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Abstract—Accurate bathymetric maps are essential to under-
stand marine and coastal ecosystems. With the development of
satellite and sensor technology, satellite-derived bathymetry (SDB)
has been widely used to measure the depth of nearshore waters.
Employment of physics-based methods requires a series of optical
parameters of the water column and seafloor, which limits the
application of these methods to shallow-water bathymetry. Due
to convenience, low costs, and high efficiency, empirical methods
based on in situ measurements and satellite imagery are increas-
ingly used for nearshore bathymetry. These measurements are
required to calibrate empirical models, so that reasonable accuracy
can be achieved. The Ice, Cloud, and Land Elevation Satellite-2
(ICESat-2), equipped with the advanced topographic laser altime-
ter system, provides a novel opportunity for nearshore bathymetry.
Using the new measurement strategy of photon counting, ICESat-2
can provide accurate bathymetric points from spaceborne obser-
vations, which can be used in place of in situ water depth data. In
this study, ICESat-2 bathymetric points and multispectral images
were used to train four typical models and produce bathymetric
maps for Shanhu Island, Ganquan Island, and Lingyang Reef in
the Xisha Islands of China. We evaluated the bathymetric results
by comparing them with reference depth data from airborne light
detection and ranging. All models had a satisfactory accuracy,
as well as multimodel and multisource image consistency. With
the ICESat-2 bathymetric points, SDB is no longer limited by in
situ measurements. Hence, this approach could be extended to a
larger scale to obtain nearshore bathymetric maps of coastal areas,
surrounding islands, and reefs using free and open-access satellite
data.

Index Terms—Empirical models, ice cloud and land elevation
satellite-2 (ICESat-2), multispectral images, nearshore, satellite-
derived bathymetry (SDB).
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I. INTRODUCTION

D ETAILED and accurate nearshore bathymetry is critical
for a variety of applications, including offshore navigation,

ocean research, and marine spatial management [1], [2]. With the
expansion of human activities in coastal and marine areas, there
is a growing need to investigate the topography and physical
features of the seafloor [3]. The main objective of nearshore
bathymetry is to assess shallow water regions around coastal
zones, straits, or islands, and to shrink the nearshore data gap
termed the “white ribbon” by the hydrographic community
[4]–[6].

In recent decades, a series of techniques have been developed
to measure and estimate water depth. Two of the most widely
used techniques: 1) single or multibeam echo-sounding; and
2) airborne light detection and ranging (LiDAR), and have
been successfully applied in various coastal and marine regions
[7]–[10]. Echo-sounding hydrographic survey techniques ac-
quire high-accuracy bathymetric data, which are difficult to
collect in areas of shallow water or near reefs, rocks, and similar
hazards [11]. The airborne LiDAR bathymetry (ALB) system
with a 532-nm laser beam is widely used in nearshore applica-
tions, but it has low efficiency and high costs. Furthermore, it is
easily affected by weather and environmental conditions [12].
One method of solving these problems uses satellite-derived
bathymetry (SDB).

SDB is based on remote sensing images and in situ measure-
ments, and it is a cost-effective means of obtaining bathymetric
maps for a wide area. In recent years, spaceborne and airborne
sensors with different spatial and spectral resolutions, such as
LandSat-8, Sentinel-2, WorldView-2, QuickBird, IKONOS, and
AVIRIS, have been used successfully for nearshore bathymetry
[3], [13]–[17]. Two main methods are used to perform SDB:
1) empirical; and 2) physics-based model inversion approaches
[18]–[21]. Physics-based approaches can be applied without in
situ water depth measurements, but they are more challenging
to implement and computationally demanding. Empirical ap-
proaches are more common, as they offer a practical way to
derive bathymetry from optical remote sensing data [22], [23].
Water depth has an empirical relationship with light attenuation
in water that may appear in spectral changes; however, factors,
such as atmospheric conditions, water transparency, bottom
type, and surface waves, can affect the relationship between

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6337-1373
https://orcid.org/0000-0002-3959-9693
https://orcid.org/0000-0001-9219-6829
https://orcid.org/0000-0002-6424-0623
https://orcid.org/0000-0003-3882-1616
https://orcid.org/0000-0003-2766-0845
mailto:zxh_cug@163.com
mailto:stein_syf@foxmail.com
mailto:zhangdongfang@cug.edu.cn
mailto:ysdong@cug.edu.cn
mailto:weihan@cug.edu.cn
mailto:lizhe.wang@gmail.com
mailto:leyuan@cug.edu.cn
mailto:604119082@qq.com


