module helps the network to simultaneously
learn global and local semantic features.

B. Feature Extraction

EfficientNet [20] is based on a neural network structure search
(NAS), and has excellent feature extraction ability. It is used
in many visual tasks, including object detection and tracking.
According to image resolution, network depth, and network
width, it is divided into EfficientNet-B0–B7. Efficient-B0 is the
base, and others can be obtained by scaling it.

We use EfficientNet-B7 as the feature extraction module.
Fig. 4 shows its structure, which includes seven stages. An input
remote sensing scene image is downsampled by 3× 3 Conv to
obtain a final feature map ZO after transformation in each stage.
Each stage consists of stacking submodules MBConv6, k × k,
and MBConv1, k × k, for different times, where k is the size of
the Conv kernel. MBConv6 and MBConv1 differ according to
whether the first 1× 1Conv increases the dimension of the input
feature map. The input and output feature map dimensions of the
first 1× 1 Conv in MBConv1 are the same, but the dimension
of the output feature map of the first 1× 1 Conv in MBConv6
is six times than that of the input feature map.

As shown in Fig. 6, MBConv6 and MBConv1 include Conv,
depthwise Conv (DWConv) [45], an SE module [46], batch nor-
malization, and the Swish activation function. DWConv includes
DWConv in each channel and pointwise Conv at each point on

the feature map. SE is a kind of attention module, consisting
of pooling layers, fully-connected layers, Swish activation, and
sigmoid and multiply operations.

Let L = {L1, L2, L3, L4, L5, L6, L7} represent the stacking
times of MBConv1 or MBConv6 in every stage of EfficientNet.
In EfficientNet-B0, stacking times of each stage are L0 = {1, 2,
2, 3, 3, 4, 1}. The calculation of scaled depth, width, and image
resolution from EfficientNet-B0 to EfficientNet-B1-B7 is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
depth : d = αϕ

width : w = βϕ

resolution : γ = γϕ

α ≥ 1, β ≥ 1, γ ≥ 1 α · β2 · γ2 ≈ 2

(3)

where ϕ is a scale factor. When ϕ = 7, the structure of
EfficientNet-B7 can be obtained according to EfficientNet-B0,
and α = 1.2, β = 1.5, and γ = 1.15 [20].

C. Multiple Granularity Semantic Learning

In the MGSL module, remote sensing scene image classifica-
tion is regarded as a multilabel classification task. As shown in
Fig. 3, the label class and its father or grandfather class of a single
remote sensing scene have multiple annotations corresponding
to multiple granularity semantic information from local to global
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Fig. 5. Illustration of different scene images augmentation. (a) “Ground track field” scene image. (b) “Oil field” scene image. (c) “Apron” scene image.
(d) “Quarry” scene image. From left to right, the first column is original scene image. The second–fourth columns are augmented images of rotation, center crop,
combination of rotation, and center crop.

regions. The MGSL module includes the generation of multiple
granularity annotations, classification model of multiple granu-
larity semantics, and multiple granularity loss function.

1) Generation of Multiple Granularity Annotations: It is
shown as the directed tree in Fig. 3. Let D = (V,Hd)
represent the hierarchical relations of label classes and
their father and grandfather classes. The target prediction
classes of the dataset are in leaf nodes. V = v1, v2, . . ., vn
is the node set of the tree, corresponding to classes. Hd ⊆
V × V is a directed edge set, where (vi, vj) ∈ Hd refers
to a hierarchical relation and vi is the father class of vj .
Let X = {xi|i = 1, 2. . ., N} be the set of remote sensing
scene images. Y = {yi|i = 1, 2. . ., N} is the correspond-
ing label set of X , where N is the number of samples
of all categories. C = {ci|i = 1, 2. . ., n} is the set of all
classes of remote sensing scenes, including target predic-
tion classes in leaf nodes and their father and grandfather

classes, where n is the number of classes. The multiple
granularity semantic annotations of one remote sensing
scene xi can be represented as class nodes of one directed
path from the root to a leaf node in the directed tree.
The map relation is

yi
k = T (xi; k;C) (4)

where T (·) is the map relation, K is the height of the
directed tree, and k is the kth level of the tree and the
granularity semantic annotation of xi. The root node is at
the zeroth level and is the first node of each directed path.
The directed tree transforms the map relation of remote
sensing scenes and their labels from one-to-one to one-
to-many. Multiple annotations include fine-grained local
semantic information and coarse-grained global semantic
information of each remote sensing scene image.
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Fig. 6. Submodule structure of EfficientNet, MBConv6, and MBConv1, which
differ by whether the dimension of the input feature increases after 1× 1 Conv.

