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Pansharpening Based on Variational Fractional-Order
Geometry Model and Optimized Injection Gains

Yong Yang , Senior Member, IEEE, Hangyuan Lu , Shuying Huang , Member, IEEE, Weiguo Wan , and Luyi Li

Abstract—Pansharpening techniques fuse the complementary
information from panchromatic (PAN) and multispectral (MS) im-
ages to obtain a high-resolution MS image. However, the majority of
existing pansharpening techniques suffer from spectral distortion
owing to the low correlation between the MS and PAN images, and
difficulties in obtaining appropriate injection gains. To address
these issues, this article presents a novel pansharpening method
based on the variational fractional-order geometry (VFOG)
model and optimized injection gains. Specifically, to improve the
correlation between the PAN and MS images, the VFOG model
is constructed to generate a refined PAN image with a similar
spatial structure to the MS image, while maintaining the gradient
information of the original PAN image. Furthermore, to obtain
accurate injection gains, and considering that the vegetated and
nonvegetated regions should be dissimilar, an optimized adaptive
injection gain based on the normalized differential vegetation
index is designed. The final pansharpened image is obtained by
an injection model using the refined PAN image and optimized
injection gains. Extensive experiments on various satellite datasets
demonstrate that the proposed method offers superior spectral and
spatial fidelity compared to existing state-of-the-art algorithms.

Index Terms—Detail injection scheme, injection gain,
pansharpening, variational fractional-order geometry model.

I. INTRODUCTION

R EMOTE sensing images, which are obtained by detection
instruments without contacting the target scene, can pro-

vide relevant information regarding the structure and contents
of the earth surface. Especially, a high-resolution multispectral
(HRMS) image can not only be applied to the scientific research
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such as image classification [1], image segmentation [2], spec-
tral unmixing [3], and super-resolution mapping [4], but also
to the public service such as land resource management and
environmental monitoring [5]. However, owing to the limitations
of satellite technology, current satellites cannot provide HRMS
images directly [6]. Instead, earth observation satellites such as
GeoEye-1, QuickBird, and Pleiades can simultaneously capture
multispectral (MS) images with high spectral resolution but low
spatial resolution and panchromatic (PAN) images with high
spatial resolution but low spectral resolution [7], [8]. To obtain
the HRMS image, a feasible method is to fuse the information
of the PAN and MS images using suitable algorithms. This
process is known as pansharpening, which aims to improve
the spatial resolution of the MS images by means of the PAN
images. Furthermore, pansharpening is considered as a powerful
postprocessing technique and has become a significant issue in
the remote sensing field [9].

Various pansharpening methods have emerged over the past
several decades. Vivone et al. [11] specifically analyzed and
compared the performance and characteristics of pansharpening
methods based on the means of generating the geometric details.
These methods can be roughly divided into the following types.

1) Component substitution (CS) based methods: CS-based
methods generate geometric details by estimating the dif-
ference between the synthetic intensity images and PAN
images. Subsequently, the geometric details are injected
into the upsampled MS images to obtain pansharpened
images. Intensity-hue-saturation (IHS) transform [12],
Gram-Schmidt transform [13], and partial replacement
adaptive CS (PRACS) [14] are mainstream CS-based
methods. These methods offer the advantages of sim-
plicity, computational efficiency, and high spatial quality.
Moreover, effects such as artifacts, aliasing, and texture
blurring are minimized in the fusion process. However,
such approaches usually suffer from varying degrees of
spectral distortion in the pansharpened images [15].

2) Multiresolution analysis (MRA) based methods: MRA-
based methods generate geometric details by estimating
the difference between the original PAN images and low-
pass-filtered PAN images. Subsequently, these details are
injected into the upsampled MS images to generate pan-
sharpened images. MRA-based methods include Laplace
transform [16], the generalized Laplacian pyramid (GLP)
[17], à trous wavelet transform [18], discrete Wavelet
transform [19], and nonsubsampled Shearlet transform
[20]. The main advantage of these methods is that they
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can preserve the spectral information in the pansharpened
image more effectively. However, MRA-based methods
usually produce several unsatisfactory artifacts [21].

3) Variation-based methods: Variation-based methods are
generally defined by several optimal energy functions
along with the specified spatial and spectral constraints.
The pansharpened images are generated by minimizing
the energy functions [22], which comprise techniques such
as P+XS [23], variational wavelet pansharpening (VWP)
[24], and sparsity-based methods [25]. These methods can
obtain high-quality results, but generally require much
higher computational costs compared to CS- or MRA-
based methods.

