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Abstract—Regions around the world experience adverse
climate-change-induced conditions that pose severe risks to the
normal and sustainable operations of modern societies. Extreme
weather events, such as floods, rising sea levels, and storms, stand as
characteristic examples that impair the core services of the global
ecosystem. Especially floods have a severe impact on human
activities, hence, early and accurate delineation of the disaster
is of top priority since it provides environmental, economic,
and societal benefits and eases relief efforts. In this article, we
introduce OmbriaNet, a deep neural network architecture, based
on convolutional neural networks, that detects changes between
permanent and flooded water areas by exploiting the temporal
differences among flood events extracted by different sensors. To
demonstrate the potential of the proposed approach, we generated
OMBRIA, a bitemporal and multimodal satellite imagery dataset
for image segmentation through supervised binary classification.
It consists of a total number of 3.376 images, synthetic aperture
radar imagery from Sentinel-1, and multispectral imagery
from Sentinel-2, accompanied with ground-truth binary images
produced from data derived by experts and provided from the
Emergency Management Service of the European Space Agency
Copernicus Program. The dataset covers 23 flood events around
the globe, from 2017 to 2021. We collected, co-registrated and
preprocessed the data in Google Earth Engine. To validate the
performance of our method, we performed different benchmarking
experiments on the OMBRIA dataset and we compared with
several competitive state-of-the-art techniques. The experimental
analysis demonstrated that the proposed formulation is able to
produce high-quality flood maps, achieving a superior performance
over the state-of-the-art. We provide OMBRIA dataset, as well as
OmbriaNet code at: https://github.com/geodrak/OMBRIA.
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I. INTRODUCTION

F LOODS are natural disasters that have a great impact on
human societies, affecting economic activity at both local

and regional scales. Their main driver on such extreme events
is meteorological phenomena with an increase in frequency
and magnitude observed during the last decades due to climate
change [1]. Communities are pushed to poverty as agriculture
production output is reduced and infrastructure is damaged.
Studies from insurance companies show that between 1980 and
2019, hydrological disasters caused overall losses of approxi-
mately 1 billion U.S. dollars [2].

Detecting flooded areas is a tedious task that requires hu-
man expertise and many work hours. Remote sensing data
are used to delimit flood extents and integrated with GIS to
produce maps [3]. Satellite systems constitute the most widely
used platform for large area mapping and emergency manage-
ment [4], with Coperincus Emergency Management Service
being a prime example. Earth observation satellites are equipped
with instruments operating in wavelengths extending from the
visible to microwave range. Traditional approaches exploit the
capacity of water to absorb light at certain wavelengths [5],
[6]. Early and current works use indicators, such as the normal-
ized difference water index (NDWI) [7] and its improved ver-
sion [8], which are suitable for enhancing and extracting water
information.

Recently, the combination of the satellite imagery infras-
tructure with artificial intelligence technologies has provided
a new path toward successfully addressing the problem of flood
detection and mapping. Traditional machine learning techniques
have been employed in Earth observation (EO) data analysis,
including support vector machines (SVMs) [9] and random
forests [10]. convolutional neural networks (CNNs), as partic-
ular types of deep learning architectures, represent the most
promising and prolific machine learning models, and have be-
come a predominate tool due to their efficiency in learning data
representations [11]. Advances in the fields of deep learning and
computer vision have taken remote sensing to a new level [12]
and are proven to be more accurate in tasks such as land cover
classification [13]–[16] and object detection [17]–[19], outper-
forming the traditional methods [20]–[22]. Although most works
focus on land applications, there is an increasing interest in water
applications, such as water detection [23]–[25].
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In this article, we address two challenges. The first is to
compensate for the lack of ground-truth data and flooded area
annotations and to provide to the scientific community a new
dataset for supervised classification. Second, we propose a novel
deep learning architecture for supervised segmentation that is
able to detect changes in water presence using a bitemporal set
of high-resolution 3-D imagery.

The main novelties of this article include the following.
1) OMBRIA: The generation of a new dataset for addressing

the problem of flood mapping.
2) OmbriaNet: A novel multimodal and bitemporal CNN

designed for supervised image segmentation and change
detection.

The rest of this article is organized as follows. In Section II,
we present the state-of-the-art on image segmentation with deep
learning and flood detection in remote sensing. In Section III,
the OMBRIA dataset creation is discussed. In Section IV, we
present some theoretical background of deep learning and the
proposed OmbriaNet network is presented. Furthermore, in
Section V, the experimental results are shown. In Section VI,
discussion over the analysis results and directions for future steps
is made. Finally, Section VII concludes this article.

II. RELATED WORK

A. Computer Vision and Image segmentation

There are many applications in remote sensing that require
assigning a label to every pixel in an image. This classification
task is addressed with semantic segmentation algorithms. Com-
puter vision is contributing significantly in remote sensing tasks
such as cloud detection [26], urban planning [27], and land cover
classification [28]. During the last years, semantic segmentation
algorithms with three channels or multispectral imagery have
been developed employing machine learning and especially
deep learning [29]. Pretrained networks like VGG-16 [30] and
ResNet [31] have been used not for segmentation per se, but for
scene understanding in a coarse scale classification [32]. The
DeepLab network [33] improves segmentation performance and
produces sharp boundaries by substituting convolution layers
with atrous convolutions. Atrous filters have zeros between
sample points resulting in increased filter sizes with a constant
number of parameters.

