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Sentinel-1-Based Water and Flood Mapping:
Benchmarking Convolutional Neural Networks

Against an Operational Rule-Based Processing Chain
Max Bereczky , Marc Wieland , Christian Krullikowski , Sandro Martinis , and Simon Plank

Abstract—In this study, the effectiveness of several convolutional
neural network architectures (AlbuNet-34/FCN/DeepLabV3+/U-
Net/U-Net++) for water and flood mapping using Sentinel-1 am-
plitude data is compared to an operational rule-based processor (S-
1FS). This comparison is made using a globally distributed dataset
of Sentinel-1 scenes and the corresponding ground truth water
masks derived from Sentinel-2 data to evaluate the performance of
the classifiers on a global scale in various environmental conditions.
The impact of using single versus dual-polarized input data on the
segmentation capabilities of AlbuNet-34 is evaluated. The weighted
cross entropy loss is combined with the Lovász loss and various data
augmentation methods are investigated. Furthermore, the con-
cept of atrous spatial pyramid pooling used in DeepLabV3+ and
the multiscale feature fusion inherent in U-Net++ are assessed.
Finally, the generalization capacity of AlbuNet-34 is tested in a real-
istic flood mapping scenario by using additional data from two flood
events and the Sen1Floods11 dataset. The model trained using dual
polarized data outperforms the S-1FS significantly and increases
the intersection over union (IoU) score by 5%. Using a weighted
combination of the cross entropy and the Lovász loss increases the
IoU score by another 2%. Geometric data augmentation degrades
the performance while radiometric data augmentation leads to bet-
ter testing results. FCN/DeepLabV3+/U-Net/U-Net++ perform
not significantly different to AlbuNet-34. Models trained on data
showing no distinct inundation perform very well in mapping the
water extent during two flood events, reaching IoU scores of 0.96
and 0.94, respectively, and perform comparatively well on the
Sen1Floods11 dataset.

Index Terms—Convolutional neural networks, data
augmentation, semantic segmentation, Sen1Floods11, Sentinel-1,
Sentinel-2, surface water monitoring.

I. INTRODUCTION

THE demand for reliable and robust crisis information after
catastrophic disasters has substantially grown in the past
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decades [1]. Earth observation satellites are increasingly used
to obtain reliable large-scale crisis information, owed to their
ability of being almost independent of the underlying terrain,
the possibility of acquiring data over large areas in a short
amount of time and their different sensor systems. To provide the
required information in a timely manner, international initiatives
such as the International Charter “Space and Major Disasters”
have been founded, linking space agencies from all over the
world and allowing a rapid disaster response by sharing the
available satellite resources. Flood events make up one-third
of all recorded natural disasters in the past century [2] and
were related to approximately 52% of all activations of the
International Charter “Space and Major Disasters” between the
years 1999 and 2013 [1]. They are usually not localized but affect
large regions simultaneously and the atmospheric conditions
often prevent observation using optical or multispectral sensor
systems. These preconditions make synthetic aperture radar
(SAR) an ideal sensor system to be used in flood emergency
situations. SAR is a side-looking imaging radar system that
utilizes microwave radiation to create images of the surface of
the Earth. It is an active instrument that requires no illumination
from the sun and can penetrate cloud cover, thus it is often used
for rapid mapping purposes during flood events [1].

To derive the flood water extent from SAR data with a high
accuracy, sophisticated data analysis steps are required. Visual
scene interpretation and flood extent mapping are possible, but
have several disadvantages. The areas usually affected by flood
events are very large, which renders visual interpretation a very
time-consuming task. Furthermore, the results depend on the
skills and the subjective perception of an image interpretation
expert, which poses a problem for reproducibility [3]. Hence,
several semi-automatic and automatic approaches for flood
extent mapping have been developed, often relying on threshold-
ing as their core concept. Thresholding is a common technique
used to classify every pixel of a SAR image into the classes water
or non-water. A pixel intensity threshold value that separates the
two classes is chosen. Every pixel with an intensity value below
that threshold is classified as water, all other pixels are classified
as nonwater. The quality of the classification is strongly depen-
dent on the contrast between water and nonwater pixels, which
poses a problem for certain land cover types or water conditions
(i.e., rough water surfaces, urban areas, sand patches) and can
require additional thresholds, for example, to account for flooded
vegetation. Several approaches for the determination of these
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thresholds exist. While manual methods use the histogram of the
scene or manual trial-and-error approaches to derive a working
threshold [4]–[9], automatic approaches [10]–[13] work inde-
pendently of a human operator and are therefore preferable for
emergency situations [1].