4) Deep learning (DL) based methods: Numerous DL-based
methods have recently been developed for pansharpening
owing to their strong feature-learning characteristics. For
example, Yang et al. [26] proposed a progressive cascade
deep residual network with two residual subnetworks
for pansharpening. Ozcelik et al. [27] considered the
pansharpening as a colorization problem and proposed a
PanColorization generative adversarial network (PanCol-
orGAN) framework. To improve the spatial quality, Deng
et al. [28] combined a deep convolutional neural network
with an injection model. To take advantages of the varia-
tional model and deep learning, Yang et al. [29] proposed a
variational network for hyperspectral-multispectral image
fusion, where the model can be implicitly learned from the
training data. Although these methods can obtain superior
fusion quality, they usually require numerous learning
samples and computing resources for training.

In recent years, CS- and MRA-based methods have generally
been defined and realized by injection models. In particular,
the CS-based injection model is used extensively owing to its
high spatial quality and efficiency [30]. However, it is difficult
to obtain satisfactory spectral quality with this model [28]. To
address the abovementioned problem, Rahmani et al. [31] pro-
posed an adaptive IHS (AIHS) method, which can improve the
spectral fidelity by adaptively optimizing the edge information.
Leung et al. [32] modified the AIHS method by combining the
edges of the MS and PAN images and proposed an improved
AIHS method. However, two deficiencies remain that may affect
the fusion quality. The first is that the low correlation between
the PAN and MS images may cause spectral distortion [30]. The
second is that vegetated and nonvegetated regions are rarely
differentiated when determining the injection gains, which will
cause spatial and spectral distortion [33].

Linear histogram matching is generally performed in advance
to minimize the spectral distortion caused by the low correlation
between the PAN and MS images, so that the PAN image exhibits
similar characteristics to the MS image. However, only a small
part of the spectral distortion can be eliminated in this manner,
which means that the difference between the histogram-matched
PAN image and MS image remains large. To address this prob-
lem, in this article, the variational fractional-order geometry
(VFOG) model is proposed to estimate a refined PAN image
that is highly correlated to the MS image. The spatial structure
of the refined PAN image should be closer to that of the MS

image without losing the gradient features of the original PAN
image. Most variational methods, such as P+XS, VWP, and total
variation-based methods [22]–[24], characterize the geometry
of the PAN images using the gradient features. However, they
may easily produce blocky artifacts. To solve this problem, Liu
et al. [34], [35] proposed the Hessian-feature-guided models to
keep Hessian features consistent between the PAN image and
the fused image. These integer-order computations are essen-
tial in the contrast enhancement, but there are still shortages
such as staircase effects and ringing artifacts [36]. Instead, the
fractional-order geometry (FOG) can maintain low frequency
contours and enhance high frequency information, and has been
proven as superior in extracting edges and textural details [37],
[38]. Therefore, the FOG feature is utilized in the proposed
variational model to represent the gradient information of the
PAN images.

Moreover, the injection gains, which determine how many
details to be injected, are an important factor affecting the
performance of pansharpening methods. However, few existing
injection gain approaches consider the fact that the injection
gains of the vegetated regions should be unlike those of the
nonvegetated regions, and spectral distortion mainly occurs
in the vegetated regions [39]. As the normalized differential
vegetation index (NDVI) is a superior index that can quantify
the biophysical characteristics of vegetation [40], we employ
the NDVI to design new injection gains. Furthermore, because
certain regions of the injection gains are close to zero or even
negative [41], fewer details are injected into the upsampled MS
images. Therefore, the sigmoid function is defined to minimize
the large dynamic range of the original injection gains into
the range from 0 to 1. The proposed method was validated
on multiple satellite datasets, including QuickBird, Pleiades,
WorldView-2, and GeoEye-1. The experimental results of sub-
jective and objective comparisons of the fused images obtained
using the proposed method and several existing mainstream
methods confirmed the effectiveness of the proposed method.

The main contributions of this article are summarized as
follows.

1) To improve the correlation between the PAN and MS
images without losing gradient information of the original
PAN image, a VFOG model is designed for estimating a
refined PAN image that can minimize the spectral distor-
tion in the pansharpened image.

2) To further improve the spectral quality of the vegetation
areas, the injection gains based on the NDVI is proposed.
Besides, a sigmoid function is designed to reduce the
dynamic range of the injection gains.

3) The VFOG model and optimized injection gains are math-
ematically combined in the injection scheme, the results
of which verify the effectiveness and robustness of the
proposed method in maintaining the spectral and spatial
fidelity in various satellite datasets.

The rest of this article is organized as follows. Related work on
the CS-based injection scheme is briefly reviewed in Section II.
The proposed method is introduced in Section III. Section IV
presents the experimental data settings, quality assessment in-
dexes, experimental results, and analysis. Further experimental
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discussions are provided in Section V. Finally, Section VI con-
cludes this article.

II. RELATED WORK

A. Notations

The auxiliary symbols and definitions are first introduced
to simplify the observation. Furthermore, the notations in this
article are presented in the following.

