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A Novel 3-D Local DAISY-Style Descriptor to
Reduce the Effect of Point Displacement Error in

Point Cloud Registration
Fariborz Ghorbani , Hamid Ebadi, Amin Sedaghat , and Norbert Pfeifer

Abstract—Three-dimensional (3-D) point clouds are widely con-
sidered for applications in different fields. Various methods have
been proposed to generate point cloud data: LIDAR and image
matching from static and mobile platforms, including, e.g., terres-
trial laser scanning. With multiple point clouds from stationary
platforms, point cloud registration is a crucial and fundamental
issue. A standard approach is a point-based registration, which
relies on pairs of corresponding points in two-point clouds. There-
fore, a necessary step in point-based registration is the construction
of 3-D local descriptors. One of the (many) challenges that will
specifically affect the performance of local descriptors with local
spatial information is the point displacement error. This error is
caused by the difference in the distributions of points surrounding
a (potentially) corresponding center point in the two-point clouds.
It can occur for various reasons such as 1) distortions caused by the
sensors recording the data, 2) moving objects, 3) varying density
of point cloud, 4) change of viewing angle, and 5) different of
the sensors. The purpose of this article is to develop a new 3-D
local descriptor reducing the effect of this type of error in point
cloud coarse registration. The approach includes an improved local
reference frame and a new geometric arrangement in point cloud
space for the 3-D local descriptor. Inspired by the 2-D DAISY
descriptor, a geometric arrangement is created to reduce the effect
of the point displacement error. in addition, directional histograms
are considered as features. Investigations are performed for point
clouds from challenging environments, which are publicly avail-
able. The results of this study show the high performance of the
proposed approach for point cloud registration, especially in more
challenging and noisy environments.

Index Terms—3-D descriptor, coarse registration, displacement
error, mobile laser scanner, terrestrial laser scanning (TLS).

I. INTRODUCTION

G ENERATION of the three-dimensional (3-D) point clouds
from various objects and surfaces has recently been
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widely considered. Airborne LIDAR, mobile mapping, and ter-
restrial laser scanners are the principal devices used to produce
point clouds. Point cloud registration is a crucial and fundamen-
tal issue with this significant data source. The primary purpose of
point cloud registration is to find a suitable spatial transformation
to determine the conformity and overlap of the geometry of
two or more 3-D sets obtained from different sensors, times, or
locations. Applications such as 3-D modeling [1], 3-D change
detection [2], 3-D object detection [3], 3-D positioning of robots
[4], and semantic interpretations of 3-D scenes [5] are among
the most important applications in which the point cloud reg-
istration is a crucial component. Generally, point clouds regis-
tration methods can be divided into three categories: 1-greedy
searching-based [6], [7], 2-global feature-based [8], [9], and
3-local feature-based [10]–[13]. Greedy search-based methods
select several points from the source and target point clouds
and find the corresponding points based on a comprehensive
search. These methods are time-consuming in large-scale and
high-resolution data. Global features describe the entire model
shape, while local descriptors describe only the characteristics
in a neighborhood of the feature points. Since complete cov-
erage of the two-point clouds will not always be available, the
global features often suffer from the limitation of discriminative
power. In contrast, local features are more suitable for aligning
point clouds which partially overlap. Both global and local
feature-based methods consist of two parts, coarse and fine
registration [14]. According to [14], the main challenge in point
cloud registration is coarse registration. The coarse registration
decreases the amount of rotation and translation between the
point clouds. This step is as an initial value for fine registration.

3-D local descriptors are an essential part of a coarse regis-
tration process. These descriptors were first presented in the
image space. They were used in many applications such as
remote sensing image matching [15], image registration [16],
geospatial target detection [17], geographic image retrieval [18],
etc. They allowed reliably automating a majority of these tasks.
Inspired by descriptors in image space, 3-D local descriptors
in a 3-D space were presented. Despite the high importance
of 3-D local feature descriptors and the introduction of many
methods in recent decades, the accurate, fast, and highly re-
liable performance of this process still faces major problems
[19]. 3-D local descriptors of point clouds must be stable to
various geometric transformations. Besides, they must show an
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Fig. 1. Example of the belonging of the same points (red point) located at the
boundary of the division to different bins (yellow bins).

appropriate performance against noise, different densities, clut-
ters, occlusions, and missed data (e.g., due to different view-
points). It is necessary to use descriptors with high descriptive-
ness in the face of these types of errors in challenging data.
As discussed in [11] and [12], encoding the shape geometry,
along with local spatial information, significantly improves the
descriptiveness of a local descriptor.

One of the errors we encounter in most point cloud data is the
point displacement error. This error has not been addressed in
previous descriptors, and we define it in this study. It can occur
for various reasons such as distortions caused by the sensors
receiving data, moving objects, the varying density of point
clouds, difference in viewing angle, and different resolution
of sensors. This error is caused by the distributions of points
surrounding a (potentially) corresponding center point in the
two-point clouds. It is particularly problematic for descriptors
encoding spatial information by binning data. Similar points in
the two-point clouds, located near the boundary of those geomet-
ric arrangement descriptors, may appear in different bins. This
type of error reduces the discriminative power of the descriptors.
Fig. 1 shows that the same point in two-point clouds belongs to
two separate bins.

3-D local descriptors can be divided into three categories
[20]: 1-descriptors that use a local reference framework (LRF),
2-descriptors that use a local reference axis (LRA), and
3-descriptors which do not use any local reference systems.
Descriptors without a local reference system (such as FPFH
descriptors) often utilize geometric features. Their descriptive-
ness is usually low because spatial distribution information is not
used in these descriptors [21]. Encoding the geometric informa-
tion along with spatial information significantly increases the
descriptor’s descriptiveness. These descriptors generate spatial
information by dividing the 3-D space based on either LRA
or LRF. An LRF consists of three axes perpendicular to each
other, while an LRA consists of only one axis. Therefore, LRF
provides spatial information, including radial, azimuth, and
altitude, while LRA does not include azimuth information. As
a result, LRFs make the descriptor stable concerning geomet-
ric transformations and provide all the spatial information to
describe the surface. Recent evaluations of standard datasets
indicate the superiority of descriptors using the LRF system [20].