2450 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

the surface reflectance and water depth [24]. Consequently,
in situ measurements are required to calibrate the empirical
relationship so that reasonable accuracy can be achieved. Cur-
rently, in situ water depth measurements in nearshore areas
are lacking, but the recently launched Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2) provides a novel opportunity
for nearshore bathymetry. ICESat-2 is the first spaceborne laser
altimeter to be equipped with the advanced topographic laser
altimeter system (ATLAS). ATLAS uses a green laser (532
nm) with 10 000 pulses per second (10 kHz), a footprint 17
m in diameter, and an along-track sampling interval of 0.7 m
[25]. It has three laser beams along the track, and the distance
between adjacent beams is approximately 3.3 km. Each beam
is divided into strong and weak sub-beams. The energy of
the strong sub-beam is approximately four times than that of
the weak sub-beam, and the distance between them is 90 m
[26]. Previous studies have suggested that nearshore bathymetry
based on ICESat-2 is possible, and ICESat-2 can measure water
depths up to 38 m in optically clear waters [27], [28]. Even
if the spacing between the beam pairs is too wide to generate
high-resolution bathymetric results, water depth profiles derived
from ICESat-2 can be used to seed SDB. Nearshore bathymetry
based on ICESat-2 and multispectral images have been investi-
gated only in a few locations [24], [29]. There is still a lack of
global-scale research on SDB calculated using a combination of
ICESat-2 data and remote sensing images.

In this study, bathymetric maps of two islands and a reef
located in the Xisha Islands were produced by combining
ICESat-2 data and satellite multispectral images. First, raw
ICESat-2 data were processed through a high-accuracy filtering
method oriented to bathymetry. For each extracted seafloor pho-
ton, errors arising from the refraction effect in the water column
were corrected. Second, the bathymetry points of ICESat-2 were
used as in situ measurements to train the four models: 1) the
linear; 2) band ratio; 3) support vector regression (SVR); and 4)
random forest (RF) models. In addition, the SDB results were
compared with the ALB reference data. The aims of this study
are summarized as follows.

1) Evaluate the altimetry and bathymetry accuracy of
ICESat-2 data.

2) Validate and estimate the accuracy of SDB results based
on ICESat-2 data and satellite multispectral images.

3) Compare the bathymetric results for different sources of
multispectral images.

The rest of this article is organized as follows. Section II
presents related work. Section III describes the estimation meth-
ods and data, including data processing procedures used in the
experiment. Section IV contains a description of results and an
analysis of the experimental results. Section V discusses the
errors caused by different settings in the experiment. Finally,
Section VI concludes this article.

II. METHODS OF SATELLITE-DERIVED BATHYMETRY

SDB based on remote sensing images and in situ measure-
ments is the commonly used method of obtaining bathymetric

maps, which can be classified into following two categories
according to the principle [30].

1) Classical methods require to determining the unknown
parameters in known formula by statistics and experience,
in order to determine the relationship between image
information and depth.

2) Machine learning methods require a large number of
in situ data to train the model and obtain the water depth.

The abovementioned two methods require a large amount of
in situ data to solve the unknown parameters or build the model.

A. Classical Methods

Currently, the widely used bathymetry classical is the linear
band model and band ratio model. Lyzenga [31] proposed a
single-band water depth inversion method and a multiband linear
combination water depth inversion method based on the assump-
tion of clear water. Many scholars have improved the method to
adapt to more complex water depth detection scenarios. Stumpf
[19] aimed at the linear method in turbid waters. The problem
of poor effect is improved, and a band ratio method, suitable for
turbid waters, is proposed. Compared with the linear method,
the band ratio method reduces the parameters that need to be
adjusted and at the same time exhibits stronger stability. Liu
et al. [32] proposed an adaptive blended algorithm approach to
improve the method proposed by Stumpf, which significantly
improved the accuracy of the estimate of water depth. Cao
et al. [33] used the band ratio method to estimate the depth
of the St. Croix area. Forfinski-Sarkozi and Parrish [34] used
the Stumpf’s method to fuse single-photon data with Landsat-8
data to draw the Keweenaw Bay nearshore water depth map. Ma
et al. [24] used the abovementioned two classic methods to fuse
single-photon data as in situ data with Sentinel-2 images, and
the map of water depth map was drawn on the shallow water
area of Acklins Island.

However, classical methods require certain empirical theories
to determine unknown parameters, so there are certain limita-
tions in their used.

B. Machine Learning Methods

In the research of water depth inversion, the most commonly
used machine learning methods include SVR [35], RF [36], etc.
The principle of machine learning methods to estimate water
depth is mainly by constructing a nonlinear relationship between
surface reflectivity and water depth. Compared with the classic
method, the machine learning method does not require any
empirical knowledge of attenuation, water quality, or bottom
type, and has wider applicability. Tonion et al. [37] compared the
performance of three different ML algorithms in predicting sea
depth, the RF root mean square error (rmse) was 0.228, but the
content error was very serious. Zhang et al. [38] used Sentinel-2
and SVR methods and corrected by residual interpolation. The
estimated water depth reduces the rmse by 0.3 m. Thomas
et al. [39] developed one of the first fully space-based open
source approaches to measure nearshore bathymetry in optically
shallow waters. Albright and Glennie [29] used the fusion data
of Sentinel-2 and ICEsat-2 as a dataset and used the SVR method
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Fig. 1. (a) Location of the study area. (b) ICESat-2 trajectories used in this
study, where dotted lines of different colors represent data acquired on different
dates and the two green rectangles correspond to the distribution of the reference
water depth acquired by the airborne LiDAR and illustrated in detail in (c)
and (d).

to train a water depth inversion model. The rmse of the water
depth is estimated to be only 0.13 m.