2) Classification Model of a Multiple Granularities Seman-
tic: It has multiple branches. As shown in Fig. 4, when the
size of an input remote sensing scene image is 300× 300,
the dimension of the feature map ZO and feature extrac-
tion module output is 2560. For a directed tree whose
height is K, K branches are used to learn K granularity
semantic information of remote sensing scenes, each a
subclassifier. The kth branch is represented as Branch-k,
corresponding to the kth granularity semantic of scenes.
We use aK value of 3. The branches are Branch-1, Branch-
2, and Branch-3. The corresponding semantic granularity
is from coarse to fine. Feature map ZO is first transformed
with 1× 1 Conv before it is input to each branch. Be-
cause Branch-1 is used to capture the global feature of
the scene, the input feature map is directly transformed
with average pooling. Branch-2 and Branch-3 capture
fine-grained local features. Input features are transformed
with 1× 1Conv, followed by average pooling. After these
transformations, the different branch output features are
{fB1

O, fB2
O, fB3

O}. After two fully-connected layers
and a softmax function, the prediction probabilities of dif-
ferent semantic granularities are obtained. Their combina-
tion is the final prediction probability in multidimensional
space.
The proposed classification model differs from other re-
mote sensing scene classification methods [47], due to the
layering and balance of different granularities of semantic
learning. As shown in Fig. 4, the learning of different
granularity semantics is separate, and they do not compete.
They are in parallel and layering. Different granularity
semantic learning losses are considered in each backprop-
agation, which focuses the network’s attention on different
granularity semantic and scale regions tend to be balanced.

3) Multiple Granularity Loss Function: It is an extension of a
cross-entropy loss [48], [49] function in high-dimensional
space, which helps the network learn multiple granularity
semantic information in the training stage. As shown in

(4)–(6), letxi represent a remote sensing scene image, yi is
the label vector, and pi is the prediction probability vector.
We represent convolutional neural network parameters as
W andB.G(·) is the map relation of remote sensing scene
xi and its label yi. P (·) is the map relation of remote
sensing scene xi and its prediction probability pi. Most
DCN-based remote sensing scene classification methods
learn distinguishable features by directly minimizing the
gap betweenP (·) andG(·), J(X;W ;B). But these meth-
ods can only learn single granularity semantic features,
and when the semantic granularities of categories differ,
they compete, which leads to unstable and even wrong
features learning.

yi = G(xi;C) (5)

pi = P (xi;W ;B) (6)

J(X;W ;B) = min

(
− 1

N

N∑
i=1

P (xi;W ;B)logG(xi;C)

)
.

(7)

We regard single semantic granularity learning as
1-D optimization. The proposed multiple granularities
loss function connects several optimization questions
by a certain relationship to construct an optimization
model of multiple granularities semantic learning in
high-dimensional space. The kth prediction probability
of remote sensing scene xi is

pi
k = PK(xi; k;W ;B). (8)

The kth semantic granularity optimization objective is
Jk(X;W ;B). To simplify, we use a linear relationship∑

(·) to connect different semantic granularity optimiza-
tion questions to construct a multiple granularity semantic
learning optimization objective. And, the objective is

JK(X;W ;B) = min(
K∑

k=1

Jk(X;W ;B))

= min

( K∑
k=1

(
− 1

N

N∑
i=1

(T (xi; k;C;G)logPK(xi; k;W ;B))

))
.

(9)

By minimizing the multiple granularities loss function, the
proposed method can learn multiple granularity semantic
features at the same time, including fine-grained local
region features and coarse-grained global region features.

IV. EXPERIMENTS

A. Dataset

We evaluate our approach on two public and popular datasets,
which are introduced as follows.
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Fig. 7. Some scene image examples of Million-AID. (a) Images of scene “dry field”. (b) Images of scene “swimming pool”. (c) Images of scene “church”.
(d) Images of scene “ice land”. (e) Images of scene “dam”. (f) Images of scene “viaduct”.