Let P, Phist ∈ �s×sdenote the original PAN image and
histogram-matched PAN image, respectively. Furthermore, s ×
s denotes the size of the P or Phist image. m = (mR, mG, mB,

mNIR) ∈ �s/c×
s/c×4

denotes the MS image, where mR, mG, mB,
and mNIR are the four bands of the MS image, namely the red (R),
green (G), blue (B), and near-infrared (NIR) bands, respectively.
c is the ratio of spatial resolution between the MS and PAN
images. Moreover, F = (FR, FG, FB, FNIR) ∈ �s×s×4 denotes
the pansharpened image. M = (MR, MG, MB, MNIR) ∈ �s×s×4

represents the upsampled MS image, which is produced by
bicubic interpolation. ||�||F and (�) denote the Frobenius norm
and transpose operator, respectively.

B. CS-Based Injection Scheme

In general, the pansharpened image that is estimated by the
CS-based injection scheme can be determined by

Fi = Mi + gi (P − I) , i = 1, . . . , N (1)

where gi denotes the injection gains of the ith band and I
is the intensity component of the upsampled MS image. The
spatial quality of pansharpened images obtained by the CS-based
method is usually superior to that of images obtained by the
MRA-based method [41]. Therefore, we selected the CS-based
injection scheme in this article.

As noted in [21] and [42], CS-based algorithms take advantage
of combination coefficients to measure the I image. This process
can be expressed as follows:

I =

N∑
i=1

γiMi (2)

where γi is the ith band combination coefficient, which is
estimated by the linear relationship between P and each band
of the M image, and is defined as

min
γ1,··· ,γN

∥∥∥∥∥Phist −
N∑
i=1

γiMi

∥∥∥∥∥
2

s.t.γ1 ≥ 0, . . . , γN ≥ 0 (3)

where N is the total number of bands of the M image.
A classical method for minimizing the spectral distortion caused
by the dissimilarity between the M and P images is preliminarily
performing histogram matching to force the P image to have a
similar mean and variance to the I image [21], [42]. Thus, Phist

can be defined as

Phist = (P − μP ) · σI

σP
+ μI (4)

whereμ and σ are the mean and standard deviation, respectively.
Furthermore, the injection gains gi play an important role in

maintaining the spatial and spectral fidelity. Yang et al. [42] de-
fined joint discriminant injection gains, which comprehensively

consider the relation between the edge information of the P and
M images, and are defined as follows:

gi =
Mi

1
N

N∑
i=1

Mi

(ηiEPhist + (1− ηi)EMi
) (5)

where ηi is the i-band tradeoff parameter, and EPhist and EMi
are

the edge detection matrices that are estimated by the edges of
the Phist image and ith band of the M image, respectively. The
edge detection matrix is defined as follows:

EQ = exp

(
− λ

|∇Q|4 + ε

)
(6)

where Q represents the input image, λ and ε are the tuning
parameters, and the symbol ∇ denotes the gradient operator.
By replacing Q with Phist or Mi, EPhist or EMi

can be obtained,
respectively.

Moreover, ηi in (5) is defined as

min
χ1,...,χN

∥∥∥∥∥EPhist −
N∑
i=1

χiEMi

∥∥∥∥∥
2

s.t.χ1 ≥ 0, . . . , χN ≥ 0 (7)

ηi = max

(
χi,

COV (EPhist , EMi
)

σ (EPhist) · σ (EMi
)

)
(8)

where χi represents the original weight parameter, and COV(·)
and σ(·) are the covariance and standard deviation, respectively.

III. PROPOSED METHOD

A. Overall Framework

As CS-based injection schemes generally suffer from spectral
distortion, numerous researchers have attempted to improve
these methods using the Phist image. As opposed to such meth-
ods, in this article, to minimize the spectral distortion in existing
CS-based injection methods, the VFOG model is designed to
estimate a refined PAN image PVFOG that is highly relevant to
the upsampled MS image. Moreover, to maintain the spectral
and spatial fidelity in the pansharpened image more effectively,
novel injection gains that consider the NDVI are defined. Fig. 1
presents the framework of the proposed method. The specific
procedures of the proposed framework are listed as follows.

1) The I image and Phist image can be obtained according to
(2)–(4).

2) The PVFOG image is estimated by employing the VFOG
model. Thus, the high-frequency details are determined
by the difference between the PVFOG and I images.

3) The injection gains gi are calculated by comprehensively
considering the NDVI, and the edge information of PVFOG

and M. Here, Gi is the initial injection gain defined in
formula (16), and bi is a coefficient defined in formula
(18).

4) Once gi is obtained, the final pansharpened image can
be achieved by linearly injecting the spatial details into
each band of the M image. Here, HD represents the high-
frequency details.



YANG et al.: PANSHARPENING BASED ON VARIATIONAL FRACTIONAL-ORDER GEOMETRY MODEL AND OPTIMIZED INJECTION GAINS 2131

Fig. 1. Overall framework of the proposed method.