Due to the limitation of the measurement area, the abovemen-
tioned method can only complete the water depth estimation
in the area with in situ data. Due to its own characteristics,
ICESat-2 satellite can provide bathymetric points on a global
scale, which well solves the regional limitation of in situ data
measurement. The limitation of the development of the ICESat-2
data processing method makes the application of ICESat-2 data
in depth estimation and mapping less. Therefore, this article
evaluates the ICESat-2 data processing method of Chen et al.
[40], and then applies it to shallow water detection. The perfor-
mance of different water depth estimation methods in the same
image and the influence of different image resolutions on water
depth detection methods are explored at the same time.

III. MATERIALS AND METHODS

A. Study Area

The Xisha Islands (also known as the Paracel Islands) are a
group of islands, reefs, banks, and other maritime features in
the South China Sea [see Fig. 1(a)]. This archipelago includes
approximately 130 small coral islands and reefs, grouped into the
northeastern Dexuan Islands and western Yongle Islands (also
known as Amphitrite Group and Crescent Group, respectively)
[41]. They are distributed over an area of 15 000 km2, with a
land area of 7.75 km2. Our study area is in the Yongle Islands,
including Ganquan Island, Shanhu Island, and Lingyang Reef
[see Fig. 1(b)]. Shanhu Island is located in the northwestern
Yongle Islands. It is oval in shape, 900-m long from east to
west, 450-m wide from north to south, and covers an area of
0.31 km2. Ganquan Island lies to the west of the Yongle Islands,
at 16◦30’N, 111◦35’E. It is a lime sand island that has grown

TABLE I
DESCRIPTIONS OF THE ATLAS TRAJECTORIES USED IN THIS STUDY

from coral reefs, and it has a land area of 0.3 km2. The Lingyang
Reef is a small reef to the southwest of the Yongle Islands,
it is 12 km from north to south and 4 km from east to west. This
small atoll is approximately triangular and has no access to the
sea or large exposed areas during low tide.

B. ATL03 Data

ATL03 is the ICESat-2 Level-2 global geolocated photon
dataset, and includes six “gtx” groups (GT1L, GT1R, GT2L,
GT2R, GT3L, and GT3R), each containing segments for one
ground track. Each photon in each group has a latitude, longi-
tude, and elevation based on the WGS84 ellipsoid benchmark
[42]. To improve the measurement accuracy of the ATLAS and
expand its applicable range, a set of geophysical corrections are
applied to the ATL03 data, including solid Earth tide, dynamic
atmospheric, and inverted barometer effect corrections [43],
[44]. The detector is extremely sensitive, so the raw photon data
in the ATL03 dataset are very noisy, especially during the day
due to solar activity. Thus, a “confidence” parameter, numbered
0–4, is assigned to each photon in ATL03 to classify it as either
a “likely signal” or “noise” [24]. In this study, eight ATL03
data files acquired between February 2019 and April 2020
were downloaded from the Goddard Earth Sciences Data and
Information Services Center1 as shown in Table I. Six ground
trajectories that passed through the Lingyang Reef were selected
[see Fig. 1(b)]. Two adjacent trajectories: 1) 20190524GT3L;
and 2) 20200220GT3L, passed over the Lingyang Reef from
north to southwest in parallel. The remaining four trajectories
were distributed to the east of the Lingyang Reef in two pairs
of parallel lines. The latitude, longitude, height, along-track
distance, and confidence level of the raw photons in these
trajectories were extracted from the ATL03 data and used for
subsequent analysis.

C. Multispectral Remote Sensing Images

Three multispectral images, including the standard GaoFen-2
Level-1A product, standard Sentinel-2 multispectral instru-
ment Level-1C product, and LandSat-8 operational land imager
Level-1T product, were captured, resulting in a total of three
images. To compare various inversion models, we selected
images where the acquisition dates and times were as close as

1[Online]. Available: https://earthdata.nasa.gov/eosdis/daacs/gesdisc

https://earthdata.nasa.gov/eosdis/daacs/gesdisc
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TABLE II
DESCRIPTION OF MULTISPECTRAL IMAGES

possible. The information regarding the selected images is listed
in Table II. Images with more than of 10% cloud cover were
chosen. The images were geometrically projected on the univer-
sal transverse mercator/world geodetic system 84 system and
preprocessed with atmospheric correction using the FLAASH
model [45]. Furthermore, the solar glint effect was removed,
and blue-, green-, and red-band data were extracted and used
to construct the water depth inversion model using the ATLAS
bathymetry data.