Deep learning frameworks for classifying multispectral im-
ages have been explored thoroughly in the community. How-
ever the scarcity of annotated data has limited most work to
unsupervised methods [34], [35]. Lack of supervised data has
an impact on model generalization between different datasets.
Stacked autoencoders are unsupervised neural networks that
encode efficiently the training data and learn high feature repre-
sentations [36], [37]. In [38], a hybrid autoencoder—multilayer
perceptron is introduced to map floods in two study areas in Iran
and India. The autoencoder was used to reduce the feature count,
enhance the training process, and increase the performance
compared to the traditional MLP.

Fusion of high-resolution imagery with digital surface models
in a fully convolutional network has achieved state-of-the-art
performance on a multimodal semantic segmentation scheme.

Experiments on the International Society of Photogrammetry
and Remote Sensing (ISPRS) Vahingen benchmark test set
showed that the overall accuracy is among the top performers ac-
cording to [39]. Transfer learning was used in [40] fusing a U-net
based deep,1 called TL-DenseUNet, with an encoder subnetwork
transferring pretrained DenseNet to fuse multiscale informa-
tion, performing multiobject semantic segmentation with an
imbalanced class distribution. Experimental results showed that
transfer learning is effective and achieves a better performance
than other models.

B. Remote Sensing and Flood Detection

Remote sensing technologies have evolved rapidly during the
recent years and their advantages in analyzing the Earth surface
by its spectral properties have been utilized in environmental
monitoring and emergency and disaster relief [41]. Automated
methods for waterbodies segmentation with satellite imagery
can be divided in two categories, namely rule-based systems and
machine learning models. Thresholding a water index such as
the modified normalized difference water index (MNDWI) or the
multiband water index (MBWI) [8], [42] is a simple rule-based
approach. Less commonly used by remote sensing community
techniques that include expert systems, with visual analysis
combining human cognitive abilities and evidential reasoning
to deal with problems related to both uncertainties and quality
issues in the dataset are used in [43]. While these methods pro-
duce accurate results, this comes under specific conditions and it
lacks generalization ability and transferability. Machine learning
methods can learn flood characteristics given a set of labeled
samples [44]. CNNs are able to learn features from images and
segment water from land, outperforming hand-crafted features,
and report higher accuracy and generalization ability [45].

Synthetic aperture radar (SAR) is proven to provide more
reliable information on flood extent [46]. Precipitation events
have as a result long-lasting cloud coverage periods and SAR
sensors’ ability to penetrate clouds both day and night make
them more suitable for the task. Lidar technologies can give
precise digital elevation models that can be combined with SAR
to estimate flood extend along with precise depth [47]. Sentinel-2
multispectral imagery and CNN’s have been used in supervised
classification producing good results but in limited spatial scale
(national) and water segmentation for labeling was produced by
visual interpretation with results relative to a human analyst and
not in absolute ground truth [48].

C. Flood Mapping With Deep Learning

Machine learning models have not been utilized extensively
in flood mapping problems because there is a lack of available
datasets. Sen1Floods11 is the first dataset for flood detection.
It was introduced to assist efforts to operationalize deep learn-
ing algorithms for flood mapping in global scale. It contains
Sentinel-1 imagery and is trained with a fully CNN to perform
multiple classifications and compare performance with common
remote sensing algorithms like backscatter thresholding [49].

1Convolutional neural network (CNN).
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Fig. 1. Map of emergency management service activations for flood events.

Deep learning architectures tailored for water segmentation
are also numbered. H20-Net is the first to our knowledge to
address the problem. The network learns SWIR signal synthesis
in low resolution data as a domain adaptation mechanism for
accurate flood segmentation. It uses as input red, green, blue,
and near infrared channels in a self-supervised classification
and achieves high accuracy [50]. Besides EO, unmanned aerial
vehicles (UAVs) constitute another source of data that makes
observation easy and more frequent. High-resolution UAV im-
agery has been used for postnatural disaster damage assessment
using state-of-the-art deep learning algorithms [51].

III. OMBRIA DATASET

The Copernicus program [52] provides data with global cov-
erage, high temporal frequency, and high spatial resolution. The
European Space Agency (ESA) launched the Sentinel-2 mission
in July 2015, putting into orbit two twin satellites with a better
resolution and a more frequent acquisition, compared to previ-
ous missions, e.g., NASA’s LANDSAT 8. The ESA satellites
provide Copernicus Emergency Management Service (EMS)
with data necessary for mapping products to support emergency
activities immediately following a disaster [53]. In addition,
LANDSAT 8 constellation, the longest record of global scale
EO providing data since 1972 [54], is widely used in delineating
flood extents with change detection approaches [55]. Active EO
sensors can also be utilized for flood mapping. SAR instruments
have been used in several studies to create inundation maps
[56]–[58].

The Emergency Management Service of the Copernicus Pro-
gramme provides data packages of delineation and grading
products for emergency situations and natural disasters. These
products have been produced by field experts in semiautomated
procedures. For the creation of the dataset, 20 flood event acti-
vations around the globe were picked between 2017 and 2020.
Vector files were converted into raster images and used as ground
truth. In Fig. 1, we present a world map with all flood events
used in this article. In Table I, the flood events are categorized
in a chronological order from the oldest to the most recent. The
table includes the EMS Activation ID, the name of the country,
the corresponding geographic zone, and the two dates used for

TABLE I
TABLE WITH FLOOD EVENTS USED IN OMBRIA DATASET AS EMERGENCY

MANAGEMENT SERVICE RAPID MAPPING ACTIVATIONS

data collection. More details regarding the data collection and
preproccessing is given in Section V-A.