The fully automated Sentinel-1 flood processing chain
(S-1FS) presented by Twele et al. [14] is an adapted version
of the TerraSAR-X flood processor presented by Martinis et al.
[15]. It is able to generate flood extent maps based on systemati-
cally acquired Sentinel-1 Level-1 ground range detected (GRD)
VV-polarized data by combining automatic intensity threshold-
ing, fuzzy-logic based refinement using topographic information
from the Shuttle Radar Topography Mission (SRTM) and an
exclusion mask based on the height above nearest drainage
(HAND) [16], [17] layer. Field studies have shown that the
processor is able to achieve Kappa scores of 0.879 and higher,
although special conditions like strong winds (and therefore
rough water surfaces), sand, or flooded vegetation can lead to
classification errors [14]. The S-1FS is in operational use at the
Center for Satellite Based Crisis Information (ZKI) at the Ger-
man Aerospace Center and is part of the ensemble algorithm of
the new systematic flood monitoring product of the Copernicus
Emergency Management Services [18].

While various rule-based processing algorithms for water
mapping and flood detection using SAR systems have been
proposed and deployed in the past decades using a variety
of space-borne sensor systems, convolutional neural networks
(CNNs) have seen a rapid development in recent years. CNNs
are a branch of artificial neural networks that have been shown
to be capable of outperforming traditional image processing
techniques in various fields ranging from image classification
through object detection to image segmentation and have already
been successfully applied to various problems in the Earth
observation domain, including flood and water mapping using
either multispectral or SAR data (e.g., [19]–[24]).

The idea of using artificial neural networks for water mapping
and flood detection in SAR imagery had already been proposed
and tested by Skakun [25] in 2010. Using Self-Organizing
Kohonen Maps and data from ERS-2, Radarsat-1 and Envisat
acquired over India, China and Eastern Europe he showed the
feasibility of using artificial neural networks for flood detection.
Gong et al. [26] used a restricted Boltzmann machine in 2016
on multitemporal Radarsat data over Canada to detect change
in farmland, water bodies, and the coastline, which was adopted
by Bayik et al. [27]. In 2017, Liu et al. [28] were the first to
apply CNNs to directly detect flooded areas in multitemporal
Radarsat and ERS-1 data over Canada and Switzerland. Also in
2017, Xu et al. [29] used the highly successful AlexNet with
parameters pretrained on ImageNet to detect sea ice and open
water in Radarsat images acquired over the Golf of Lawrence
in Canada. Kang et al. [30] emphasized in 2018 the importance
of using different scenes for the creation of the training, test
and validation datasets to prevent the occurrence of spatial
autocorrelation in the validation and test dataset. By using data
of three flood events in China acquired by Gaofen-3 and a U-Net-
based model architecture, they evaluated the impact of choosing
different activation functions as nonlinearities, concluding that