B. VFOG Model

To overcome the deficiencies of the CS-based injection
scheme, we attempt to estimate a refined PAN image PVFOG

to minimize the spectral distortion further. Inspired by the su-
periority of variation-based methods; i.e., the contribution to
minimizing the spectral distortion [38], we design the novel
VFOG model in a unified variational framework to estimate
the PVLFOG image. In general, variation-based methods, which
use the gradient features of the P image, suffer from staircase
effects and the loss of several image textures. Therefore, the
fractional-order geometric feature, which is an effective means
of retaining the image textures and reducing the staircase effects,
is used to represent the geometric information in the VFOG
model.

To improve the correlations between the PVFOG and M im-
ages, and to guarantee that PVFOG preserves the geometric infor-
mation from Phist, two constraint terms are implemented in the
VFOG model. The first term enforces PVFOG to contain a similar
spatial structure to the intensity component of the MS image. The
second term is the spatial geometry information fidelity term.
Specifically, the second term constrains the fractional-order
gradient feature of the PVFOG image to be consistent with that
of Phist, thereby ensuring that PVFOG maintains spatial fidelity
to Phist. Mathematically, the energy function is designed as
follows:

PVFOG = min
PVFOG

‖PVFOG − I‖2F + α
∥∥∇βPVFOG −∇βPhist

∥∥2
F

(9)
where α is the tradeoff parameter, ∇β : �K×K → �2×K×K

(1 < β < 2) denotes the discrete fractional-order gradient
operator, β represents the fractional order, and [∇βPhist]k =

([Dβ
hPhist]k, [D

β
vPhist]k)

T ∈ �2. [Dβ
hPhist]k and [Dβ

vPhist]k rep-
resent the kth columns of the horizontal and vertical discrete
fractional-order gradient matrices, respectively. Dβ

h : �K×K →
�1×K×K and Dβ

v : �K×K → �1×K×K are the horizontal and
vertical discrete fractional-order gradient operators [38], which
are formulated as

[
Dβ

hPhist

]
k
=

K−1∑
t=0

ω
(β)
t Phist (r + t, s) (10)

[
Dβ

vPhist
]
k
=

K−1∑
t=0

ω
(β)
t Phist (r, s+ t) (11)

where (r, s) is the coordinate of a pixel and t repre-
sents the distance from the pixel. ω

(β)
t = (−1)tΓ(β + 1)/

[Γ(t+ 1)Γ(β − t+ 1)] is the generalized binomial coefficient
[37] and Γ(�) denotes the Gamma function, with K ≥ 3.

It is obvious that (9) is a typical convex optimization problem
that can be solved by the sliding block technique and least
square method. Denote pVFOG, mb, and phist as the vectorized
blocks of the PVFOG, I, and Phist images, respectively. Then,
the vectorized block version of (9) can be expressed as follows:

pVFOG = min
PVFOG

‖pVFOG −mb‖2F + α
∥∥∇βpVFOG −∇βphist

∥∥2
F
.

(12)
To solve (12), we set the partial deviation of pVFOG to zero,

then we can obtain the equation as

pVFOG −mb + α(∇β)T (∇βpVFOG −∇βphist) = 0

⇒ pVFOG −mb + α(∇β)T∇βpVFOG − α(∇β)T∇βphist = 0

⇒ (H + α(∇β)T∇β)pVFOG = mb + α(∇β)T∇βphist
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⇒ pVFOG = (H + α(∇β)T∇β)−1(mb + α(∇β)T∇βphist)

= (H + αA)−1(mb + αAphist) (13)

where

A = (∇β)T∇β = ((Dβ
h , D

β
v )

T )T (Dβ
h , D

β
v )

T

= Dβ
h(D

β
h)

T +Dβ
v (D

β
v )

T (14)

and H represents an identity matrix.
According to the designed VFOG model in (9), the difference

between the generated PVFOG image and M image is smaller
than that between the Phist image and M image. Furthermore,
the fractional-order gradient is applied to preserve the spatial
features of the Phist image more effectively.

C. Injection Gains Based on NDVI

The injection gains gi determine how many high-frequency
details are added into each band of the M image, which plays
a decisive role in the effectiveness of fused algorithms. The
spectral dissimilarities between the P and M images may vary
significantly according to different land cover types, such as veg-
etated areas, water, and buildings. Moreover, the main spectral
distortion usually occurs within vegetated areas. Xu et al. [43]
verified that the injection gains based on vegetated and nonveg-
etated areas are dissimilar. The NDVI, which is an important
indicator that quantifies the state of vegetation growth, has been
established as a practicable and effective means of estimating
the injection gains [39]. The NDVI is defined as follows:

NDVI =
NIR −R

NIR +R
(15)

where R and NIR are the pixel values of R and NIR bands of the
M image, respectively.