1) Million-AID [13]: It is a large-scale remote sensing image
scene classification dataset, which includes 51 scene cat-
egories. Some scene image examples are shown in Fig. 7,
for example, images of scene “dry field,” images of scene
“swimming pool,” images of scene “church,” images of
scene “ice land,” images of scene “dam,” and images
of scene “viaduct”. There were 50000 remote sensing
scene images in the training set and 10000 images in the
test set. The minimum number of samples of different
scene categories was 31 and the maximum was 6197. The
minimum size of a scene image was 110× 110 and the
maximum was 11211× 11211. Some scenes had fine-
grained semantic granularity annotation and some were
coarse-grained.

2) NWPU-RESISC45: It is a large-scale remote sensing im-
age scene classification dataset with rich image variations
and high interclass similarity. It consists of 31 500 remote
sensing images divided into 45 scene classes whose size

is 256× 256. The spatial resolution varies from 30 to
0.2 m per pixel for most scene classes. All images are
extracted from Google Earth. Following the setting of
previous methods on the NWPU-RESISC45 dataset, we
randomly select 10% or 20% samples as the training data
and the rest samples are served as the testing data.

B. Experimental Settings

The baseline of the proposed method is FixEfficientNet,
whose default train image size is 224× 224 and test image size
is 256× 256. Its research shows that when the train image size
is less than that of the test image size, the performance of a deep
model is better.

1) For the Million-AID Dataset: Since the size of most
images is about 300× 300, the train image size in the
proposed method is set to 300× 300. Following the scale
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TABLE I
EXPERIMENTAL RESULTS OF METHODS ON MILLION-AID. B-1, B-2, AND B-3 ARE DIFFERENT GRANULARITY SEMANTIC LEARNING BRANCHES. THE SEMANTIC

GRANULARITY OF BRANCH-1, BRANCH-2, AND BRANCH-3 RANGES FROM COARSE TO FINE. “NUA” DENOTES THE PROPOSED NONUNIFORM SAMPLING

AUGMENTATION MODULE

The top three values of Top-1 and Top-5 accuracy are maked in bold.

factor between train and test image size in FixEfficient-
Net, test image size of the proposed method is set to
300× 256

224 ≈ 350. And, we keep the train and test image
size same in baseline and ablation study experiments. For
compared methods, we follow their default setting and
keep the input image size 224× 224 in the training and
testing stage.

2) For the NWPU-RESISC45 Dataset: Since all the image
size is 256× 256, following the setting in the baseline
method, the train and test image size in the proposed
method is set to 224× 224 and 256× 256, respectively.
And, we compare the proposed method with some state-
of-the-art methods published from 2017 to the present.

The initialization parameters of the feature extraction module
in the proposed method were from pretrained EfficientNet-B7
on the ImageNet dataset. The height of the directed tree K in the
generation of multiple granularity semantic annotations was 3.
The proposed method was implemented based on the PyTorch
deep learning framework. All model training and testing were
on an NVIDIA TITAN X GPU.

C. Evaluation Metrics

The metrics of experiments included top-1 accuracy (overall
accuracy) and top-5 accuracy, which are widely used in im-
age classification tasks [10], [12]. Top-1 accuracy was used to
evaluate overall performance. In the top-5 accuracy definition,
when the top-5 prediction probability includes the target class,
the prediction is considered correct. To compare the complexity

of different methods, their parameter size was used as a metric,
which was output by the summary function of PyTorch.

D. Comparison With State-of-the-Art Methods

1) Results on the Million-AID Dataset: The proposed
method was compared with ResNet50, ResNet101,
ResNet152, RegNet-200MF, RegNet-400MF, RegNet-600MF,
RegNet-800MF, RegNet-1.6GF, RegNet-3.2GF, EfficientNet-
B0, EfficientNet-B1, EfficientNet-B2, EfficientNet-
B3, EfficientNet-B4, EfficientNet-B5, EfficientNet-B6,
EfficientNet-B7, and FixEfficientNet, with different structures
of ResNet [19], RegNet [21], and EfficientNet [20]. The
baseline was FixEfficientNet, a state-of-the-art method, and its
feature extraction module was EfficientNet-B7, pretrained on
the ImageNet dataset [14].