D. ALB Reference Data

The reference water depth data at Ganquan Island were ac-
quired on January 9, 2013, using a scanned hydrographic oper-
ational airborne LiDAR system (SHOALS-3000, Canada). This
ALB system uses a green laser (532 nm) with 3000 pulses per
second (3 kHz), and it has a nominal bathymetry accuracy of 0.3
m [46]–[48]. The reference data at Lingyang Reef were obtained
on July 16, 2018, using the Mapper 5000 ALB system developed
by the Shanghai Institute of Optics and Fine Mechanics. This
system uses a green laser (532 nm) with 5 kHz pulses, and it has
a bathymetric accuracy of 0.23 m [49], [50]. The reference data
distributions for Lingyang Reef and Ganquan Island are marked
by the green rectangles in Fig. 1(b), and illustrated in detail in
Fig. 1(c) and (d), respectively.

E. Methods

The ATL03 dataset containing the eight selected trajectories
were first processed using a high-accuracy filtering method
oriented to bathymetry. To automatically separate and detect the
effective photon of the water surface and bottom, an ellipse filter
was adopted using an adaptive variable ellipse-filtering method
[40], where the size of the ellipse filter changes with the water
depth and density distribution of the water-column photon. The
proposed method has following five parts.

1) Slicing segments along the height direction and Gaussian
curve fitting.

2) Separating the above-water, water surface, and water col-
umn photons.

3) Determining the initial parameters of the elliptical filter.
4) Establishing the relationship between the initial ellipse

filter and the water-column photon density.
5) Detecting and fitting different types of effective photons

detected.
The elevation of the extracted underwater photons was then

corrected using a refraction correction method [51]. Tide cor-
rection is also essential for nearshore bathymetry using the
ATLAS dataset and remote sensing images. Since there were
no in situ measurements at the tide station, we conducted the

tide correction using the tide model NAO.99b [52], a global
ocean tide model that represents 16 major constituents with a
spatial resolution of 0.5◦. The constituents were estimated by
assimilating five years of TOPEX/POSEIDON altimeter data
into a barotropic hydrodynamical model. Model NAO.99b is
characterized by reduced errors in shallow waters compared to
other ocean tide models that use tide gauge data and collinear
residual reduction tests [51].

To validate the correctness and reliability of the corrected
seafloor photons for ATL03, their elevation was compared di-
rectly with the reference profile acquired by the ALB system.

Using the preprocessed multispectral images and ATL03
bathymetric points, we trained two empirical and two machine
learning algorithms to generate bathymetric maps (see Table II).
The most commonly used linear band and band ratio algo-
rithms were developed by Lyzenga et al. [18], [31] and Stumpf
et al. [19]. The following equations can, respectively, summarize
these:

hw = a0+
k∑

i=1

ai ln[Rw(λi)−R∞(λi)] (1)

hw = m0 × ln(n×Rw(λi))

ln(n×Rw(λj))
+m1 (2)

where hw is the bathymetry derived from the multispectral
image, R∞(λi) is the above-water surface remote sensing re-
flectance for band i, and R∞(λi) is the average deep water
signal after atmospheric and sun glint corrections. Further, n
is a fixed coefficient, generally set to 1000, which ensures that
the logarithm is positive under any condition, and that the ratio
produces a linear response with depth. Based on the in situ
bathymetric points, the values ofm0,m1, and ai can be obtained
by minimizing the difference between the estimated water depth
and prior water depth. SVR is a machine learning algorithm that
learns the nonlinear relationship between surface reflectance and
water depth without empirical knowledge of the processes that
would affect surface reflectance, such as attenuation, turbidity,
or bottom type. The support vectors used for regression are
determined by splitting the known pixel depths into uniformly
distributed training/validation datasets, and the best regression
fit is obtained using a kernel function. More details on the use
of SVR for bathymetric inversion can be found elsewhere [53].
RFs for nonlinear regression are formed by growing trees that
depend on a random vector, such that the tree predictor takes on
numerical values as opposed to class labels [4]. The decision
tree learning aims to create a model that predicts the value
of a target variable based on several input variables [54]. To
estimate the accuracy of the elevation of the ATL03 photons,
the elevations of the extracted seafloor photons of trajectories
20190524GT3L and 20200220GT3L were directly compared
with the ALB underwater profile. The bathymetric results used in
this study, based on ATL03 bathymetric points and multispectral
images, were further compared with the reference water depth
data to validate the accuracy of the SDB results by calculating
the coefficient of determination (R2), bias, and rmse.
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Fig. 2. ICESat-2 ground trajectories and raw points for 20190524GT3L and 20200220GT3R at the Lingyang Reef. Raw points distributed in shallow and deep
waters are marked by red and green rectangles in (b) and (f). The filtered and fraction-corrected points are shown in detail in (c), (d), (g), and (h). The elevation
relationships between corrected points and ALB reference data are shown in (e) and (f).