Imagery from Sentinel-1 was acquired at Level-1 Ground
Range Detected (GRD), with VV polarization (single copolar-
ization, vertical transmit/vertical receive). Level-1, GRD prod-
ucts consist of focused SAR data, that has been detected, multi-
looked and projected to ground range using the Earth ellipsoid
model WGS ‘84. The ellipsoid projection of the GRD products
is corrected using the terrain height from the SRTM Digital
Elevation Model [59]. Ground range coordinates correspond
to the slant range coordinates projected onto the ellipsoid of
the Earth. Additionally, pixel values represent the detected am-
plitude, while phase information is lost. To reduce the speckle
effect, morphological filtering was applied with a 30× 30 me-
ters median value kernel. As a result, the resulting patches have
dimensions of 256× 256× 1.

The Sentinel-2 MSI instrument bands that were exploited are:
Band 3—Green (0.560μm), Band 8—Near Infrared (0.842μm),
and Band 11—SWIR (1.610 μm). Bands 3 and 8 have a spatial
resolution of 10 m, while band 11 has a spatial resolution of 20
m. Additionally, the bottom-of-atmosphere reflectance in carto-
graphic geometry product (i.e., Level 2 A) was selected, since it
is atmospherically corrected and orthorectified with the SRTM.
The resulting patches have dimensions of 256× 256× 3.

Imagery from every flood event were divided into nonover-
lapping tiles of size 256× 256. This division led to 844 tiles
for each timestamp (preevent and postevent) and each modality
(Sentinel-1 and Sentinel-2) creating 1.688 optical and 1688 SAR
images adding up to of 3.376 input image patches. Given that the
ground sample distance is 10 m the total cover area is 553 km2.
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Fig. 2. OMBRIA Dataset samples. From left to right: Sentinel-1 preevent, Sentinel-1 postevent, Sentinel-2 preevent, Sentinel-2 postevent, and ground truth
(white pixels is flood).

In Fig. 2, selected samples are presented. During or after a flood
event, there is a high probability of cloud presence. We took that
into consideration during data collection and included cloudy
samples (Sentinel-2 only as SAR has the ability to penetrate
clouds) to simulate realistic data capture scenarios.

The coordinate reference system of the imagery is the World
Geodetic System 1984 [60], the so-called WGS ‘84, which
stands as a gold standard in geodesy, satellite navigation, and
cartography. It consists of an ellipsoid that is an oblate spheroid,
a geodetic datum (horizontal and vertical), and the geographical
coordinates, which are the angles measured in terms of latitude
(φ), north or south of the equatorial plane, and longitude (λ), east
or west of the prime meridian. The coordinate reference system
utilized by the EMS is the Universal Transverse Mercator (UTM)
that divides the Earth into 60 longitudinal and 20 latitudinal
segments. For the coregistration task of the flooded areas, it is
necessary to reproject the Sentinel-2 imagery. A map projection
is defined as a systematic transformation of ellipsoidal coordi-
nates to a plane coordinate system (x, y) = (f1(φ, λ), f2(φ, λ)).

The equations for reprojecting latitude and longitude to the
cartesian coordinates as presented in [61] are formulated as

x = k0N

[
A+

(1− T + C)A3

6

+
(5− 18T + T 2 + 72C − 58e

′2)A5

120

]

y = k0

[
M −M0 +N tanφ

(
A2

2

+
(5− T + 9C + 4C2)A4

24
+

(61− 148T + 16T 2)A6

720

]
(1)

where

e
′2 =

e2

1− e2
, N =

α

(1− e2 sin2 φ)1/2
, T = tan2 φ

C = eι2cos2φ, A = (λ − λ0) cosφ
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M = α
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(
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3e4
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)
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(
15e4
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44e6

1024

)
sin4 φ

]
.

(2)

Latitude and longitude are expressed in radians, M is the true
distance from the Equator to φ along the central meridian, and
M0 is computed with respect to the latitude φ0 that crosses
the central meridian at the origin of the (x, y) coordinates. For
these equations, k0 is specified for a 6◦ longitude window at
0.9996 [61].

IV. PROPOSED METHOD: OMBRIANET

A. Problem Formulation and Theoretical Background

The goal in semantic segmentation has several variations
from scene prediction to dense, fine-grained predictions and
instance separation [62]. In this article, we focused on dense
prediction, i.e., per-pixel class segmentation. To that end, we
formulate the pixel labeling problem as assigning a class from
a label space L = {�1, �2, . . ., �k} to each pixel of a set of
2-D or high-dimensional imagesX = {x1, x2, . . ., xN}. For the
problem addressed in this article, there is one class for “water”
and another for “not water.” Therefore,

L =

{
0, if not flooded

1, if flooded.

Classic machine learning approach to this problem is by
means of SVMs. SVMs build a discriminating function that
simulates the optimal discriminating surface between classes,
using training data [9]. When linear separation is impossible,
kernel techniques are used so that the hyperplane defining the
SVMs corresponds to a nonlinear decision boundary in the
input space that is mapped to a linearized higher dimensional
space [63].

Over the last years, deep learning (DL) has revolutionized
several remote sensing analysis tasks, including the challenging
problem of change detection, among others. Due to its fully
data-driven structure, DL-based approaches learn automatically
higher level features providing more faithful and representative
approximations of input feature space. DL architectures with
several intermediate hidden layers efficiently encode the internal
representations of the raw data, and thus, they exhibit a superior
performance compared to the traditional, shallow machine learn-
ing (ML)-based techniques. Additionally, DL techniques are
quite robust and effective in remote sensing image segmentation
tasks.

An efficient DL approach is based on CNNs. CNNs are
composed of convolutional layers that alternate with nonlinear
activation and possibly subsampling (pooling) layers, resulting
in a hierarchy of increasingly abstract features. CNNs involve
the mathematical operation of convolution. For the case of 2-D
imagery, the convolution is applied on input features I(i, j, k),
where (i, j) represent the input image height and width and k is

the input depth or channel, and it is expressed as

Y (l) = I(k) ∗K(l,k)

=
∑
m

∑
n

∑
k

I(m,n, k)K(i−m, j − n, l, k) (3)

where K(l,k) ∈ Rm,n is the convolution kernel of size m× n,
associated with input channel k and output channel l.