Nevertheless, LRF systems are more sensitive to noise, and most
of them are challenged by determining the x-axis [20]. This is
because the z-axis comes from the normal vector, but the x-axis
defines the orientation within the tangent plane and is affected by
noise, clutter, and occlusion [20]. As a result, providing a stable
LRF can play a significant role in descriptor performance.

A. Related Work

Point cloud registration in remote sensing is often done on
large scales of data, and it is always considered a challenging
topic. Various methods for point cloud registration in remote-
sensing data have been presented. For example, Stamos and
Leordeanu [22] used a feature-based method for point cloud reg-
istration in large-scale urban environments. They first identified
the intersecting lines between adjacent planes and then estimated
the transformation parameters of adjacent points using at least
two intersecting lines. Weber et al. [23] generated the Fast Point
Feature Histograms (FPFH) descriptor for each extracted key-
point and then matched the detected keypoints using a polygon-
based approach. In 2016, Yang et al. [24] extracted lines from
artificial buildings and pole-like objects and matched them using
a combination of semantic and geometric features. Zai et al. [25]
generated a covariance matrix to identify keypoints and create
descriptors. They performed a matching process using a nonco-
operative game approach. In 2018, Dong et al. [26] proposed
the hierarchical merging based multiview registration (HMMR)
algorithm for unordered point cloud registration. They have
calculated a local descriptor (the Binary Shape Context) and a
global descriptor (the Vector of Locally Aggregated Descriptor).
Then, the point cloud overlapping graph is generated based on
the similarity between corresponding global descriptors. Finally,
they performed hierarchically multiple point clouds registration
using an iterative approach. In 2019, Cai et al. [27] proposed
a method to increase computational efficiency in the TLS point
cloud registration. They proposed a fast branch-and-bound algo-
rithm based on 3-D keypoint correspondence for a 1-D rotation
search. Their primary focus is to provide a method with high
computational efficiency in 4 degrees of freedom registration.
In 2020, Ge and Hu [28] proposed an object-based incremental
registration strategy for TLS point clouds in urban environments.
They increase the reliability of the 2-D transformation step by
using initial lines and have achieved the global optimum by
least-squares optimization. In 2021, Li et al. [29] proposed a
method for point clouds coarse registration without the need
for initial points. They decompose the seven parameters of
the registration problem into three sub-problems of estimating
the parameters of translation, rotation, and scale based on line
vectors. The OPRANSAC algorithm was presented to estimate
the translation and scale parameters in this research. And used
a scale-annealing biweight estimator to estimate the rotation
parameter. In 2021, Li et al. [30] proposed an approach to
increase the coarse registration efficiency of point clouds. They
proposed a polynomial time (O (N2)) outlier removal method.
Their main idea was to reduce the initial volume of the input
point cloud to a smaller set with a less outlier based on the
bound principle.
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These methods were widely used for coarse registration. How-
ever, they still have limitations. These methods depend on lines,
planes, and surfaces and only work well in areas with man-made
features but will not work well in natural areas with fewer
structural features. On the other hand, point-based methods give
good results in most environments, but these methods must have
high stability to noise.

Other methods have been proposed for 3-D point cloud reg-
istration, including point cloud registration by deep learning
[31]–[34]. These methods are mostly used in indoor space and
small scale and, due to the limitations associated with data and
complexity, do not have good results in large-scale point cloud
registration [35]. The 4PCS-based methods [36]–[38] have also
been used for coarse registration and can work well in the case of
low overlap [35]. These methods are presented to eliminate the
initial correspondences, and its direct application in the registra-
tion process, especially on a large scale, is very time-consuming.
Probability-based methods are another type of approach for
point cloud registration [39], [40]. These methods also consider
registration as a probability estimation problem. The registration
results in these methods depend on the sampling results. They
cannot consider a large volume of points simultaneously.

B. Research Aims

Although research has been done on the 3-D point cloud
registration, they have been studied on a limited set of data
in a specific scenario [41]. In addition, most of the research
is based on data collected by themselves and designed for a
particular application and not accessible to other researchers.
Recently, real datasets in remote sensing and photogrammetry
have been presented for point cloud registration [41], [42]. These
data are produced by different methods and have a variety of
environments. This type of point cloud data makes it possible to
have comprehensively evaluated registration methods.

A lot of research has addressed the various challenges for
making local features descriptors. They have investigated the
effective factors in improving their performance [10]–[14].
Nonetheless, providing an approach to reduce the effect of
displacement error can be considered as a vacancy in previous
research. Motivated by these considerations, the main goal of
this article is to provide an accurate and stable framework for
large-scale point cloud registration to reduce the effect of the
point displacement error. This method includes a descriptor
with the new geometric arrangement and an improved LRF.
Inspired by the 2-D DAISY [44] descriptor, we use circles with
overlapping coverage in the local descriptors to reduce the effect
of point displacement error. In addition, three perpendicular
planes to each other are selected in the LRF to overcome the
missed data problem. The points in a specific neighborhood are
projected to these plans. The final descriptor is obtained after
generating the directional histograms of each plane and their
linear concatenation. Because this descriptor is applied directly
to point clouds, it does not require heavy preprocessing such
as mesh production. The proposed method is evaluated on real
challenging data prepared with different scenarios.

The main contributions of this article are summarized as
follows.