the best results are achieved by using the Rectified Linear Unit
activation function. In 2019, Liu et al. [31] used multitemporal
Sentinel-1 data of hurricane Harvey in Houston, Texas, and their
own modification of U-Net to evaluate the impact of choosing
different polarizations (VV, VH, or VV-VH) as input data and
showed that using either dual polarization or VH polarization
achieves the best results. Also, in 2019, Li et al. [20] used
TerraSAR-X data of the same flood event in Houston to assess
the roles of various SAR information types (i.e., intensity and
coherence, uni- and multitemporal) if used as input features for
a CNN. They concluded that multitemporal intensity data is
the most important feature type, although adding multitemporal
coherence information can further increase the classification
accuracy. Furthermore, they proposed a temporal ensembling
active self-learning CNN architecture to mitigate the effect of
limited training samples. By using two models of identical ar-
chitecture (student and teacher model), where the student model
is trained on the training set and the teacher model’s weights are
obtained by taking the running mean of the student’s weights,
they showed that unlabeled samples can be classified and added
to the training set during training, which yielded an increase of
the Kappa score of about 7%. More recently, in 2020, Nemni et
al. [22] tested a variety of CNN architectures for water mapping
and flood detection using Sentinel-1 images and flood maps
from the UNOSAT dataset [32]. Where former approaches were
focused on few local regions and often just a single region, the
UNOSAT dataset contains Sentinel-1 scenes in VV polarization
from nine countries, all located either in Southeast Asia or
along the eastern coast of Africa. The evaluation of different
model architectures showed that a U-Net and a U-Net using a
ResNet (RN) encoder pretrained on ImageNet performed quite
well in detecting water areas and actual flood events. Also, in
2020, Bonafilia et al. [21] assessed different methodologies for
the creation of reference water masks to be used in supervised
learning. The used dataset contained Sentinel-1 VH data from
11 flood events as well as from globally distributed open water
areas, sampled from the surface water dataset of the European
Commission Joint Research Center [33]. Their study states that a
classical histogram thresholding approach yields the best results
for the segmentation of permanent water bodies, although it
must be stated that model optimization was not in the scope of
their study. Surprisingly, they observe that models trained using
reference water masks created by simple histogram thresholding
approaches tend to achieve better results compared to models
trained on manually created (hand labeled) reference water
masks for permanent water surfaces. Furthermore, they report
that models trained solely on scenes showing permanent water
bodies perform poorly if evaluated on scenes showing actual
flood events. Pai et al. [34] applied a U-Net on the task of land
and water mapping using Sentinel-1 imagery, reporting an ex-
cellence performance and showed that artificially extending the
dataset using General Adversarial Networks can further improve
the results. In 2021, Muñoz et al. [35] combined multispectral
data with SAR imagery and terrain information using a con-
volutional data fusion network and reported good performance
for the case of using only dual polarized VV-VH SAR data.
Katiyar et al. [23] used the Sen1Floods11 dataset published
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by Bonafilia et al. [21] to further test different U-Net-based 
CNN architectures, reporting that their CNNs do outperform a 
simple thresholding classifier regarding permanent water bodies. 
Furthermore, they confirm that using VV-VH data leads to the 
best results for general surface water mapping. Last but not least, 
Bai et al. [24] also used the dataset produced by Bonafilia et al.
[21] to test BASNet [36], an enhanced U-Net with a module to 
refine the residuals of the final feature maps. Furthermore, they 
assess various loss functions and investigate the impact of fusing 
Sentinel-1 and Sentinel-2 data, applying data augmentation and 
using various model architectures.

While these studies show clearly that water detection us-
ing SAR data and CNNs is generally feasible, it is important 
to quantify how well these methods perform with respect to 
a current state-of-the-art operational rule-based (flood) water 
processor (S-1FS) on a global scale, to determine if CNNs can 
increase the quality of automatically generated flood maps in 
rapid mappings scenarios compared to the S-1FS. A higher 
quality of automatically produced maps directly translates to 
a higher timeliness of the final rapid mapping product and faster 
access to critical information for disaster relief services.

To answer this overarching question, this study focusses on 
the following objectives.

1) The assessment of the performance of several state-of-
the-art CNN architectures for (flood) water segmentation
in Sentinel-1 data with respect to the S-1FS.

2) An evaluation of the use of a linear combination of the
distribution-based weighted cross entropy loss function
and the region-based Lovász loss function.

3) An impact assessment of various geometric and radio-
metric data augmentation techniques for Sentinel-1 data
in the context of (flood) water mapping and, finally, a
transferability assessment.

4) Can CNNs trained for water mapping using a large-scale,
globally distributed dataset be used for mapping inundated
areas associated with flood events?