Features generated from convolving the inputs are passed
through a nonlinear function, the activation function. We use
the leaky rectified linear unit (ReLU) [64], expressed as

yi =

{
x, ifx ≥ 0
x
α , ifx < 0

(4)

where α is a hyperparameter to be tuned. Leaky ReLU can assist
to overcome the vanishing gradient problem and avoid network
saturation.

To determine the optimal values for the weights during train-
ing, it is necessary to select the proper loss function. The loss
function is defined as L = E(ŷ − y), where ŷ is the predicted
value and y the ground truth. One common loss function that is
widely used is the binary cross-entropy loss function

L(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)). (5)

B. Deep Learning Architectures

1) Baseline Architecture: U-Net: The majority of visual clas-
sification tasks target to assign a label to a provided image.
Nevertheless, in remote sensing applications, a key objective
also concerns the localization of the labels, i.e., the correspond-
ing class that is assigned to each pixel. In this article, we use
U-Net, a state-of-the-art image segmentation neural network,
as the baseline and we further develop novel multimodal and
multitemporal DL architectures designed specifically for the
problem of flood mapping change detection.

U-Net [65] is a fully connected CNN architecture particularly
applied on biomedical segmentation problems. It consists of
a contracting path to imprint context and an expanding path,
which is symmetric and enables precise localization. The U-Net
architecture has also been exploited in various remote sensing
tasks.

In our analysis, we perform adjustments on the basic U-Net
architecture to perform flood mapping, and we further use it
in our experimental setup as a baseline evaluation. The new
proposed contracting path consists of a repeated pattern of two
3× 3 convolutions activated via a Leaky ReLU function [66],
instead of the ReLU activation that is used in the original
implementation of U-Net. Additionally, a 2× 2 max pooling
operation with stride 2 is used for down sampling. In the ex-
pansive path, the feature maps are up-sampled, followed by
a 2× 2 convolution that halves the number of feature maps.
Then, a concatenation with the corresponding cropped feature
maps from the contracting path is implemented, followed by
two 3× 3 convolutions activated with the Leaky ReLU func-
tion. Moreover, a final 1× 1 convolution layer is exploited that
maps each feature vector to the desired class. Regarding the
loss function, the binary cross-entropy was selected, since we
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Fig. 3. Bitemporal OmbriaNet architecture. Two input images of the same region in different timestamps are imported into our proposed two-branch architecture
attempting to take advantage of the bitemporality in detecting the change that is present.

address a binary classification task. Concerning the optimization
algorithm, the Adam optimizer [67] was selected. Finally, the
total number of parameters is 31 032 837.

Despite U-Net’s superior performance in several remote sens-
ing tasks and its promise for the proposed flood detection task,
a major drawback still remains that the traditional U-Net con-
siders single input imagery. This limitation makes the network
incapable of distinguishing permanent from flooded water ter-
ritories. Consequently, the basic U-Net formulation results in
misclassification of water bodies (i.e., lakes, rivers, oceans, etc.)
as flooded water areas resulting in the deterioration of the overall
system detection accuracy.

To compensate the inability of U-Net in detecting accurately
flooded areas, we introduce the novel OmbriaNet architecture.
The intuition behind our approach is that there are three sources
of water: main water bodies such as sea oceans and rivers,
temporal streams only in winter seasons, and flood water. Tem-
poral streams and flood water present a periodicity. This event
periodicity may be captured if the proposed DL architecture is
fed with the same area of interest in two different chronological
moments that represent characteristic timestamps before and
after the event.

Intense precipitation is related to dense cloud coverage. These
clouds cause severe obstructions and heavy shadowing effects to
satellite optical sensors resulting in significant data information
loss. We leverage this discrepancy by introducing multimodal
input in the proposed DL architecture. For this purpose, we
exploit SAR data, since it is not limited by illumination or
cloud coverage conditions. Additionally, SAR technology is
proved to be a valuable source of information due to its higher
probability of capturing imagery right after the flood event. In
our proposed OmbriaNet architecture, two different approaches
were designed: the Bitemporal OmbriaNet and the Multimodal
OmbriaNet. OmbriaNet’s intuition is based the U-Net frame-
work but designed to receive multiple input. Different input
is categorized as same sensor and different timestamp or both

different sensor and different timestamp. In the first instance,
the network is referred as Multitemporal OmbriaNet and in the
second is referred as Multimodal OmbriaNet. The following
paragraphs provide their complete description.

2) Bitemporal OmbriaNet: Creating meaningful feature
maps from multitemporal images improves the change detection
accuracy because the network detects modifications based on
the temporal information from the feature maps generated from
temporal images. Bitemporal OmbriaNet takes as input two
images of a region in two different timestamps. The first is
before the event and the second is right after the event. Three
blocks of double 3× 3 Convolutions, with a 2× 2 max pooling
factor and Leaky ReLU activations, encode the input data into
the deepest point of the network. The resulting feature maps are
concatenated, and then, a dropout layer with a 0.3 probability
value is applied for regularization. Additionally, three blocks of
double 3× 3 convolutions and a 2× 2 up-sampling factor are
combined with skip connections and are activated via a sigmoid
activation layer for obtaining the final predictions. Regarding
the loss function, we utilize the binary cross entropy, as it was
also used in the original U-Net implementation. Additionally,
the exploited optimizer is the Adam. Finally, the Bitemporal
OmbriaNet architecture has a total of 10 796 485 parameters. In
Fig. 3, we depict the detailed Bitemporal OmbriaNet scheme.