Experimental results on Million-AID [13] are given in Table I,
where B-1, B-2, and B-3 refer to Branch-1, Branch-2, and
Branch-3, respectively, which have semantic granularity rang-
ing from coarse to fine. The classifier module for comparison
methods is the same as Branch-3. “NUA” indicates the nonuni-
form sampling augmentation module. Among the methods, our
baseline FixEfficientNet achieved the best top-1 accuracy of
69.5%, and its top-5 accuracy was 92.55%. EfficientNet-B4 had
the best top-5 accuracy, 93.13%, and its top-1 accuracy was
62.19%. Compared with these methods, our proposed MGSN
had 80.13% top-1 accuracy and 98.02% top-5 accuracy, which
was best. The gap between top-1 and top-5 accuracy of all
methods shows the importance of fine-grained distinguishing
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TABLE II
TOP-1 ACCURACY (%) OF STATE-OF-THE-ART METHODS ON THE NWPU-RESISC45 DATASET WITH DIFFERENT TRAINING SAMPLE RATIOS (10% AND 20%).

ALL GRANULARITY SEMANTIC LEARNING BRANCHES ARE USED IN THE PROPOSED METHOD

ability. Compared with the baseline FixEfficientNet, the pro-
posed MGSN improved top-1 accuracy by 10.63% and top-5
accuracy by 5.47%, showing that MGSN can reduce the seman-
tic granularity difference and class sample imbalance in remote
sensing scene image classification.

Table I gives that when remote sensing scenes are complex,
structure, such as depth and complexity, of models is not the
main and only factor. Comparing ResNet50, ResNet101, and
ResNet152, the depth, from 50 to 152 layers, and the parame-
ters, from 90.07 to 222.2 MB, are gradually increasing. Their
accuracy increases at first, from 45.64% top-1 accuracy of
ResNet50 to 53.16% for ResNet101, and then decreases, from
53.16% top-1 accuracy of ResNet101 to 46.18% for ResNet152.
From RegNet-200MF to RegNet-3.2GF, the model complex-
ity increases, as does the classification top-1 accuracy. How-
ever, the improvement is small. Among EfficientNet-B0–B7,
EfficientNet-B7 achieved the best top-1 accuracy, 62.19%. Com-
pared with EfficientNet-B0, EfficientNet-B7 improved top-1
accuracy by 0.12%, but it is 16-times more complex. These
results show that the improvement of careful DCNs struc-
ture design is limited in remote sensing scenes with semantic
granularity difference and class sample imbalance challenges.

The effectiveness of MGSN shows the superiority of the MGSL
and NUA modules in guiding the network to learn robust features
with correct semantics, and that an effective learning objective
can guide a network to learn the multiscale region features on
single-scale feature maps.

2) Results on the NWPU-RESISC45 Dataset: The compar-
ison with some state-of-the-art methods published from 2017
to the present on the NWPU-RESISC45 dataset is given in
Table II. Under 10% and 20% training samples, the classifi-
cation accuracy of the proposed method reaches 91.92% and
94.33%, which surpasses all comparison methods. It shows the
superiority and stability of the proposed method. ADSSM [54]
and MGML-FENet [66] also improve the classification accuracy
from the perspective of multiple granularities semantic fea-
tures learning. ADSSM achieves the second-highest accuracy,
91.69% and 94.29%, when 10% and 20% samples are used to
train the model. The difference between the proposed method
with ADSSM is that ADSSM regards the features of different
levels, such as low-level, mid-level, and high-level features, as
multiple granularities semantic information and merges them
in feature space. It needs to mix a variety of hand-designed
features, such as SIFT, visual dictionary, and so on, and deep
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TABLE III
ABLATION STUDY RESULTS ON THE MILLION-AID DATASET. B-1, B-2, AND B-3 ARE DIFFERENT GRANULARITY SEMANTIC LEARNING BRANCHES,

AND THE SEMANTIC GRANULARITY OF BRANCH-1, BRANCH-2, AND BRANCH-3 RANGES FROM COARSE TO FINE. “NUA” DENOTES THE PROPOSED NONNIFORM

SAMPLING AUGMENTATION MODULE.

learning features. It is more complicated. MGML-FENet ex-
tracts multiple granularities semantic features from different
stages of a deep learning model. It achieves 90.69% and 93.36%
classification accuracy under 10% and 20% samples training,
respectively, which is lower than the proposed method. It shows
that our proposed method is better in the learning of multiple
granularities semantic features.