1) Introduce a novel descriptor inspired by the 2-D DAISY
geometric structure with high robustness against displace-
ment errors.

2) Provide an improved LRF that reduces the effect of error
due to point displacements.

The rest of this article is organized as follows: Some de-
scriptors will be reviewed in Section II. Section III provides
details of the research theory. The display and evaluation results
are discussed in Section IV. Finally, Section V concludes this
article.

II. OVERVIEW OF DESCRIPTORS

Many methods have been presented to describe 3-D local
features in point clouds. In this section, considering that the
proposed method is among the descriptors with LRF, this local
reference framework is examined. Furthermore, some 3-D de-
scriptors and their geometric arrangement will be considered in
more detail.

A. Methods for Determining LRF

A wide range of LRFs has also been introduced following
various methods for 3-D local feature descriptors [10], [45]–
[49]. These methods are divided into two categories based on
covariance analysis (CA) and geometric attributes (GA) [20].

Among the CA methods, in 2008, Novatnack and Nishino
[45] used the intrinsic properties of the normal vector and the
eigenvectors of the covariance matrix to construct the LRF. In
this method, the z-axis is determined as the normal vector of the
keypoints. The covariance matrix analysis is used to determine
the x-axis, which is obtained from the neighboring points of
keypoint points. The third axis is obtained by the cross-product
of the z- and x-axes. The calculation speed in this method is high.
But the main problem in this design is the ambiguity of the sign
on all LRF axes. In 2010, Mian et al. [46] used a method based
on analysis of the covariance matrix. In this method, the LRF
unit vectors are obtained by the eigenvector of the covariance
matrix. This method also has the problem of signing the LRF
axes because it only signs the z-axis. In 2010, Tombari et al.
[10] developed an LRF for the SHOT descriptor that signs all its
axes. In this method, the weighted covariance matrix is used to
determine the LRF. This method has created a balance between
performance, repeatability, and stability capabilities in an area
despite occlusion and clutter. Nonetheless, its main limitation is
its sensitivity to changes in density in point clouds.

Among the GA-based methods, Chua and Jarvis [47] first used
the attribute values to generate the x-axis of the LRF system.
In this method, a 3-D curve is extracted by the intersection of
the keypoints spherical neighborhood and the entire 3-D shape.
A plane is then fitted to the points in the 3-D curve whose
normal vector of that plane is defined as the z-axis of the LRF
system. To avoid ambiguity of the z-axis sign, the vector whose
cross-product is positive with the normal vector of the keypoint
is selected. They have used a Signed-distance to determine
the x-axis. In 2011, Petrelli and Di Stefano [48] used the normal
attribute to specify the LRF. In this method, a small subset of
adjacent points is used to fit a plane. They considered the normal
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vector of the fitted plane as the z-axis. The z-axis sign is obtained
via the inner product between it and the average normal vector
over points in the support region. The point with the largest
normal deviation angle to the normal of the keypoint is selected
in the support region to determine the x-axis. The extension of
the point (p) to the chosen point is defined as the x-axis. In 2012,
Petrelli and Di Stefano [49] improved their previous work. The
difference between their method and the previous work is in
determining the x-axis. They used the Signed-distance attribute
instead of the normals. Although research on LRFs has been
conducted, most CA-based methods suffer from axial symptom
ambiguity, and GA-based methods have low stability against
high-density changes and noise [10].

B. 3-D Local Features Descriptors

Many 3-D local feature descriptors have been introduced in
recent years. This section introduces some of the most important
algorithms for creating descriptors in 3-D data. In 2009, Rusu et
al. [13] proposed the FPFH descriptor to reduce the computa-
tional burden of their previous method. This descriptor extracts
geometric information in a neighborhood. Then, the SPFH is
calculated for each neighboring point. The final descriptor is
obtained from the sum weight of the SPFH criterion. The second
category of descriptors uses spatial information along a local
axis (LRA). In this category of descriptors, we can refer to
spin image (SI) [12] in this category of descriptors. Normals are
used as local reference axes in the SI descriptor. Then, features
are generated in the neighborhood of each keypoint, according
to the two distance criteria. Finally, the created features for
the neighboring points are discretized into 2-D bins, and the
SPIN Image descriptor is generated by connecting them. This
descriptor is resistant to occlusions and clutters [12].

The SHOT descriptor was developed by Tombari et al. in
2010 [10]. This descriptor can be considered as a combination
of geometric and spatial information. Initially, an LRF is defined
with the property of disambiguation of axes sign and uniqueness.
This LRF is determined for each point based on the eigenvalue
decomposition of the covariance matrix in the keypoint neigh-
borhood. A local coordinate system is formed that is segmented
along the radial, azimuth, and altitude axes. Points within each
bin are considered to obtain a local histogram. A histogram is
produced based on the angle between normal at neighboring
points and normal at the keypoint. Finally, the SHOT descriptor
is created by connecting all these local histograms. Despite the
distinctiveness of the descriptor, it is sensitive to changes in
point clouds density. In 2013, Guo et al. [11] introduced the
RoPS descriptor based on a new LRF. The points on the local
plane rotate into the three axes (x, y, z). For each rotation, the
points in the neighborhood are projected to three coordinate
planes (xy, yz, xz). Then, a distribution matrix for each plane is
created by dividing the plane into several parts. A histogram is
produced by considering the points located in each bin.

Recently, deep learning methods have been used for local fea-
tures description. These types of methods utilize a large amount
of data for training. The aim is to learn high-level and highly
descriptive descriptions. Deep learning methods are divided

into three categories [50]: Voxel-based networks, multiview
convolutional neural networks (CNNs), point-based networks.
For example, PointNet [31], as a point-based network, is applied
directly to unordered point clouds. This method is invariant to
transformations and different permutations. PPFNet [32] gets
a combination of point coordinates, normal vectors, point pair
features, and neighborhood points as input. It uses the PointNet
to learn geometric feature descriptions and random samples to
obtain keypoints. 3DsmoothNet [33] is a voxel-based method
and uses the smoothed density value representation to learn local
features. SpinNet [34] employs projected points to spherical
space and a spherical convolution to extract local features.