IV. RESULTS

A. Detection of Signal Photons and Bathymetry With ATLAS

For two trajectories overlapping the area of the ALB reference
data at Lingyang Reef (20190524GT3L and 20200220GT3R)
[see Fig. 2(a)], the elevation of the corrected seafloor photons
was compared with the ALB elevation profile to evaluate the
altimetry accuracy of ICESat-2. As shown in Fig. 2(b) and (f),
raw ATL03 data provided a confidence label for each photon. Ac-
cording to a visual assessment, some of the seafloor photons in

shallow water and most of the sea surface photons were marked
as “high” confidence. However, many seafloor photons were
labeled as “background,” especially those in the red rectangle in
Fig. 2(b) and (f). After processing via the filtering method, the
sea surface and seafloor photons were successfully extracted,
and some of the photons with low density were excluded as
outliers regardless of the confidence label [see Fig. 2(c) and (d)
for 20190524GT3L, and Fig. 2(g) and (h) for 20200220GT3R].
After the refraction correction, the seafloor photons were in
agreement with the reference ALB profile. In Fig. 2(e) and (i),
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TABLE III
CALIBRATION RESULTS FOR THE FOUR MODELS WITH THREE REMOTE

SENSING IMAGES

the elevations of corrected seafloor photons showed a significant
correlation with the ALB profile, that is, an R2 of 0.93 and
0.95, and an rmse of 0.52 and 0.46 m for 20190524GT3L and
20200220GT3R, respectively. Despite the potential for temporal
changes in the underwater topography during the acquisition of
the ATL03 and ALB data, and the altimetry error of the ALB
data (approximately 20 cm for seafloor points [55]), the elevation
estimation of the corrected ATL03 photons was reliable and
capable of describing the underwater topography in the study
area.

B. Model Calibration of Different Band Selections

Three remote sensing images with various spatial resolutions
were used to calibrate four inversion models to determine the
effects of spatial resolution and band range on their performance.
As given in Table III, for simplicity, the linear band model
using blue and green bands was expressed as “LBBG,” and a
similar notation was used for the other models. In general, all
the models effectively retrieved the water depth of the study
area (R2 = 0.48–0.94 and rmse = 0.64–1.88 m). The dual-band
models using blue and green bands performed better than those
using blue and red, or green and red bands. After adding the
reflectance of the red band to the LB, SVR, and RF models,
the R2 of the three-band models was slightly higher than that
of the dual-band models using blue and green bands (GaoFen-
2: 0.02–0.07, Sentinel-2: 0–0.04, and LandSat-8: 0.01–0.02).
The strong absorption of the red band by water means that its
bathymetric ability is extremely limited [56]. Moreover, from the
perspective of model selection, the models based on the machine
learning performed better than the empirical models.

The results in Table III demonstrate that the reflectance of
the blue and green bands contains most of the water depth
information in the Sentinel-2 and LandSat-8 images, but not
in the GaoFen-2 images. For example, the R2 of LBBG was
0.69, which was very close to that of LBGR (0.71); in contrast,
the R2 of LBBR was 0.64. To further investigate the divergence
between the GaoFen-2 images and the Sentinel-2 and Landsat-8
images, the reflectance images of Sentinel-2 and GaoFen-2 were
resampled to a resolution of 30 m, using bilinear interpolation.
The resampled reflectance was then compared to the reflectance

Fig. 3. Relationships between the reflectance values of the bands used. (a), (c),
and (e) correspond to the relationship between the reflectance values of the blue,
green, and red bands for LandSat-8 and Sentinel-2. (b), (d), and (f) correspond
to the relationship between the reflectance values of the blue, green, and red
bands for LandSat-8 and GaoFen-2.

of the LandSat-8 images. As shown in Fig. 3, the blue- and
green-band reflectance values of the Sentinel-2 images showed
significant correlation with those of the LandSat-8 images
(R2>0.8), and the red-band reflectance of the Sentinel-2 images
showed moderate correlation with that of Landsat-8 images,
with an R2 of 0.67. This explains the similarity between the
calibration results for Sentinel-2 and LandSat-8, especially when
using the blue and green bands. In addition, the green- and
red-band reflectance of the GaoFen-2 images showed moderate
correlation with that of the LandSat-8 images, but the blue-band
reflectance had a low correlation with the Landsat-8 images,
with R2 of 0.22. In our processing, the bathymetric capability
of GaoFen-2’s blue band was inferior to those of Sentinel-2
and LandSat-8. However, GaoFen-2 had the highest spatial
resolution. Integration of the band comparison and model cali-
bration results suggest that the blue and green bands should be
considered when using the Sentinel-2 and LandSat-8 images for
bathymetry calculations. Moreover, the green band should be
considered when using GaoFen-2 images, due to its relatively
weak bathymetric capability for the blue and red bands.