E. Ablation Study

Ablation study results on the Million-AID dataset are given
in Table III. B-1, B-2, and B-3 refer to Branch-1, Branch-2, and
Branch-3, respectively, the semantic granularity from coarse to
fine. NUA is the proposed nonuniform sample augmentation
module. The feature extraction module of the baseline FixEffi-
cientNet is from EfficientNet-B7.

B-3, B-2+B-3, and B-1+B-2+B-3 refer to models with combi-
nations of different semantic granularity learning branches, and
“
√

” represents that the corresponding module is used in a model.
Compared with a model using only semantic granularity learning
branch B-3, the top-1 accuracy of model B-2+B-3 improved
from 69.5% to 76.96% and the top-5 accuracy from 93.55% to
97.58%.

When three semantic granularity learning branches were used,
i.e., B-1+B-2+B-3, the top-1 accuracy improved from 69.5%
to 77.10%, and the top-5 accuracy from 92.55% to 97.64%.
The visualization of the confusion matrix is shown in Fig. 8. It
is observed that our method performs well in most categories,
such as wastewater plant, golf course, stadium, parking lot, pier,
and so on. These results show the effectiveness of the proposed
MGSL method, and the performance gradually improves with
the increase of semantic granularity. Compared with the model
using only B-3, the top-1 accuracy of B-2+B-3 improved by
7.46%. Compared with B-2+B-3, the top-1 accuracy of B-
1+B-2+B-3 improved by 0.14%. These results show that the
relation between the improvement and the semantic granularity
is nonlinear. Comparing experimental results of B-2+B-3 versus
B-1+B-3 shows that the finer the extra semantic granularity, the
more obvious the improvement in classification accuracy.

To verify the effectiveness and generalization of NUA, abla-
tion study experiments on Million-AID were carried out on the
baseline FixEfficientNet and the proposed MGSN. The top-1

accuracy of FixEfficientNet with NUA improved from 69.5%
to 77.57%, a difference of 8.07%. Compared with MGSN with-
out NUA (B-1+B-2+B-3), the top-1 accuracy of MSGN with
NUA (B-1+B-2+B-3+NUA) improved by 3.03%, and the top-5
accuracy by 0.38%. This shows that, based on MGSL, the NUA
module can further improve network performance. The NUA
module can be directly used in other remote sensing scene image
classification methods.

Discussion of the superiority of the NUA module: The goal
of the NUA module is to alleviate the imbalance of the sample
number of different classes. And, the kernel idea is to unevenly
change their sample number and make them balanced. Common
strategies that change sample numbers are data augmentation
and oversampling. However, data augmentation will enlarge the
imbalance. Because it scales the sample of different classes in the
same factor. For example, class A is with five samples and class B
is with 20 samples. After five different augment transformations,
class A is with 25 samples and class B is with 100 samples.
The imbalance is larger. And, oversampling usually leads to
overfitting since sampled samples are usually repeated. Then,
we combined them together, designing the NUA module. There
are following two advantages.

1) It scales the sample of different classes in a different factor
and makes them balanced.

2) Different types of augmentation provide additional differ-
ent samples and it avoids overfitting.

The main innovation of the NUA module is that it alleviates
the imbalance challenge in remote sensing image scene classi-
fication from the perspective of data augmentation. And, it can
boost the classification accuracy and is with good generalization.
As given in Table III, the NUA module boosts the top-1 accuracy
of baseline by 8.07%. With the NUA module, our MGSN is
further improved by 3.03%, from 77.10% to 80.13%. It shows
the superiority of the proposed NUA module.

V. DISCUSSION

To fully understand the impact of multiple granularity seman-
tics on the network, we perform an analysis from two aspects
on the Million-AID dataset: 1) interaction between different
semantic granularity learning; and 2) feature map visualization
of models guided by different granularity semantics.
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Fig. 8. When three semantic granularity learning branches were used, MGSN with B-1+B-2+B-3, visualization of confusion matrix on the Million-AID dataset.