Choi et al. [39] confirmed that a high or moderate correlation
is usually reflected between the injection gains and NDVI.
Therefore, we consider not only the edge detection matrices
of Mi and PVFOG, but also the edge detection matrix of the
NDVI. By replacing Q with PVFOG and the NDVI, the edge de-
tection matricesEPVFOG and ENDVI, respectively, can be obtained
using (6).

At present, the majority of injection gains in existing injection
models consider the edge detection matrices that are guided by
the edges of a PAN image and the different bands of an MS
image [21]. Inspired by this concept, in this article, we define
the initial injection gains, denoted as Gi, as follows:

Gi = aiEPVFOG + (1− ai)EMi
(16)

where ai is the weight parameter, which is obtained by measuring
the relationship between the PVFOG images and different bands
of the MS images [32]. As mentioned in Section II, ai can be
obtained by substituting EPhist with EPVFOG in (7) and (8).

It is obvious that the injection gains based on different bands
of the M image, denoted as Vi, should not only consider the
tradeoff between EMi

and EPVLFOG , but should also take ENDVI

into account. This process can be expressed as follows:

Vi = Gi + biENDVI (17)

where bi is the discrimination coefficient, the purpose of which
is to modulate the relation between Vi and ENDVI. Choi et al.

[39] verified that the NDVI was negatively correlated with the
injection gains of the visible bands and positively correlated with
the injection gains of the NIR band. That is, when the correlation
coefficients are greater than 0, the information that is being
processed is in the NIR band. Moreover, given that vegetation
has very strong reflectivity in the NIR band, it has more details in
the NIR band. Thus, the degree of injection should be improved
for the vegetation information in the NIR band. Therefore, bi is
defined as

bi =

{
σ2(Gi)

2σ2(ENDVI)
, if CR (Gi,NDVI) > 0

0, if CR (Gi,NDVI) < 0
(18)

where σ2 denotes the variance and CR(·) is the function for
calculating the correlation coefficients, which is defined as

CR (S1, S2) =
COV (S1, S2)

σ (S1) · σ (S2)
(19)

where S1 and S2 are the two input source images.
Given that the injection gains are close to 0 or even negative in

certain areas, and the sigmoid function can reduce the dynamic
range of the injection gains [44], the sigmoid function is used to
optimize Vi preliminarily, which can be expressed as follows:

OVi =
(
1 + e−3Vi

)−1
(20)

where OVi is the initial optimized Vi. Furthermore, it is par-
ticularly important that the proportion between different bands
of the MS image remain unchanged to maintain the spectral
information in the M image [32]. Therefore, the final injection
gains gi can be obtained by

gi =
Mi

1
N

N∑
i=1

Mi

×OVi. (21)

In general, the designed gi comprehensively consider the
relations between ENDVI, EMi

, and EPVLFOG . Moreover, the sig-
moid function and normalization method are applied to optimize
the injection gains further. With the aid of the defined gi, the
high-frequency details HD from PVFOG can be injected into the
MS image more accurately. Therefore, the fused image F can be
obtained using the injection model as follows:{

Fi = Mi + gi ×HD
HD = PVLFOG − I

. (22)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Datasets and Settings

In this article, we collected the datasets obtained from four
different satellites, namely Pleiades, QuickBird, GeoEye-1, and
WorldView-2. The characteristics of the four satellites are listed
in Table I. In our work, each dataset contained 90 sets of im-
ages. These satellite images, which included various land cover
types, such as lakes, buildings, vegetation, and mountainous
areas, were used to verify the performance of our algorithm
comprehensively.

To assess the effectiveness of our algorithm more thoroughly,
two categories of experiments, namely simulated and real data
experiments, were conducted. In simulated data experiments, the
original MS images are usually regarded as reference images



YANG et al.: PANSHARPENING BASED ON VARIATIONAL FRACTIONAL-ORDER GEOMETRY MODEL AND OPTIMIZED INJECTION GAINS 2133

TABLE I
SPECIFICATIONS OF THE PLEIADES, QUICKBIRD, GEOEYE-1, AND WORLDVIEW-2 SATELLITES

Fig. 2. Fused results by different methods on the Pleiades dataset. (a) GS. (b) MTF-GLP. (c) PRACS. (d) BFLP. (e) FSRIC. (f) PanColorGAN. (g) Fusion-Net.
(h) Proposed. (i) Reference. (j) PAN.

according to Wald’s protocol [45]. Specifically, the original
MS and PAN images were degraded and down-sampled with
a decimation factor of 4. Thus, the down-sampled MS and PAN
images were used as the input images for the simulated data
validation. Furthermore, seven state-of-the-art pansharpening
algorithms were used for comparison to verify the performance
of the proposed algorithm: GS [13], Generalized Laplacian
Pyramid with MTF-matched filter (GLP-MTF) [46], PRACS
[14], the bilateral filter luminance proportional (BFLP) method
[47], the full-scale regression-based injection coefficient (FS-
RIC) method [48], PanColorGAN [27], and Fusion-Net [28].
All of the methods used for comparison were public source
codes provided by the corresponding authors, and tested on the
computer with Intel(R) Core (TM) i5 @ 2.60 GHz CPU and
16 GB RAM.