3) Multimodal OmbriaNet: To fully exploit multimodal data
fusion, we constructed the so-called Multimodal OmbriaNet ar-
chitecture, as an improved version of the Bitemporal OmbriaNet
that considers four input images, corresponding to one pre- and
one postevent image acquired by Sentinel-1, and one pair of
pre- and postevent images acquired by Sentinel-2, depicting
the same spatial territory. Similar to the Bitemporal OmbriaNet
architecture, three convolutional 3× 3 blocks followed by 2× 2
max-pooling layers were exploited and activated via the Leaky
ReLU function. The resulting feature maps are concatenated,
while the dropout regularization term is also set to 0.3. Re-
garding the inverse process, three 3× 3 convolutional blocks
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Fig. 4. Multimodal OmbriaNet architecture. In our final proposed method, four input images of different modalities and different timestamps are exploited
in a multibranch architecture and utilized to segment the flood.

followed by 2× 2 up-sampling layers are combined with two
more skip connections, for completeness purposes. The final
layer is a fully connected activated using the sigmoid function
and is responsible for the segmentation task. The Multimodal
OmbriaNet architecture resolves a total of 18 108 101 trainable
parameters. In Fig. 4, we present the proposed Multimodal
OmbriaNet architecture.

V. EXPERIMENTAL RESULTS

A. Analysis Ready Dataset

Data preprocessing was conducted on the widely utilized
Google Earth Engine [68] platform for geo-spatial science data
and analysis. Data collections from Sentinel-1 and Sentinel-2
were accessed via this platform. In order to implement our
proposed bitemporal approach, we selected two time stamps as
follows. The Date 1 ranges from the 1st to the 31st of May of the
year before the flood event. In this window, available pixels with
cloud coverage below a threshold between 10% and 30% were
averaged to yield the final input intensities. The Date 2 ranges
from the date that the event has occurred until 15 days after
it. The same cloud coverage threshold was applied and instead
of pixel averaging, the first available pixels were selected. All
pixels were reprojected to the corresponding UTM zone, de-
pending on the region that is illustrated in Table I. We consider
a significant preprocessing step by adopting a generalized data
augmentation approach. We apply in each patch of the input
EO imagery the following set of transformations:left-right flip,
horizontal and vertical shift, shearing, and random rotations. Via
this approach, our dataset size increased by a factor of 2, covering
the dominant possible scenarios regarding data transformation.
The dataset was then shuffled and further divided into training
(80%), validation (10%), and testing (10%). All preproccessing
steps are visualized as a flow chart in Fig. 5.

B. Evaluation Metrics

Evaluation using standard and well-known metrics is of
critical importance, since it enables fair comparisons with the
state-of-the-art. Additionally, the context of the application de-
termines the importance of the metrics. We also provide exe-
cution time as an evaluation parameter, bearing in mind that
computation times depend on the available hardware resources.
In semantic segmentation, the most popular performance metrics
are pixel accuracy and intersection over union (IoU). In our case,
we have a total of two classes (�0 and �1). Let pij be the number
of pixels of the class i inferred to belong to the class j. Then,pii is
the number of correctly classified or true positives, while pij and
pji represent the false positives and true negatives, respectively.

1) Pixel accuracy (PA): PA is defined as the ratio of the
amount of correctly classified pixels to their total number:

PA =

∑1
i=0 pii∑1

i=0

∑1
j=0 pij

. (6)

2) Intersection over union (IoU): IoU is the most frequently
used metric for image segmentation. It stands as the ratio
between the intersection and the union of two sets. In our
formulation, it represents the prediction and the ground
truth. It is formulated as the number of true positives
over the sum of true positives, false negatives, and false
positives. It is computed in a per-class basis and averaged.
For the binary problem, it is written as

IoU =
1

2

1∑
i=0

pii∑1
j=0 pij +

∑1
j=0 pji − pii

. (7)

3) Frequency weighted intersection over union (FWIoU):
FWIoU is an improved version of the IoU metric that
takes into consideration class appearance frequencies and



2348 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 5. Data preproccessing flowchart. All preproccessing was performed in Google Earth Engine API.

TABLE II
U-NET BASELINE SCHEME: QUANTITATIVE PERFORMANCE OF TRAINING AND VALIDATION PHASES

weighs their importance

FWIoU =
1∑1

i=0

∑1
j=0 pij

×
1∑

i=0

∑1
j=0 piipij∑1

j=0 pij+
∑1

j=0 pji−pii
. (8)

C. Evaluation

In this Section, we provide the complete experimental analysis
that has been benchmarked on the developed OMBRIA dataset.
Specifically, we provide a detailed experimental setup corre-
sponding to various training parameters, including different
batch sizes and number of epochs. Additionally, we evaluate
the proposed DL methods in terms of the training, validation,
and testing accuracy. Moreover, we provide quantitative and
qualitative results of our proposed Bitemporal and Multimodal
architectures and we compare with competitive state-of-the-art
ML and DL algorithmic formulations.

1) Baseline: U-Net: The initial experiments were conducted
using the U-Net architecture on both Sentinel-1 and Sentinel-2
data, separately. Since U-Net allows single input data, only post-
flood event imagery was utilized. For the specific architecture,

the best case scenario is achieved using 50 epochs, a batch size
of 8 for Sentinel-2, and a batch size of 12 for Sentinel-1.