III. METHODOLOGY

This research presents a framework for the 3-D point cloud
coarse registration in challenging datasets. At first, 3-D key-
points are extracted using a 3DSIFT [51] detector. Inspired by
the 2-D DAISY descriptor, a new 3-D descriptor is proposed
to enhance discrimination power. The corresponding points are
detected in the two-point clouds with the proposed descriptor.
Then, a global transformation between the 3-D point clouds is
used to eliminate wrong correspondences. Finally, point clouds
registration is also performed using a suitable transformation
function. In the following, the details of the proposed method
are discussed.

A. 3-D SIFT Detector

The SIFT algorithm is a computer vision algorithm used
to detect and describe local features in images [52]. It uses
the DoG operator to approximate the Laplacian of Gaussian
filter and detects local features with specific dimensions. This
algorithm has also been used for 3-D local features detection,
implemented in Point Cloud Library (PCL) [51]. Detection of
3-D local features in this algorithm is as follows [53].

Step 1: The scale-space in a point cloud is defined as a 4-D
function, L, with the convolution of a 3-D Gaussian function
in the point cloud

L(x, y, z, σ) = G(x, y, z, σ) ∗ P (x, y, z) (1)

G(x, y, z, σ) =
1

(
√
2πσ)

3 e
−(x2 + y2 + z2)/2σ2 (2)

where G is the Gaussian function and P(x,y,z) is 3-D coordi-
nates of a point cloud. The convolution is performed by voxel
grid filters [54].

Step 2: The spatial-space DoG is generated. The DoG space is
the difference between two consecutive spatial-space created
in the point cloud using the Gaussian function. The DoG
calculation relation is as follows:

DoG(x, y, z, kiσ)

= P (x, y, z) ∗ (G(x, y, z, ki+1σ)−G(x, y, z, kiσ)). (3)

Step 3: Local features in a 4-D position are obtained from the
DoG function as local extrema. The extremes are found in
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Fig. 2. Diagram of the production process of the proposed descriptor.)a) Displaying a local surface in the point cloud. (b) Definition of LRF in a local surface.
(c) Projecting local points to 2-D planes. (d) Applying DAISY geometric arrangement to each 2-D plane. (e) Generating a directional histogram for each bin in
2-D planes. (f) Making the final descriptor.

the DoG space. This process is done by comparing each point
with 26 neighboring points on its scale and 27 neighboring
points above and below that point (27+ 26+ 27= 80). A key
point in this space is selected as a local feature that is larger
or smaller than all its neighboring points.

Step 4: A threshold method is applied to remove the unstable
points.

B. 3-D Local DAISY-Style Descriptor

Methods based on local features for 3-D registration should
use high-performance descriptors. Therefore, these descriptors
must be stable against all types of errors. In this section, the
details of the proposed method are presented for generating
descriptors from local surfaces in the point cloud. At first, the
developed LRF in this descriptor is introduced. The geometric
arrangement and features used in the proposed descriptor are

Fig. 3. How to determine the sign of LRF axes.

explained in the following. How to structure the proposed de-
scriptor is shown in Fig. 2. At first, a local surface on the given
point cloud is considered with the centrality of the keypoint
(p) and the neighborhood radius R [see Fig. 2(a)]. Neighboring
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Fig. 4. Determining the dominant direction in the proposed method.

Fig. 5. How to produce the LRF. (a) Determining the z-axis. (b) Determining the x-axis. (c) Determining the y-axis.

Fig. 6. (a) Geometric arrangement of the proposed descriptor into a 2-D plane. (b) Demonstration of the directional histogram used in the descriptor. The arrows
represent the number of directional divisions.

points coordinate of the keypoint (p) are transferred to the
local coordinates in the LRF, Q = {q1, q2, . . . qn} with the
respective center point, see Fig. 2(b). The descriptor becomes
stable to various geometric transformations with this transfer.
Three planes with different viewing angles are used due to
the occlusions and clutters in the point clouds. The points in

the vicinity of the keypoint are projected orthogonally to three
planes obtained from the LRF, see Fig. 2(c). These are the xy, xz,
and yz planes, respectively. As shown in Fig. 2(d), the DAISY
geometric arrangement is applied to the points projected on the
2-D planes. Then, a descriptor is generated for each 2-D plane
by calculating a directional histogram, see Fig. 2(e). Finally,
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Fig. 7. Demonstration of a scan of the data used. The colors are based on the height values. (a) Arch. (b) Trees. (c) Courtyard. (d) Facede. (e) ETH hauptgebaude.
(f) Gazebo. (g) RESSO (7c). (h) RESSO (7d).

by linear connecting the histograms of each plane, the final
descriptor is created, see Fig. 2(f).

A LRF must be defined for each keypoint (p) in the point
cloud. The LRF is represented at (p) by three axes x(p), y(p),
and z(p). Where the y(p)-axis is determined by the cross product
of the two axes x(p) and z(p). The axes x(p) and z(p) must be
specified to determine the LRF.

According to studies in most descriptors, normals are used as a
proper and repeatable direction in the definition of LRFs [20]. In
this research, the normals of the extracted key points are utilized
as the z-axis of the LRF system. However, one of the challenges
in most LRFs is the determination of the sign of the axes.
The used approach in this research is to employ a hemisphere

along the z-axis. If the number of points in the hemisphere in the
initial direction is more than the other hemispheres, the positive
axis sign is considered and otherwise, it will be negative. This
process is as follows:

z(p) =

{
n(p),
−n(p),

if m1(q) ≥ m2(q)
otherwise

(4)

where m1(q) and m2(q) are the number of points in the two
hemispheres. This process is shown in Fig. 3.