B. Quality Evaluation Indexes

To further quantitatively verify the performance of the pro-
posed method, we adopted two types of metrics based on the dif-
ferent experiments; i.e., the simulated and real data experiments.
In particular, the metrics used for the simulated data experi-
ments include correlation coefficient (CC) [38], universal image

quality index (UIQI) [11], root-mean-square error (RMSE) [26],
peak signal-to-noise ratio (PSNR) [49], relative average spectral
error (RASE) [50], erreur relative global adimensionnelle de
synthese (ERGAS) [21], and spectral angle mapper (SAM) [51].
The metrics used for the real data experiments include spectral
distortion index (Dλ), spatial distortion index (Ds), and hybrid
quality with no reference (HQNR) [52], [53].

C. Experimental Results

The simulated data experiments were conducted on the im-
ages acquired from the Pleiades and QuickBird sensors, whereas
the images obtained from the WorldView-2 and GeoEye-1 sen-
sors were employed in the real data experiments. Both subjective
and objective evaluations were the essential aspects for verifying
the effectiveness of the pansharpening algorithm. Four groups
of images from the Pleiades, QuickBird, WorldView-2, and
GeoEye-1 datasets are presented as examples to observe the
performance of the proposed algorithm as well as the comparison
methods subjectively. For convenience of comparison, only the
R, G, and B bands of the pansharpened images are included.

Fig. 2 displays the pansharpened images that were generated
by the different methods on the Pleiades dataset. Moreover, to
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Fig. 3. Residual images estimated by the difference between the reference image and the fused results by different methods in Fig. 2. (a) GS. (b) MTF-GLP.
(c) PRACS. (d) BFLP. (e FSRIC. (f) PanColorGAN. (g) Fusion-Net. (h) Proposed.

distinguish the differences of the pansharpened results (fused
results) obtained by the different methods more effectively,
the residual images estimated by the differences between the
reference image and fused results are presented in Fig. 3. The
red and green rectangular regions within the residual images
are magnified and displayed at the bottom of the residual
images. As can be observed from Fig. 3, the residual image
of PanColorGAN produced serious spectral distortion and
undesired artifacts. Although the GS, MTF-GLP, PRACS,
BFLP, FSRIC, and Fusion-Net algorithms could reduce some
of the spectral distortion, several undesired artifacts remained
in the residual images, particularly in the water and forest areas
marked by the green and red rectangles. In contrast, the proposed
algorithm obtained less residual information, indicating that
our method could eliminate the spectral distortion more
effectively, retain more textures, and achieve a better fusion
effect.

Table II displays the objective results of Fig. 2 and the average
objective results of the Pleiades dataset including 90 groups of
images. For clearer observation, the upward arrow in Table II
indicates that a larger measured result of the indicator means a
better effect, whereas the downward arrow indicates the oppo-
site. Furthermore, the best results of each indicator are displayed

in bold, and the second-best ones are underlined. As indicated in
Table II, the proposed algorithm achieved the optimal results in
all indexes for the results of Fig. 2. It also performed the best in
all indexes for the average evaluation except SAM index. This
further confirms the superiority of the proposed algorithm on
the Pleiades dataset.

Fig. 4 presents the pansharpened images that were generated
by the comparison and proposed algorithms on the QuickBird
dataset. It is evident that the BFLP and PanColorGAN algo-
rithms produced serious spectral distortion, particularly in the
plain areas, and the result of PRACS was blurred. Moreover,
Fig. 5 depicts the residual images for a more intuitive compar-
ison. According to Fig. 5, the residual images that were gen-
erated by the GS, MTF-GLP, and FSRIC algorithms exhibited
spatial and spectral distortion, especially in the vegetation areas
marked by the green rectangles. In comparison, the PRACS and
Fusion-Net algorithms could eliminate some spatial distortion
and retain more spectral information. However, when compar-
ing the residual image of the proposed method with those of
other pansharpening methods, it is clear that our method could
reduce the spectral distortion and improve the spatial fidelity
more effectively, thereby demonstrating the superiority of the
proposed method.
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Fig. 4. Fused results by different methods on the QuickBird dataset. (a) GS. (b) MTF-GLP. (c) PRACS. (d) BFLP. (e) FSRIC. (f) PanColorGAN. (g) Fusion-Net.
(h) Proposed. (i) Reference. (j) PAN.