Table II presents the quantitative performance regarding the
training and validation phases of the U-Net baseline architecture.
We observe, that using Sentinel-2 input data, the highest training
accuracy is achieved with a batch size of 6, and it is 82.05%,
while the highest validation accuracy is 84.93%, using a batch
size of 8. Additionally, using Sentinel-1 input data, the highest
training accuracy is 76.31% using a batch size of 8, while the
best validation accuracy of 85.58% is achieved using a batch
size 6. We also observe that the validation score is higher than
the training score, especially in Sentinel-1, probably due to the
sampling batch during the training process.

In Table III, we report the scores of the trained models on the
testing set. We observe that the highest overall score is achieved
with Sentinel-2 for a batch size of 8, and it is 84.67% in PA,
43.46% in IoU, and 75.51% in FW IoU. The results indicate
that Sentinel-2 slightly outperforms Sentinel-1 when examined
in terms of accuracy.

In Fig. 6, a sample from the test set is illustrated that highlights
the advantage of using SAR over optical imagery. Due to a large
concentration of clouds, Sentinel-2 was not able to capture any
flooded water areas, which is demonstrated by the relatively low
value for the classification accuracy.
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TABLE III
QUANTITATIVE PERFORMANCE COMPARISON OF U-NET WITH SENTINEL-1 AND SENTINEL-2 IN TERMS OF PIXEL ACCURACY, IOU, FW IOU,

AND TRAINING TIME FOR 50 EPOCHS

Fig. 6. U-Net baseline scheme: Qualitative comparison of selected samples, in terms of both visual perception and the corresponding IoU metric. (a) Sentinel-1
Input. (b) Sentinel-2 Input. (c) Ground Truth (White pixelsis flood). (d) Sentinel-1 Output (58.19%). (e) Sentinel-2 Output (9.24%).

TABLE IV
QUANTITATIVE PERFORMANCE OF TRAINING AND VALIDATION FOR BITEMPORAL OMBRIANET

TABLE V
QUANTITATIVE PERFORMANCE OF TRAINING, VALIDATION ACCURACY, AND COMPUTATIONAL TIME FOR MULTIMODAL OMBRIANET

2) OmbriaNet—Bitemporal: In this subsection, we report on
experiments meant to evaluate the improvement in our overall
system accuracy when introducing bitemporal imagery. The goal
is to demonstrate that the proposed OmbriaNet architecture
described in Section IV, which takes as input preevent and
postevent images, is capable of “learning” the change between
the absence of water in normal conditions and the presence
of water when the region is flooded. In our experiments, we
experimented with different batch sizes, as with the traditional
U-Net case.

In Table IV, the quantitative performance comparison of
training and validation metrics for the Bitemporal OmbriaNet
architecture is demonstrated. In this scenario, for a fixed batch
value of 4, the best validation accuracy that is achieved is
84.92% for 50 epochs and 85.66% for 100 epochs. Multimodal
OmbriaNet quantitive performance comparison is shown in Ta-
ble V. Fora batch size of 12 the validation accuracy is 86.59%
and 85.96% for 50 and 100 epochs respectively.

In Table VI, we illustrate the quantitative performance com-
parison on the testing set with the OmbriaNet architecture. We
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TABLE VI
QUANTITATIVE PERFORMANCE COMPARISON ON TESTING SET FOR BITEMPORAL AND MULTIMODAL OMBRIANET IN TERMS OF PIXEL ACCURACY, IOU,

FW, AND IOU (100 EPOCHS)

TABLE VII
OMBRIANET PERFORMANCE COMPARISON ON OMBRIA DATASET ON 90%/10% TRAINING/TESTING SPLIT

Fig. 7. Qualitative comparison of selected samples with Bitemporal OmbriaNet and their corresponding IoU metric. (a) Sentinel-1 (Pre-event). (b) Sentinel-2
(Pre-event). (c) Ground Truth (White pixels is flood). (d) Sentinel-1 (Post-event). (e) Sentinel-2 (Post-event). (f) Bitemporal Output (94.64%).

observe a significant improvement in the IoU metric (about 5%).
If examined individually, the range of IoU values for the different
batch sizes is far larger for the U-Net (i.e., approximately 10%)
as compared to the OmbriaNet (i.e., approximately 4%). This
observation indicates a higher model robustness. Additionally,
pixel accuracy exhibits a small increase, approximately 2–3%
when comparing the different architectures, and demonstrates
similar variations when examined for different batch sizes (i.e.,
about 10% for U-Net and only 2% for OmbriaNet). Experiments
showed that the model behavior presents minimum change

toward its performance, when increasing the number of epochs.
Specifically increasing the training epochs yields into a limited
gain (i.e., approximately 1%), while the training time is almost
doubled when doubling the training iterations. In this scenario,
the best evaluation metrics values are achieved using a batch size
of 8, regarding pixel accuracy and FW IoU.The resulting pre-
dictions in Table VII were implemented from the corresponding
models that were trained with a batch size of 8.

In Fig. 7, a sample of inundated areas with rivers is illustrated
to demonstrate the model ability to segregate permanent water
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Fig. 8. Qualitative comparison of selected sample with Multimodal OmbriaNet and their corresponding IoU metric. (a) Sentinel-1 (Pre-event). (b) Sentinel-1
(Post-event). (c) Sentinel-2 (Pre-event). (d) Sentinel-2 (Post-event). (e) Sentinel-1 U-Net (22.19%). (f) Sentinel-2 U-Net (59:13%). (g) Bitemporal OmbriaNet
(60:96%). (h) Multimodal OmbriaNet (81:90%). (i) Ground Truth (White pixels is flood).

from flooded territories. As we may observe, the Bitemporal
OmbriaNet depicts a high classification IoU score of 96.64%,
validating its better robustness compared to the traditional U-Net
scheme.