C. Accuracy and Precision of Bathymetric Estimates

The models with the highest calibration accuracy (LBBGR,
BRBG, SVRBGR, and RFBGR) were selected to produce bathy-
metric maps for each multispectral image. Fig. 4(a)–(d) cor-
respond to the bathymetric maps derived from the LBBGR,
BRBG, SVRBGR, and RFBGR models for the GaoFen-2 images,
respectively. Fig. 4(e)–(h) and (i)–(l) correspond to the bathy-
metric maps derived from the four models for the Sentinel-2
and LandSat-8 images, respectively. Although the water depth
is affected by solar-induced background scattering, the perfor-
mance of the satellite sensors, and changes in underwater topog-
raphy [57], no significant differences were observed visually
in the bathymetry results for the different images. The model
consistency based on the Sentinel-2 and LandSat-8 images was
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Fig. 4. Bathymetric maps for three multispectral images. (a)–(d), (e)–(h), and (i)–(l) correspond to bathymetric maps derived from the LBBGR, BRBG, SVRBGR,
and RFBGR models and the GaoFen-2, Sentinel-2, and LandSat-8 images, respectively.

slightly better than that based on the GaoFen-2 images, due
to the poor performance of GaoFen-2 in terms of blue-band
reflectance.

The SDB results were validated using the in situ water depth
for Ganquan Island and Lingyang Reef captured by the ALB
system. The R2, rmse, and bias values, as well as the regression
lines between the estimated and in situ water depths, are shown
in Fig. 5. There was a strong correlation between the SDB and
ALB results. The bathymetric results based on the GaoFen-2
images showed the lowest accuracy, with an R2 between 0.71
and 0.89 and rmse between 1.33 and 2.09 m at Ganquan Island,
and R2 between 0.71 and 0.75 and rmse between 1.03 and 1.41
m at Lingyang Reef. The retrieval results for Sentinel-2 and
LandSat-8 were slightly better than those of GaoFen-2. There
were no significant differences in the SDB results obtained using
the four models, except for the GaoFen-2 images, where the SDB

results with SVRBGR and RFBGR were better than those with
LBBGR and BRBG when the ALB data from Ganquan Island
were used for validation. Moreover, the correlation between the
SDB and ALB results for Ganquan Island was slightly higher
than that for Lingyang Reef. Although the reference water depth
data in both places were acquired by the ALB systems, the data
acquisition time, regional underwater topography, water depth
distribution range, and process of tide correction affected the
accuracy of the validation.

To further analyze the relationship between the estimated
depth and reference water depth measured via ALB, the esti-
mated and reference depths at Ganquan Island and Lingyang
Reef were combined and then divided into several groups with
a reference depth of 1 m as the interval. The R2, rmse, and
bias values for the estimated and reference water depths of the
combined data are presented in Table IV. The bias at different
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Fig. 5. Validation results based on the ALB reference water depth for three multispectral images. (a)–(d), (e)–(h), and (i)–(l) correspond to the results
of the LBBGR, BRBG, SVRBGR, and RFBGR models for the GaoFen-2, Sentinel-2, and LandSat-8 images, respectively.

TABLE IV
VALIDATION RESULTS FOR THREE MULTISPECTRAL IMAGES WHEN THE ALB

REFERENCE DATA OF GANQUAN ISLAND AND LINGYANG REEF ARE COMBINED

intervals is shown in Fig. 6. As the water depth increased,
the bias changed gradually from positive to negative, which
demonstrates that the models often overestimate the water depth
in extremely shallow regions, and underestimate it in deep areas.
In extremely shallow areas less than 5-m deep, the sea wave,
spindrift, and radiation of seafloor sediment may decrease the
reliability of SDB results [58]. Moreover, the attenuation of light
in water means that the water depth information included in
optical remote sensing images also decreases gradually as the
water depth increases [59].

Two ICESat-2 trajectories overlapping the eastern area of
Shanhu Island, 20191020GT2R and 20181022GT1R, were not
used in the model calibration. We used these trajectories to
validate the SDB results for Shanhu Island. The results in Fig. 7
show that the correlations between the SDB results and ICESat-2
bathymetric points were slightly higher than those between the

Fig. 6. Distribution of the bias for three multispectral images when the ALB
reference data for Ganquan Island and Lingyang Reef are combined. The
estimated water depth of the four models and reference data are separated into
1-m interval.