The projection of neighborhood points in the plane perpen-
dicular to the z-axis is used to determine the x-axis. A proposed
method was adopted to overcome the points-displacement error
in determining the x-axis. First, the neighboring points around
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the keypoint (p) are considered with radius r. All neighboring
points (q) are projected on the plane perpendicular to the normal
of the key point, resulting in q’. This is a 2-D point with
coordinates in a preliminary xy-system, of which the orientation
within the plane is not of importance. The angle θ, as an azimuth
angle on a plane perpendicular to the normal vector (z-axis), for
all projected points (q’) is calculated by (5), where (n) is the
number of neighborhood points in radius (r) from the keypoint
(p). The θ angle is in [0°, 360°)

θi(q′) = tan−1((yi(q′) − y(p))
/
(xi

(q′) − x(p))) i = 1, 2, . . . , n .

(5)
A weighted histogram determines the orientation of the x-axis

of the LRF. The plane perpendicular to the normal is divided
into 10° bins. Then, each point is placed in a bin according
to (5). Due to the point displacement error, the points on the
boundary of these divisions can be placed in different bins by
slight movement. If it is decided about their location in binary
form, it makes a mistake in determining the dominant direction,
see Fig. 4(a) and (b). According to Fig. 4(a) and (b), most points
are accumulated in bin number (2). However, the boundary
points led to the selection of the bin number (1) as the dominant
direction [see Fig. 4(a)]. In the proposed approach, the boundary
points are assigned to two bins by considering the overlap (e.g.,
5%) between the bins, see Fig. 4(b). Consequently, the effect of
point displacement is reduced at the boundary of this division.
Fig. 4(c) shows how the histogram is formed in the proposed
method.

The points located in each angular bin are weighted using (6)
to increase the stability of the LRF to clutters, occlusions, and
missed areas. According to this equation, the closer the points are
to the central point, the more effective it will be in determining
the dominant direction. In this equation, R is the maximum radius
in a neighborhood

wi = R− |qi − p| . (6)

After generating the histogram, the bin with the highest value
is chosen for determining the dominant direction. The average
projected coordinate of the points inside this bin is considered to
determine the exact value of the direction. The vector obtained
from the chosen point and the central point is considered as
the x-axis of the LRF system. The y-axis is obtained by the
cross-product of the two axes x and z. The calculation procedure
of the LRF in the proposed descriptor is shown in Fig. 5.

Fig. 6(a) shows the geometric arrangement of the descriptor
in a 2-D plane. Inspired by the 2-D DAISY descriptor, it consists
of coated circles in different rings. This geometric arrangement
will increase the robustness and discriminative of the descriptor.
Methods that use mapping of 3-D points on 2-D planes have
provided promising results in describing 3-D shapes [55]. These
descriptors usually provide a directional histogram in each bin.
We utilized an approach to creating a tradeoff between the
discriminative and efficacy. In this method, directional divisions
have been considered for each ring in proportion to its distance
to the keypoint. The rings closer to the keypoint will be more
effective, and more divisions are considered for them, and this
division is reduced for farther rings, see Fig. 6(b). This process

will reduce the descriptor dimensions, and increasing the impact
of near points in making the descriptor.

A sub histogram of each bin is generated by considering the
number of points located in each direction. By connecting these
subhistograms, a histogram is created for each plane. Finally,
the descriptor is obtained by linearly connecting the histograms
from the planes xy, xz, and yz. The descriptor is normalized to
[0, 1].

This descriptor has four main parameters including: descriptor
radius (R), number of rings (Q), number of circles in each ring
(T), and number of directional histogram divisions for each bin
(H). Accordingly, the total number of circles (S) is equal to
S = T ×Q+ 1 and the dimension of the descriptor is N =
3×∑Q

i = 1(Ti ×Hi).

C. Matching and Eliminating Wrong Correspondences

The next step after generating the descriptor is to establish
a correspondence between the points. Two-point clouds are
considered as the source (P s) and target (P t) and a known
transformation function between them (T). A descriptor is cre-
ated for each keypoint in source (psi ) and target (ptj) point cloud.
The closest keypoint in the target point clouds is found for each
keypoint in the source point cloud. These points are considered
initial correspondence points if their Euclidean distance is less
than a threshold.

Initial correspondences contain incorrect correspondences
and should be eliminated. The relationship between two-point
clouds generated can be established using a 3-D global trans-
formation like 3-D affine. This transformation function models
geometric differences such as translations and rotations well.
The M-estimator sample consensus (MSAC) [54], an extension
of RANSAC, is used to estimate the parameters of the 3-D affine
model. The points in the source data are then transferred to the
target data space using the parameters of this transformation
function, and their distance from the correspondence point in
the target data is considered as the error of each corresponding
pair. The root means square error (RMSE) is estimated as a
criterion to determine the accuracy of the transformation of the
source to the target point cloud. The RMSE value is compared
with a threshold (TG). If the RMSE value exceeds the threshold
(TG), the corresponding point pair with the highest error is
considered incorrect and eliminated. This process is repeated
until the desired threshold is reached.

IV. RESULTS

In this section, the results of the proposed method are pre-
sented. The results are compared with some popular traditional
descriptors and the SpinNet deep learning descriptor. In the
following are provided details of the results.

A. Data Description

The performance of the proposed method is evaluated on
three different benchmarks. Recently, some real challeng-
ing dataset of point clouds were made available to analyze
registration algorithms. The most well-known of them are ETH
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TABLE I
DETAILS OF THE PROPERTIES OF THE DATA USED (MR IS THE MEAN RESOLUTION)

PRS TLS dataset,1 ETH ASL datasets and Repository,2 and
RESSO dataset.3 These data include ground truth that allows
for a proper assessment. In the following, we will review these
data.