3) OmbriaNet—Multimodal: Bitemporal OmbriaNet show-
ed a significant improvement over the baseline of U-Net mo-
tivating the fusion of Sentinel-1 and Sentinel-2 preevent and
postevent imagery via our proposed multimodal OmbriaNet,
which indeed gave the best results. Specifically, running the
experiments with the same hyperparameters as in Section V-C2,
Multimodal OmbriaNet outperforms the baseline of U-Net by
over 10% and Bitemporal OmbriaNet by 7% in IoU score
achieving a value of 70.93%. Increasing the number of epochs
did not show a significant increase in accuracy.

In Fig. 8, a sample comparison between different experi-
ments is presented. The Multimodal OmbriaNet improves the
prediction performance about 21% compared to Multitemporal
OmbriaNet achieving an IoU score 81.90% over 60.96%. A
remarkable note is that although in the Sentinel-2 postevent
instance, there is extensive cloud coverage over the flooded
areas, our multimodal network manages a very good delineation
of the event. Table VI gives the quantitative results over the
test set for Multimodal OmbriaNet. A significant improvement
in overall accuracy is observed, especially in the IoU score,
in which Multimodal OmbriaNet outperforms the Bitemporal
OmbriaNet by about 10%. The highest score is achieved for
batch size of 12, and that is the model used in Table VII.

4) Overall Comparison: In this paragraph, we illustrate the
final comparisons among the proposed architectures and the
related state-of-the-art approaches. In order to obtain a fair
comparison, we retrained all models (i.e., the baseline U-Net,
proposed Multimodal, and proposed Bitemporal) with 90% of
the OMBRIA dataset, and we tested on the resulting 10%
test set. Regarding the state-of-the-art approaches, we com-
pared against Otsu’s method for completeness in benchmarking

evaluation. Since Otsu’s algorithm input is based on a single
value pixel intensity, we derive the modified normalized differ-
ence water index (MNDWI) [69] from the Sentinel-2 imagery,
provided by

MNDWI =
BGREEN −BSWIR

BGREEN +BSWIR

where BGREEN and BSWIR are reflectance values of the corre-
sponding channels. Additionally, for the ML-based SVM algo-
rithm, we choose a linear kernel over the RBF as it results in
a smaller time complexity and converges much faster on large
datasets (i.e., about 45 million pixels). The Hinge loss function
was selected, L2 norm for penalization, while the parameter C
is set to 10. Feature selection was performed on raw pixel values
and no complex features were constructed, but different sets of
features were tested depending on sensor and timestamp. The
multimodal combination was selected for the SVM.

Regarding all DL architectures, the batch sizes and number of
epochs were chosen for best performance, resulting in a batch
size of 12 for the U-Net with Sentinel-1, a batch size of 8 for
the U-Net with Sentinel-2, and 50 epochs for both schemes.
Concerning the Bitemporal OmbriaNet, both with Sentinel-1
and Sentinel-2, the batch size number was set to 8, while the
number of epochs is fixed to 100. Finally, for the Multimodal
OmbriaNet, the batch size was fixed to 12 and the number
of epochs to 100. The corresponding results are presented in
Table IX.

Performance scores show that networks trained with Sentinel-
2 imagery perform better than Sentinel-1 in both U-Net and
Bitemporal OmbriaNet. Sentinel-2 data utilize three reflectance
channels (Band 3, Band 8, and Band 11). These channels were
selected due to their high response on water, according to lit-
erature. IR (Band8) and SWIR (Band11) are infrared channels
and water absorbs infrared radiation. Sentinel-1 one channel
(VV polarization) has a similar response as the emitting signal
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TABLE VIII
QUANTITATIVE PERFORMANCE OF TRAINING/VALIDATION AND TESTING OF OMBRIANET WITH MISSING INPUT

TABLE IX
OMBRIANET PERFORMANCE COMPARISON ON NEW FLOOD EVENTS

Fig. 9. Comparison of selected sample from ID492 flood in France (IoU metric score). (a) Sentinel-1 (Pre-event). (b) Sentinel-1 (Post-event). (c) Sentinel-2
(Pre-event). (d) Sentinel-2 (Post-event). (e) Sentinel-1 U-Net (66:98%). (f) Sentinel-2 U-Net (63:19%). (g) Multimodal OmbriaNet (90:03%). (h) Ground Truth
(White pixels is flood).

reflects away on the water’s smooth surface. The higher channel
number in Sentinel-2 leads to information surplus, thus increas-
ing performance.

Experimental results for Bitemporal OmbriaNet are lower
than the U-Net when using Sentinel-1 data. This can be explained
by the speckle effect that is present in a number of preevent im-
agery. This effect creates problems in predictions in Bitemporal
OmbriaNet. Although this is not a setback for the Multimodal
OmbriaNet.

5) Case of Missing Input: As it is discussed in previous
sections, OMBRIA dataset was constructed taking into account
realistic conditions as the purpose is for the network to be used
in real data. Clouds and drained parts of land are present in
the dataset. For completeness reasons, we performed several
experiments replacing successively each modality postevent in
Multimodal OmbriaNet with black imagery to simulate missing
input. We conducted experiments for two different batch sizes,
8 and 12, and we trained the networks for 50 epochs. The results
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Fig. 10. Comparison of selected sample from ID501 flood in Albania (IoU metric score). (a) Sentinel-1 (Pre-event). (b) Sentinel-1 (Post-event). (c) Sentinel-2
(Pre-event). (d) Sentinel-2 (Post-event). (e) Sentinel-1 U-Net (63.82%). (f) Sentinel-2 U-Net (78:30%). (g) Multimodal OmbriaNet (89:14%). (h) Ground Truth
(White pixels is flood).