Fig. 5. Residual images estimated by the difference between the reference image and the fused results by different methods in Fig. 4. (a) GS. (b) MTF-GLP.
(b) PRACS. (c) BFLP. (e) FSRIC. (f) PanColorGAN. (g) Fusion-Net. (h) Proposed.
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TABLE II
QUANTITATIVE RESULTS ON THE PLEIADES DATASET

TABLE III
QUANTITATIVE RESULTS ON THE QUICKBIRD DATASET

Table III presents the objective results of Fig. 4 and the average
objective results of the QuickBird dataset including 90 groups
of images. As indicated in Table III, the proposed algorithm
obtained the best fused results on most indexes, which further
demonstrates the superiority of the proposed algorithm.

Fig. 6 displays the fused images that were produced by
the comparison and proposed algorithms on the WorldView-2
dataset. We provide the zoomed details for a more intuitive
comparison. It is evident from Fig. 6 that the BFLP algorithm
generated great serious spectral distortion in the area marked
by the red rectangle, although it achieved satisfactory spatial
performance. The GS, FSRIC, and Fusion-Net algorithms pro-
duced excessive sharpening, especially in the zoomed areas. The
MTF-GLP and PRACS algorithms showed some improvements
in the spatial quality. The BFLP algorithm achieved progress
in the spectral preservation but produced several undesired
artifacts. In contrast, the proposed algorithm produced superior
pansharpened images in terms of the spectral and spatial quality.

Table IV displays the objective assessments of Fig. 6 and the
average objective results of the WorldView-2 dataset including
90 groups of images. Both the objective results of Fig. 6 and the
average results of the WorldView-2 dataset demonstrate that the
proposed algorithm achieved the best results on HQNR indexes,
and the second-best on Ds indexes. In general, the proposed
algorithm exhibited outstanding performance with respect to the
spatial and spectral fidelity.

Fig. 7 presents the fused images that were obtained by the
comparative and proposed algorithms on the GeoEye-1 dataset.
The visual comparison demonstrates that the fused images ob-
tained by the PanColorGAN methods exhibited serious spectral
distortion. Although the results obtained by the GS, MTF-GLP,
BFLP, and FSRIC methods exhibited certain improvements,
they were unsatisfactory in the spatial aspect, particularly in
the zoomed areas. The result of Fusion-Net suffered from over
detail injection. The fused images produced by the PRACS and
the proposed algorithms had a high visual quality. However, the
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Fig. 6. Fused results by different methods on the WorldView-2 dataset. (a) GS. (b) MTF-GLP. (c) PRACS. (d) BFLP. (e) FSRIC. (f) PanColorGAN. (g) Fusion-Net.
(h) Proposed. (i) MS. (j) PAN.

TABLE IV
QUANTITATIVE RESULTS ON THE WORLDVIEW-2 DATASET

Fig. 7. Fused results by different methods on the GeoEye-1 dataset. (a) GS. (b) MTF-GLP. (c) PRACS. (d) BFLP. (e) FSRIC. (f) PanColorGAN. (g) Fusion-Net.
(h) Proposed. (i) MS. (j) PAN.
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TABLE V
QUANTITATIVE RESULTS ON THE GEOEYE-1 DATASET

TABLE VI
AVERAGE RUNNING TIME OF THE PROPOSED METHOD AND COMPARISON METHODS.

Fig. 8. Different normalized values of indexes corresponding to different values of (a) α and (b) β.

objective assessment results presented in Table V indicate that
the proposed algorithm performed the best on Ds and HQNR
indexes. Therefore, the proposed algorithm could achieve the
optimal performance in terms of the overall quality compared
to the other algorithms.

In addition to abovementioned subjective and objective eval-
uations, we calculated the average running time of the proposed
and comparison methods on the four datasets including 360
groups of images, as indicated in Table VI. It can be observed
that the BFLP, PanColorGan, and Fusion-Net methods required
a relatively long time, whereas the GS, MTF-GLP, PARCS, and
FSRIC methods required a relatively short time. As the VFOG
model defined in the proposed algorithm is solved using sliding
block technology, the proposed algorithm could not achieve
optimal efficiency but was at an intermediate level among all
algorithms. However, overall, according to the previous experi-
mental results on the four datasets, the proposed algorithm still
outperformed the other algorithms.

V. DISCUSSION

A. Analysis of Parameters

The main parameters used in the proposed method, namely
α and β in (9), are generated in numerous experiments. In this

article, for generalization, we used 30 groups of images from
each satellite dataset to constitute a new dataset containing 120
groups of images. Thereafter, the optimal values ofα and β were
obtained through experiments performed on this new dataset.
The RMSE, RASE, SAM, PSNR, CC, UIQI, and ERGAS in-
dexes were employed to examine how these parameters affected
the overall spatial and spectral performance of the proposed
method, as illustrated in Fig. 8. It is worth noting that all of
the results in Fig. 8 are the normalized average values. It is
obvious from Fig. 8(a) that when α≥+031.E, the proposed
method could realize the best tradeoff between these indexes.
Moreover, Fig. 8(b) indicates that when β = 1.1, the proposed
method could achieve the best performance. Therefore, we set
α=1.E and β = 1.1, in this article, to achieve better spectral and
spatial performance.