1) ETH PRS TLS dataset: This benchmark is provided for reg-
istration of TLS point clouds. It is collected from various scenes
by Z + F Imager 5006i and Faro Focus 3D. The Arch, Trees,
Courtyard, and Facade datasets are used in this benchmark.

a) Arch dataset: This data was generated to capture a Roman
arch in five scenes around the arch. Each scan is obtained
with relatively little coverage (30% to 40%) and this
dataset also includes some objects such as vegetation and
humans on the move.

b) Courtyard Database: This data contains eight scenes from
the courtyard of an ancient tomb. There are no vertical
objects in this data. It was generated to create DTMs from
laser scanners.

c) Trees Dataset: It includes six scenes from a forest that also
contains a lot of underwood with medium coverage.

d) Facade dataset: This data includes eight scenes from an
urban area focusing on one specific facade. This data set
has a high overlap between scans and also has artificial
objects caused by moving cars and people.

2) ETH ASL datasets Repository: This benchmark was pre-
sented by Pomerleau et al. [42] to evaluate registration algo-
rithms on the mobile laser scanner. The point clouds are pro-
duced by the Hokuyo 536 UTM-30LX as a rangefinder scanner.
The ETH hauptgebaude and Gazebo datasets are used from this
benchmark.

a) ETH hauptgebaude dataset: This dataset is collected in the
main building (hauptgebaude) of ETH Zurich. It includes
indoor and outdoor environments with a structured form.
The purpose of obtaining this data is to investigate the
robustness of the registration algorithms in the face of
repetitive patterns.

1[Online]. Available: https://prs.igp.ethz.ch/research/completed_projects/
automatic_registration_
of_point_clouds.html

2[Online]. Available: https://projects.asl.ethz.ch/datasets/
3[Online]. Available: https://3d.bk.tudelft.nl/liangliang/publications/2019/

plade/resso.html

b) Gazebo dataset: Gazebo data has a semi-structured and
outdoor environment. The data was collected in a park
that includes grass, scattered trees, and an asphalt road.

3) RESSO dataset: This benchmark is a TLS dataset presented
by Chen et al. [43] to evaluate registering point clouds with a
small overlap. The RESSO (7c) and RESSO (7d) data are used
from this benchmark. These data were generated by a static laser
scanner (the Leica ScanStation C10 static).

a) RESSO (7c): This is unstructured data prepared from the
outdoor environment.

b) RESSO (7d): This data partially consists of curved sur-
faces, and planar structures are the dominant structure.

Fig. 7 shows a scan of each of the data used. Furthermore,
a summary of the attributes of this data is provided in Table I.
These three benchmarks cover a very wide range of scanners,
scenes, resolutions, and they are therefore a good basis for
evaluation of the suggested method.

B. Evaluation Criteria

The proposed method was evaluated by three different cri-
teria. The first criterion is suggested to measure rotational and
translation error, generally used to assess the point cloud reg-
istration [26], [57]. Assume that the source point cloud Ps is
transferred using the Ts,t transformation function to the target
point cloud Pt. The remaining transformation ΔTs,t is defined
as follows:

ΔTs,t = Ts,t

(
TG
s,t

)−1
=

[
ΔRs,t Δts,t

0 1

]
(7)

where Ts,t is the estimated transformation function from Ps

to Pt and TG
s,t is the true transformation function. Then, the

rotation error er and translation error et from Ps to Pt based on
the rotational components ΔR and the translation component
ΔT are calculated as follows:{

ers,t = arccos
(

tr(ΔRs,t)−1
2

)
ets,t = ‖Δts,t‖

(8)

where tr(ΔRs,t) represents the trace of ΔRs,t and the rotation
error ers,t corresponds to the angle of rotation in the axis-angle
representation.

https://prs.igp.ethz.ch/research/completed_projects/automatic_registration_penalty -@M of_point_clouds.html
https://prs.igp.ethz.ch/research/completed_projects/automatic_registration_penalty -@M of_point_clouds.html
https://prs.igp.ethz.ch/research/completed_projects/automatic_registration_penalty -@M of_point_clouds.html
https://projects.asl.ethz.ch/datasets/
https://3d.bk.tudelft.nl/liangliang/publications/2019/plade/resso.html
https://3d.bk.tudelft.nl/liangliang/publications/2019/plade/resso.html
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Fig. 8. Effect of Q, T, and H parameters on the descriptor with RMSD.

Fig. 9. Results of keypoints correspondence by the proposed method. Blue and red lines mean right and wrong correspondences, respectively. (a) Arch.
(b) Trees. (c) Courtyard. (d) Facede. (e) ETH hauptgebaude. (f) Gazebo. (g) RESSO (7c). (h) RESSO (7c).
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TABLE II
PARAMETERS SETTING

Fig. 10 Registration results for each pair of covered scans for all datasets used. (a) Arch. (b) Trees. (c) Courtyard. (d) Facede.
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Fig. 10. (Continued.) Registration results for each pair of covered scans for all datasets used. (e) ETH hauptgebaude. (f) Gazebo. (g) RESSO (7c). (h) RESSO (7d).

The second criterion is a statistical criterion in which the root
mean square distance (RMSD) is computed between the source
point cloud after applying the registration algorithm P s and
the same point cloud in its true position Gs. The RMSD is
calculated as follows:

RMSD =

n∑
i=0

‖psi − gsi ‖2
n

(9)

where ‖.‖ is Euclidean distance and n is the total number of
points. It should be noted that the scale of the point clouds dataset
used in this research is equal to each other.