SDB and ALB results. For the GaoFen-2 images, the R2 and
rmse values for the bathymetric points of 20191020GT2R and
SDB were between 0.73 and 0.87, and 0.87 and 1.42 m, respec-
tively. In contrast, the values for the ALB and SDB results were
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Fig. 7. Validation results based on 20191020GT2R and 20181022GT1R
for three multispectral images. (a), (c), and (e) correspond to the results for
the GaoFen-2, Sentinel-2, and LandSat-8 images, respectively. (b), (d), and
(f) correspond to the results for the GaoFen-2, Sentinel-2, and LandSat-8 images,
respectively

between 0.71 and 0.84, and 1.43 and 1.63 m, respectively. The
results were similar for the Sentinel-2 and LandSat-8 images.
These differences can be attributed to measurement errors and
the accuracy of the tide correction, which should be considered
when using the reference water depth data from different sources
for validation [60].

D. Consistency of Bathymetric Estimates From Different
Methods and Images

To verify the model consistency for each image, we calcu-
lated the mean of the bathymetric maps produced by all four
models. The mean products were further compared with the
corresponding single-model bathymetric maps. Fig. 8 illustrates
the spatial distribution of the differences between the mean and
single-model bathymetric maps. The highest consistency was
observed for the LandSat-8 images, followed by the Sentinel-2
and GaoFen-2 images.

The inversion results of the four models are inconsistent
for the GaoFen-2 images. For example, the deviation between
the water depth estimated by BRBG in the deep water areas
around Shanhu and Ganquan islands and the mean values of the
four models was less than −2 m; and that between the water
depth estimated by RFBGR in the shallow water area of the
Lingyang Reef and the mean value was greater than 2 m. For the
Sentinel-2 images, the depths estimated by BRBG and SVRBGR

were significantly different from the mean bathymetric maps,
especially in extremely shallow and deep water areas. The depths
estimated by the four models were consistent with the mean
bathymetric maps for the LandSat-8 images, and most of the
deviations were between −1 and 1 m.

E. Difference Between Bathymetric Estimates From Different
Methods and ALB Data

We combined ALB data as training data and the four models
for inversion, using the obtained inversion results as in situ data
for global water depth, in situ products were further compared

with each model to explore the spatial difference of all inver-
sion results. Fig. 9 shows the difference in spatial distribution
between in situ data and single-model bathymetry. As shown in
the figure, the difference between the Sentinel-2 image and in
situ data is the smallest, while that between the GF-2 image and
in situ data is the largest.

For GF-2 images, the overall inversion result largely deviated
from the in situ data. In particular, the deviation of the BRBG

method in the deep water area of the three islands was generally
greater than 2 m. The deviation in the shallow water area of
the Antelope Reef and Shanhu Island reached 2 m. Compared
with GF-2 images, the overall inversion results of Landsat-8
images were improved to a certain extent, but the inversion
results using LBBGR and BRBG methods on the Antelope Reef
also had partial regional deviations greater than 2 m. The overall
deviation of Sentinel-2 images was relatively small, while that
in the deep water area of the Ganquan Island and Coral Island
using the BRBG method was greater than 2 m.

V. DISCUSSION

A. Shallow Water Bathymetry Based Only on Remote Sensing
Data

ICESat-2 was not originally designed for marine applications
and its trajectories have a limited global distribution. However,
the use of a 532-nm laser and the high-accuracy of the altimetry
give it great potential in shallow water bathymetry, topographic
surveys, and related marine applications [26]. In this study,
the bathymetric points from the spaceborne ICESat-2 LiDAR
were used instead of in situ bathymetric points to train the four
retrieval models. This approach utilizes the high-accuracy of
ICESat-2 bathymetric points and the wide coverage of multi-
spectral remote sensing images. This new approach means that
bathymetric maps for shallow waters can be produced using
only remotely sensed data from satellites, which provides a new
perspective for shallow water bathymetry worldwide.

B. Influence of Tide and Refraction Corrections on ICESat-2
Bathymetric Points

Refraction and tide corrections are essential for nearshore
bathymetry when using the ATLAS dataset and remote sensing
images. The in situ measurements from the tide stations did
not cover the acquisition times of all the multispectral images
in this study, so tide corrections were performed using the
tide model NAO.99b. The refraction effect that occurs at the
air–water interface causes changes in the transmission speed and
direction, which leads to the deviation of underwater photons
(approximately 5 m for 20 m of water depth). Based on the
results published by Parrish et al. [28], the sea surface was
assumed to be flat, and the accuracy of the bathymetry im-
proved significantly after refraction correction. We also con-
ducted refraction correction in the study area. However, the
assumption regarding the sea surface introduced some errors.
Thus, further measures are required to improve the accuracy
of the tide and refraction corrections, e.g., the employment of
tide gauge data and refraction corrections based on sea wave
simulations.
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Fig. 8. Spatial distribution of differences between the mean and single-model bathymetric maps. (a)–(d) correspond to the spatial distribution of the differences
between the LBBGR, BRBG, SVRBGR, and RFBGR models for the GaoFen-2 image. (e)–(h) and (i)–(l) are for the Sentinel-2 and LandSat-8 images, respectively.