B. Performance of VFOG Model

Most researchers have utilized the Phist image to solve the
spectral distortion problem in the CS-based injection scheme.
However, this approach is not very effective owing to the low
correlation between the Phist and M images. Therefore, we
designed the VFOG model to estimate the PVFOG image with
similar characteristics to the M image to minimize the spectral
distortion. To verify whether the PVFOG image was more related
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Fig. 9. Correlation between Phist images, PVFOG images and different bands
of M images.

to the M image compared to the Phist image, a comparison
experiment was conducted based on the new dataset.

We compared the correlation between the Phist and M images
with the correlation between PVFOG and M images, and the
results are presented in Fig. 9. All of the measured results in
Fig. 9 are the normalized average values of 120 groups of fusion
results. As indicated in Fig. 9, the correlations between the R,
G, and B bands of the M and PVFOG images were significantly
higher than the correlations between the R, G, and B bands of
the M and Phist images, whereas the correlation between the
NIR band of the M and PVFOG images was slightly lower than
that between the NIR band of the M and Phist images. However,
according to the mean value, the correlation between the M and
PVFOG images was significantly higher than that between the M
and Phist images. Therefore, the correlation between the PVFOG

and M images was higher than that between the Phist and M
images, and the high-frequency details of the PVFOG image had
the approximate texture distribution of the M image, which led
to a better spectral quality in the pansharpened image.

As mentioned previously, the high-frequency details that were
extracted from the PVFOG image could effectively reduce the
spectral distortion of the pansharpened image. To verify this
point, the high-frequency details from the Phist and PVFOG

images were measured, following which these details were in-
jected into the M images to obtain the fused images. The superior
performance of the VFOG model could be proven by objectively
assessing the degree of spectral distortion in the fused images.
As illustrated in Fig. 10, the RASE, RMSE, SAM, and ERGAS
indexes were applied to estimate the spectral fidelity of the fused
images quantitatively. The results in Fig. 10 are the normalized
average indexes of 120 groups of objective index results. It is
obvious that, compared to the algorithm using the Phist image,
the algorithm using the PVFOG image achieved the optimal re-
sults on all indexes, which indicates that the algorithm using the
VFOG model achieved better spectral performance. Therefore,
the VFOG model could effectively improve the spectral fidelity
of the fused images.

C. Performance of Injection Gains

As vegetation has very strong reflectivity in the NIR band,
more vegetation information exists in this band. Therefore, it is

Fig. 10. Comparison of the performance of detail injection based on Phist and
PVFOG images.

Fig. 11. Performance comparison of ENDVI.

Fig. 12. Comparison of the performance of injection gains mentioned in
Section II and defined by this article.

necessary to inject more vegetation information into the NIR
band. To confirm this claim, comparative experiments were
conducted based on the injection gains with ENDVI and without
ENDVI. The PSNR, CC, UIQI, RASE, RMSE, and ERGAS
indexes were used to compare the performance of the algorithms
quantitatively. All of the measured results in Fig. 11 are the
normalized average indexes of 120 groups of objective index
results. It is evident from Fig. 11 that the algorithm with the
injection gains considering ENDVI could achieve the optimal
results on all indexes. Thus, it was reasonable to inject more veg-
etation information into the NIR band. This further validates the
necessity of introducing ENDVI to determine the injection gains.
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Moreover, comparative experiments were conducted to val-
idate the performance of the injection gains designed in this
article. Specifically, the defined injection gains and the injection
gains mentioned in Section II were used to inject the high-
frequency details into the M images to obtain the final fused
images. Through quantitative comparison of the normalized
average results of each index, the evaluation results are shown
in Fig. 12. It is apparent that the algorithm with the defined
injection gains achieved the optimal results on all indexes, which
further validated the fact that the defined injection gains could
effectively increase the performance of the algorithm.

VI. CONCLUSION

In this article, a novel pansharpened algorithm based on the
VFOG model and optimized injection gains has been presented.
The main purpose of the proposed algorithm is to minimize the
spectral distortion caused by the dissimilarities between the PAN
and MS images. Moreover, more accurate injection gains were
determined to ensure the performance of the proposed method.
Therefore, the VFOG model, which comprehensively considers
the spatial structure of the MS image and the gradient character-
istics of the PAN image, was designed to reduce the spectral
distortion of the pansharpened images that are obtained by
the proposed method. Moreover, as larger spectral dissimilarity
usually occurs within vegetated areas, the NDVI was introduced
to modify the injection gains and to improve the quality of the
final fused images further. The experimental results demonstrate
that the proposed algorithm can generate better fusion results in
terms of spectral and spatial fidelity compared with various other
pansharpening methods.
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