The third criterion will be used as the percentage of complete-
ness [24]. This criterion indicates how much of the point cloud
registration was successful and whether it was possible to enter

the fine registration stage. This criterion is defined as follows:

Percentage complete =
Na

N
× 100 (10)

where N is the total number of two adjacent point clouds for
registration and Na is the number of correct registration.

C. Setting the Parameters

The proposed descriptor has four parameters: neighborhood
radius, number of rings, number of circles in each ring, and
number of directional histograms. Neighborhood radius is an
important and influential parameter that determines the descrip-
tor scale [10]. Determining the neighborhood radius depends on
the intended application. A large neighborhood radius affects
computational performance and increases sensitivity to clutters
and occlusions, and a small neighborhood radius will reduce
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Fig. 11. Details of the point cloud registration.

the discrimination of the descriptors [11]. Many partitions for
the descriptor will naturally increase the computation time and
increase the amount of memory consumed, thus reducing the
descriptor compression property. But, it will increase the dis-
cernment of the descriptor. If this division is considered low,
many details will not be provided in the descriptor. Therefore, it
is necessary to balance robustness, discrimination, compactness,
and efficiency. The criterion used to evaluate the performance
of the parameters is RMSD. The lower RMSD shows a higher
performance of the algorithm.

In setting parameters, ETH hauptgebaude data was used and
different values of a parameter were examined according to the
constancy of other parameters. Details of setting the parameters
are given in Table II. At first, 3-D SIFT keypoints are extracted

in this data. Then the process of producing the descriptor and
corresponding is done conforming to the stated approach. Ac-
cording to the practical experiments performed, the value of the
neighborhood radius has been considered as 20mr [mr is the
mean resolution (the mean distance points to the nearest point),
and its unit is meter]. The results obtained from the descriptor
parameters are presented in Fig. 8. Fig. 8(a)–(c) show the results
of setting the T, Q, and H parameters, respectively. In Fig. 8(c),
the parameters represented by one value (e.g., 4-4-4) mean, that
all directions divisions have the same number of bins in each
ring. And for the parameters with three different values (e.g.,
12-8-4), the divisions are based on the distance. The first value
for the nearest ring and the last value for the farthest ring are
considered. The test results show the values Q = 3, T = 8,
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TABLE III
PARAMETER SETTINGS FOR FIVE FEATURE DESCRIPTORS

TABLE IV
AVERAGE ERRORS IN ALL DATA OF DIFFERENT DESCRIPTOR

TABLE V
RESULTS OF PERCENTAGE COMPLETE CRITERIA (%)

and H = 12-8-4 as the optimal values for the algorithm. The
dimensions of the descriptor are equal to 324 according to the
selected optimum parameters.

D. Point Cloud Registration

The results of keypoint correspondence with the proposed
method are displayed in Fig. 9, while Fig. 10 shows the coarse
registration results for each pair of scans. In this figure, an
image of the initial position point clouds is provided, in which
purple is the source point cloud and green is the target point
cloud. Then the registration results are shown in two different
viewing angles. Furthermore, Fig. 11 presents the details of the
point cloud registration by the proposed method. The inspected
position is shown with a black circle in the overview image.

E. Comparison of Results With Traditional Descriptors

The descriptor is compared with four popular traditional
descriptors in 3-D point description. These descriptors include
SHOT, ROPS, SPIN Image, and FPFH that are implemented in
C++ (using PCL) [51]. The parameter settings for these feature

descriptors are listed in Table III. The averages of all registration
errors in all datasets and the results of completeness percentage
criteria are presented in Tables IV and V, respectively. Further-
more, the introduced approach in [58] is used to evaluate the
accuracy and precision of the results. They suggest using robust
error statistics, namely the 50th, 75th, and 95th percentiles of
empirical distributions of the errors, referred to as A50, A75,
and A95. The results of this study are presented in Table VI.
Moreover, the full distribution of rotation and translation errors
in each data is shown in Fig. 12.

Table IV displays the average performance of each descriptor
in the total data. For the suggested descriptor, the mean errors
of rotation, translation, and RMSD are 0.1045(rad), 1.980(m),
and 2.039(m), respectively. These results show that, on average,
the proposed method has the highest performance in all criteria
in all data among traditional descriptors. The results of Table V
show that an appropriate percentage of coarse registration with
our approach has been done successfully. For the courtyard,
façade, RESSO (7c), and RESSO (7d) data, it shows 100% and in
other data, it has high success rates compared to other traditional
descriptors.
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TABLE VI
QUANTILE STATISTICS OF REGISTRATION ERRORS

Bold values in indicate the best performance.

The proposed algorithm has provided appropriate results,
regardless of the data type. The two data, Arch and Trees, are
considered the most challenging data among comparative data
in which the performance of descriptors is lower than other
data. The Arch dataset has relatively little coverage, and the
trees dataset has a high density, high noise level, and medium
overlap. According to Table VI, in the Arch data, the suggested
method has the highest performance in all three 50th, 75th,
and 95th percentiles in the translation error and the amount of
rotation error and RMSE are also appropriate. The SPIN image
descriptor performed suitable in this data, but other descriptors
failed in most experiments. In the trees dataset, the proposed
method has the best performance in all criteria, which shows
that the performance of our approach is appropriate in noisy

data. However, in the courtyard and facade data, the performance
of our method was acceptable and near to other descriptors
but provided less performance than other descriptors. In the
courtyard data, we do not see any vertical objects, and the only
existing complication is the ground surface and also there are
high overlap and low noise level in these data. These cases have
made this data less challenging.