TABLE IV
EXPERIMENTAL RESULTS OF PROPOSED METHOD GUIDED WITH DIFFERENT

SEMANTIC GRANULARITY. THE RESULTS SHOW THE ACCURACY OF EACH

SEMANTIC GRANULARITY LEARNING BRANCH INSTEAD OF ONLY THAT OF

TARGET CLASS PREDICTION BRANCHES. B-1, B-2, AND B-3 DENOTE

BRANCH-1, BRANCH-2, AND BRANCH-3, RESPECTIVELY, WHOSE SEMANTIC

GRANULARITY RANGES FROM COARSE TO FINE

A. Interaction Between Different Semantic Granularity
Learning

Table IV gives experimental results of models guided by
different semantic granularity, where B-1, B-2, and B-3 range
from coarse- to fine-grain. Different from Tables III and IV
gives the classification accuracy of each semantic granularity

and not only target-class prediction accuracy. Comparing the
classification accuracy of each semantic granularity when mod-
eled with different combinations of learning branches, their
interaction is shown. For FixEfficientNet with B-3, MGSN with
B-2+B-3, and MGSN with B-1+B-3, the top-1 accuracy of
B-3 was 69.5%, 76.96%, and 73.99%, respectively. This shows
that coarse-grained semantic learning, i.e., B-1 or B-2, helps to
improve the learning of fine-grained semantic learning B-3. The
top-1 accuracy was improved by 4.49% and 7.46%. Hence, the
finer the granularity of the extra coarse-grain semantic, the more
obvious the improvement in accuracy. Comparing MGSN with
B-2 and MGSN with B-2 and B-3, the top-1 accuracy of B-2
decreased by 0.25%. Comparing MGSN with B-1 and MGSN
with B-1 and B-3, the top-1 accuracy of B-1 decreased by 2.2%.
This shows that fine-grained semantic learning can inhibit the
learning of coarse-grained semantic learning.

B. Feature Map Visualization of the Model Guided by
Different Granularity Semantics

To intuitively analyze features of network learning guided
by different granularity semantic information, we visualized
the output feature maps of their last layers. Figs. 9–12 show
scene images of different categories, “wastewater plant,” “golf
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Fig. 9. For scene “wastewater plant” on the Million-AID dataset, visualization of feature map last layer output of models guided by different granularity semantic
information. Branch-1, Branch-2, and Branch-3 are different granularity semantic learning branches. (a)–(d) show different remote sensing scene images.

Fig. 10. For scene “golf course” on the Million-AID dataset, visualization of feature map last layer output of models guided by different granularity semantic
information. Branch-1, Branch-2, and Branch-3 are different granularity semantic learning branches. (a)–(d) show different remote sensing scene images.
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Fig. 11. For scene “intersection” on the Million-AID dataset, visualization of feature map last layer output of models guided by different granularity semantic
information. Branch-1, Branch-2, and Branch-3 are different granularity semantic learning branches. (a)–(d) show different remote sensing scene images.

Fig. 12. For scene “island” on the Million-AID dataset, visualization of feature map last layer output of models guided by different granularity semantic
information. Branch-1, Branch-2, and Branch-3 are different granularity semantic learning branches. (a)–(d) show different remote sensing scene images.
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course,” “intersection,” and “island,” and their output feature
map visualization images when using different granularity se-
mantic learning branches, including Branch-1, Branch-2, and
Branch-3. In feature map visualization images, a darker color
indicates higher attention of the network to objects in the region.
The visualization of feature maps shows that coarse-grained
semantic learning branches B-1 and B-2 pay more attention to
the global content of scenes. The dark region in the feature
map visualization image of B-1 is larger than that of B-2.
Fine-grained semantic learning branch B-3 focuses on local key
region features, and the dark region is concentrated in the local
areas. The visualization of feature maps also shows that in the
proposed MGSL method, different granularity semantic learning
branches learn different scale region features, including global
and local region features.

VI. CONCLUSION

We proposed MGSL and NUA to reduce semantic granularity
differences and class sample imbalance in remote sensing scene
image classification. The MGSL module improves network per-
formance on scenes with semantic granularity differences. We
showed that coarse-grain semantic feature learning improves
fine-grained semantic feature learning, while fine-grained se-
mantic feature learning can inhibit coarse-grained semantic
feature learning. The NUA module combines oversampling and
sample augmentation to balance samples with different numbers
of categories to avoid overfitting. It is effective at improving the
robustness of feature learning and the overall performance of the
network. Based on this study, we find that feature fusion may re-
duce granularity differences in remote sensing scene semantics.
Coarse-grained semantics of scenes focus on shallow features,
and fine-grained semantics on deep features. Combining them
may effectively address the challenge of semantic granularity
differences of remote sensing scenes. We plan to carry out related
research from this consideration.
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