C. Error of SDB

Image quality is affected by the lighting conditions, which
correspond to the image acquisition time and the performance
of the satellite sensor. Therefore, the process of atmospheric
correction [61] and the removal of sun glint [62] is key to
reliable bathymetric estimation. Although these corrections are
performed during data preprocessing, the residuals cannot be
neglected because they introduce errors to water depth esti-
mations. Local water transparency, water column conditions,
and bottom type also affect the estimation results depending on
how well the in situ measurements cover all the bottom types
and water quality conditions. Strict assumptions set to obtain
higher model accuracy, typically lead to overfitting in machine
learning algorithms [63]. The RF model in this study showed
the best calibration accuracy, but the validation accuracy with

respect to the reference data decreased considerably. Because the
validation accuracy did not change significantly after changing
the depth of the RF model, the validation accuracy of the
RF model for the LandSat-8 data showed the most significant
decrease. It can be inferred that overfitting of the RF model is
caused by the small amount of data available after sampling.
Therefore, the RF model constructed using ICESat-2 and mul-
tispectral images have poor generalization ability and is not
suitable for migration to other data. To explore the effect of
the corresponding relationship between photon resolution and
image resolution on the performance of the inversion model,
we used the mean-resampling method to sample the photon
resolution to the same resolution as the multispectral image,
so that only one photon is contained in a pixel. As given in
Table V, this method improved the accuracy of the nonlinear
model constructed based on SVR and RF, and slightly increased
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Fig. 9. Spatial distribution of differences between the in situ map and single-model bathymetric maps. (a)–(d) correspond to the spatial distribution of the
differences between the LBBGR, BRBG, SVRBGR, and RFBGR models for the GaoFen-2 image, while (e)–(h) and (i)–(l) show the same data for the Sentinel-2
and LandSat-8 images, respectively.

TABLE V
COMPARISON OF R2 AND RMSE VALUES OF VALIDATION RESULTS FOR THREE

MULTISPECTRAL IMAGES BEFORE AND AFTER SAMPLING

the accuracy of the linear model constructed using the LB and
BR bands, which indicates that the resolution has a certain effect
on the performance of the model [29]. Although resampling
of photons improves the accuracy of the nonlinear model, it
decreases the reliability of the nonlinear model, and after sample
reduction, the RF model will exhibit overfitting, which must be
addressed carefully.

VI. CONCLUSION

The bathymetric points acquired from the ICESat-2 data
were combined with multispectral images to train two empirical
models (the multiband and band ratio models) and two machine
learning models (the SVR and RF models). Using these four
models, a total of 12 shallow water bathymetric maps of three
different images of the study area were generated. First, an
adaptive variable ellipse filter was applied to eight tracks of the
ATL03 data to extract the sea surface and underwater photons.
Then, fraction correction was performed on the underwater
photons to correct the water depth error.

Based on the two tracks, which overlapped to the northwest
of Lingyang Reef, the bathymetric points of ICESat-2 were
compared directly with the ALB reference data. The results
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showed that the corrected seafloor photons of ICESat-2 had a
significant correlation with the ALB profile, where R2 > 0.93
and rmse < 0.52.

Second, six of the eight ATL03 data tracks were used as a
priori measurements to train the four models, and two tracks
were used as test data to assess their accuracy. The dual-band
models constructed using blue and green bands were more
accurate than those constructed using the other two bands. The
detection capability of the GaoFen-2 satellite sensor in the
blue band is significantly weaker than that of the Sentinel-2
and LandSat-8, so the inversion model constructed using the
blue and green bands of GaoFen-2 was less accurate than that
constructed using the blue and green bands of Sentinel-2 and
LandSat-8.

The accuracy of the three-band models was slightly higher
than that of the dual-band models. Overall, the machine learning
models performed better than the empirical models.

The SVRBGR model constructed using the Sentinel-2 data
had the highest verification accuracy, with a mean R2 and rmse
of 0.90 and 1.16, respectively. Machine learning methods could
fit the relationship between the ICESat-2 bathymetric points
and the reflectance of the multispectral images better than the
traditional empirical models, resulting in higher reliability and
generalization capabilities.

The bathymetric methods developed in this study are based
on multispectral images and bathymetric points using ICESat-2
data instead of in situ data. The result suggests that data for shal-
low water can be obtained on a global-scale using satellite-based
remotely sensed data alone. This approach avoids the limitations
of traditional methods, and provides practical solutions for water
depth measurements in remote areas far from the continental
shelf.
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