The results in ETH and Gazebo data also show the high
performance of our method. In the ETH data, we see duplicate
structures, but the proposed method has the highest performance
in all percentiles in the translation and RMSD criteria. This
result means that the algorithm has performed well against
repetitive patterns. Moreover, in gazebo data, we see the highest
performance of our method in the A50 percentile of the rotation
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Fig. 12. Distribution of (left) rotation and (right) translation errors for all data. (a) Arch. (b) Trees. (c) Courtyard. (d) Facede.

criterion and in the A50 percentiles of the RMSD criteria. The
errors distribution in Fig. 12 shows that most descriptors failed in
the Arch and Trees data, while the proposed method provided the
highest performance in both data. In the other data, the descrip-
tors performed almost closely, but in the ETH data with repetitive
patterns, the performance of the proposed method performed
better than the other descriptor in the translations criterion.

In RESSO (7d) and RESSO (7c) data, the best performance
belongs to the proposed method and has provided the highest

accuracy in all criteria. In this data, descriptor ROPS pro-
vides the second performance. The FPFH descriptor gave the
weakest results and failed in many experiments. In general,
this descriptor has low differentiation and is unstable to high
noise.

The results show that the proposed descriptor has pro-
vided good results, especially in more noisy and challenging
data. One of the reasons for the superiority of our method
is the DAISY structure used in the descriptor. The geometric
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Fig. 12. (Continued.) Distribution of (left) rotation and (right) translation errors for all data. (e) ETH hauptgebaude. (f) Gazebo. (g) RESSO (7c). (h) RESSO (7d).

arrangement of this descriptor reduces the effect of noise and
displacements of points in adjacent bins due to the use of over-
lapping circles. These displacements due to various distortions
are usually seen in the point cloud data. On the other hand,
determining the LRF is a very influential part of the production
of descriptors. LRFs are also highly impacted in the face of
this type of displacement errors. A partition overlay approach

was adopted to define the x-axis to reduce this displacement
error.

F. Comparison of Results With SpinNet Descriptors

Given that deep learning methods have recently been
considered, the proposed descriptor has also been compared
with the SpinNet deep learning method. For this purpose, two
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Fig. 13. Results of comparison with the deep learning method.

pretrained models have been used. The models trained on
the indoor 3DMatch [59] and outdoor KITTI [60] datasets.
We keep the default parameters in the SpinNet algorithm and
only the radius parameter is determined due to the varying
point densities in different datasets. The results obtained from
comparing the performance of the proposed method with the
SpinNet approach by two pre-trained models are shown in
Fig. 13. This figure considers the average values of rotation
error, translation error, and RMSD criteria for successful
experiments in coarse registration of each data.

Fig. 13 shows the superiority of the proposed method in
the three data Trees, Facade, and RESSO (7d), compared to
both pretrained models of the SpinNet. The performance of the
two approaches in the Courtyard and ETH data is very close,
and with a slight difference, the SpinNet algorithm performed
better. The proposed method performed better than SpinNet
(3DMatch) in all comparisons except ETH data. But in Arch,
Gazebo, and RESSO (7c) data, the SpinNet (KITTI) has been
better. According to Table IV, the proposed method, on average,
performed better than the SpinNet (3DMatch) method in the
whole data but Compared with SpinNet (KIITI) method only has
performed better in the Rotation Error criterion. In Table V, both
algorithms in the Courtyard, Facade, RESSO (7c), and RESSO
(7d) data have succeeded in all coarse registration experiments.
The proposed method for the Tree data offers much higher per-
formance. And in the Arch, ETH, and Gazebo data, the SpinNet
is higher, but this superiority is significant only in the Arch data.

According to the obtained results, the proposed method has
shown very high performance in the point clouds coarse regis-
tration without using any preknowledge. The proposed method
is introduced as the superior algorithm in most experiments
compared to one of the two pretrained models of the SpinNet
algorithm. This means that although the deep learning approach
has yielded promising results, they are highly dependent on
training data. Due to the unavailability of these training data,
the performance of these methods in real data requires a com-
prehensive evaluation.

V. CONCLUSION AND FUTURE WORK

This research presented an accurate, stable, and effective
framework for point cloud registration. The proposed method in-
cluded a novel 3-D descriptor with a new geometric arrangement
inspired by the 2-D DAISY descriptor and an improved LRF. In
this research, an approach was adopted to reduce the effect of
point displacement error in local features descriptors. This error
reduces the discriminative in descriptors that use spatial infor-
mation. The local descriptor proposed was divided into circles
in different rings with common overlays on 2-D plans. This
geometric arrangement increased the robustness and discrimi-
nation of the descriptor. Furthermore, the directional histogram
in each circle was also suggested as the feature. We considered
an approach to creating a tradeoff between the discriminative
and efficacy. In this method, directional divisions have been
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considered for each ring in proportion to its distance to the
keypoint. Furthermore, in determining the dominant direction
of the x-axis, a partition coverage method was adopted to reduce
the effect of point displacement error in determining the LRF.
Based on this descriptor was proposed a point cloud registration
framework. Registration results were evaluated on point clouds
from three benchmarks and were compared with some popular
traditional descriptors. The results of point cloud registration
showed that our descriptor performed well, especially in noisy
and more challenging data wherein the displacement error was
more likely to occur.

In addition, the proposed method was compared with the
SpinNet deep learning method with two pretrained models.
The proposed method provided the best performance in some
comparisons. In most comparisons, it had a better performance
than one of the pretrained models. Therefore, despite the good
results of the method SpinNet, it must be kept in mind that this
method is dependent on training data. In contrast, the proposed
method has provided admirable results without preknowledge
and is completely automatic.

In future research, in addition to the robustness and dis-
crimination of the descriptor, the efficiency of the algorithm
can be evaluated. For this purpose, some approaches such as
TEASER [61] or GESAC [62] can be adapted to eliminate wrong
correspondences. Furthermore, the performance of the proposed
descriptor can be evaluated on data with small overlaps and
even data from various sensors. In evaluating the performance
of the descriptor, it is suggested that other criteria such as feature
matching recall be considered.
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