Fig. 11. Comparison of selected sample from ID507 flood in Timor (IoU metric score). (a) Sentinel-1 (Pre-event). (b) Sentinel-1 (Post-event). (c) Sentinel-2
(Pre-event). (d) Sentinel-2 (Post-event). (e) Sentinel-1 U-Net (69:50%). (f) Sentinel-2 U-Net (79:08%). (g) Multimodal OmbriaNet (79:44%). (h) Ground Truth
(White pixels is flood).

are shown on Table VIII. For the case of missing Sentinel-1
postevent data, the network scores 86.07% in PA, 63.25% in
IoU, and 77.74% in FW IoU. For the case of missing Sentinel-2
postevent data, the scores are 75.69% in PA, 53.15% in IoU, and
65.69% in FW IoU. Both cases achieve almost equal scores with
Bitemporal OmbriaNet.

6) Testing OmbriaNet Performance in New Floods: Samples
in OMBRIA dataset have spatial-temporal relationships as they
were produced from same regions. This relationship can result
two neighboring regions to share similar semantic segmen-
tation information and leading to overfitting. We performed

experiments on new flood events that are not included in the
training process. These events are the EMS ID 492 (France)
501 (Albania), 507 (Timor), and 514 (Guyana). Event ID 492
took place in France in 2021 and includes regions that have
flooded in 2019 and mapped in event ID 416. The rest are
completely new events. For each flood, we used the pretrained
models of the U-Net with Sentinel-1, U-Net with Sentinel-2,
and Multimodal OmbriaNet that were used in Section V-C4.
The results are presented in Table IX. Multimodal OmbriaNet
again surpassed U-Net both with Sentinel-1, by about 20%–30%
in IoU score, and with Sentinel-2, by about 15%–25%. This
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Fig. 12. Comparison of selected sample from ID514 flood in Guyana (IoU metric score). (a) Sentinel-1 (Pre-event). (b) Sentinel-1 (Post-event). (c) Sentinel-2
(Pre-event). (d) Sentinel-2 (Post-event). (e) Sentinel-1 U-Net (58.19%). (f) Sentinel-2 U-Net (53:72%). (g) Multimodal OmbriaNet (79:97%). (h) Ground Truth
(White pixels is flood).

proves the network’s superiority on change detection for flood
events. U-Net with Sentinel-2 outperformed the U-Net with
Sentinel-1 in all cases. The scores indicate that our proposed
model is robust and effective on new and “unseen” flood events
as the performance is at least equal or better than Table VII.
Figs. 9–12 show the qualitative results on selected samples with
their respective IoU score for each flood event.

VI. DISCUSSION

The experimental results reveal that machine learning and
deep learning methods outperform the traditional thresholding
algorithms by at least 25% in IoU. SVMs perform decently if
both optical and SAR data are given. One remarkable note is
that bitemporality in our SAR data does not necessarily improve
the performance. Examining Sentinel-1 VV band, we observed
that the results are better with postevent imagery rather than
combined with preevent. This is caused by the speckle effect
that is inevitably present. The best model is Multimodal Om-
briaNet that outperforms the SVM by 10% in IoU, Bitemporal
OmbriaNet with Sentinel-2 by 8%, Bitemporal OmbriaNet with
Sentinel-1 by 20%, and U-Net by more than 20%. Results
also suggest that OmbriaNet is robust and effective in flood
mapping under realistic conditions where input data are not
ideal, cloudy, or even missing. OMBRIA dataset includes ref-
erence imagery that has already masked out permanent water
bodies resulting our proposed architectures to learn how to
automatically distinguish flooded from permanent water. This
ability eliminates the necessity for manual permanent water
body annotation and drastically reduces the workload. OMBRIA
is an analysis ready dataset, which is introduced in this article.
It is the first fused dataset comprising both optical and Radar
imagery with different timestamps, and conducts a complete
comparison with other state-of-the art methods not subjective.

The closest work that includes fused data from Sentinel-1 and
Sentinel-2 is [49], which we outperform by more than 30% in
IoU. We also outperform [50] by 3% in PA and by 6% in FW
IoU, which are, to our knowledge, the highest scores in flood
delineation with remote sensing data.

VII. CONCLUSION

In this article, we presented a novel approach to address the
problem of flood delineation, allowing detection of floods with
satellite imagery. We introduced the OmbriaNet network that
employs multimodal and multitemporal satellite imagery for
semantic segmentation using supervised learning under realistic
conditions. Our hope is that this article will contribute to the
efforts of flood disaster management. Our approach showed that
new platforms such as Google Earth Engine can be employed to
construct a supervised dataset for remote sensing applications.

Ground-truth annotations provided by ESA can be of crucial
importance for tackling the flood mapping problem, as hand
labeling such types of data requires expertise in remote sensing
photointerpretation and is time consuming. Computer vision
contributes significantly to remote sensing problems such as land
cover classification and cloud detection. There are few datasets
available for training flood detection algorithms using publicly
available satellite imagery. In this article, we focused on flooded
water detection in an effort to operationalize monitoring for
crisis situations. We formed and provided the OMBRIA dataset
to the research community in order to train deep learning algo-
rithms for flood detection without the overhead of generating
training and validation datasets.

Future plans include the expansion of the dataset with more
samples so that it generalizes better. Furthermore, we will inves-
tigate the expansion of the architecture to include more spectral
bands in order to exploit the full potential of the Sentinel satellite
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constellation. Finally, it is worth exploring the transfer learning
possibility on data from unmanned aerial vehicles, which can
provide high-resolution imagery and will greatly improve the
mapping accuracy.
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