II. DATA

Flood related disasters are not restrained to any particular
region of the world. For effective disaster relief functionality, i.e.,
rapid mapping activities after a flood event, any flood detection
algorithm should therefore be flexible enough to operate on data
from any given global region. The main differentiator between
water and land areas in SAR data is the contrast in signal
return intensity caused by the two types of land cover. While
the interaction of the SAR signal with calm water surfaces is
mainly characterized by specular reflection (i.e., weak signal
return), the rougher land surfaces cause mostly diffuse surface
or volume scattering, which lead to a higher signal return
intensity. However, depending on the region, land areas can
inhibit surface properties that cause the radar return intensity
to weaken (e.g., smooths surfaces like sand patches), whereas
varying environmental conditions can increase the roughness of
the water surface to the order of the signal wavelength, which
increases the backscatter intensity. These effects can decrease

Fig. 1. Locations of all samples contained in dataset I (Map: Made with Natural
Earth).

the contrast and lead to over- and underestimation of the water
surface [1].

To train a robust classifier and evaluate its performance and
generalization capacity for global deployment, it is therefore
important to capture the distribution of natural environments
by including as many different environmental conditions in the
dataset as possible. For this study, three datasets are generated:
Dataset I is used to train and evaluate all models and contains a
wide range of Sentinel-1 scenes. Dataset II contains data from
two observed flood events in Peru and China and is used to
further assess the generalization capacities of the models, i.e.,
how well they can detect water on scenes showing a mix of land
surfaces, open water surfaces and temporarily inundated areas.
Dataset III is used to compare our method and the S-1FS to other
published studies. For all three datasets, the Sentinel-1 data was
processed identically.

A. Dataset I

We selected 67 globally distributed, dual polarized Sentinel-1
Level-1 GRD (interferometric wide swath) scenes using a strati-
fied random sampling scheme based on the terrestrial ecoregions
[37], land use, and land cover, following the procedure described
by Wieland et al. [19]. This is done to ensure that the inherent
topographic, land cover, and land use variation of the selected
samples is maximized throughout the dataset, so that the models
can ideally learn all spatial and radiometric contexts in which
surface water bodies occur globally. The locations of the scenes
are shown in Fig. 1. The Sentinel-1 scenes are geometrically
corrected and radiometrically calibrated following the proce-
dure described by Twele et al. [14] to ensure that the data
can be ingested and processed by the S-1FS. The maximum
allowed temporal gap between the Sentinel-1 and the Sentinel-2
acquisition for a given location is set to 30 days. If no nearly
cloud free Sentinel-2 acquisition is found that falls within this
limit a different location is chosen, based on the aforementioned
criteria. The Sentinel-2 scenes are then used to create reference
water masks by Normalized Difference Water Index (NDWI)
thresholding using a threshold derived by Otsu’s method [38].
In the next step extensive manual quality checks and corrections
are conducted to fit the reference water masks to the Sentinel-1
data. This step is necessary to correct any misclassifications
caused by the NDWI thresholding and by the temporal gap
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Fig. 2. Example of a scene from dataset I: Sentinel-2 data, Sentinel-1 data, the corresponding reference mask, and the output of the S-1FS.

between the acquisitions of Sentinel-1 and Sentinel-2 (e.g., due
to tidal water surface extent variations). Valid pixel masks are
created which indicate the locations of clouds in the Sentinel-2
data, i.e., they indicate pixels where the corresponding ground
truth is not reliable. Furthermore, the valid masks mark no-data
areas near the borders of Sentinel-1 scenes, which occur if the
footprint of the Sentinel-2 scene and the Sentinel-1 scene are
not perfectly aligned. All Sentinel-1 scenes are processed by
the S-1FS. The resulting water segmentation masks are used for
later performance comparison between the CNN models and
the S-1FS. Since the S-1FS uses a binary exclusion mask based
on the HAND index [39] to reduce water-lookalikes by taking
the hydrologic-topographical setting into account [14], the same
exclusion mask is added to the dataset for every scene but only
used during testing. Fig. 2 shows an example of the data from
dataset I (scene 37).

B. Dataset II—Case Studies Peru and China

The data contained in dataset I does not cover any distinct
flood events. We therefore create a second dataset II to be able to
assess the transferability of the representations the models learn
from dataset I to data showing actual flood events. This dataset
contains data and reference water masks from two flood events,
which are adopted from and described in detail by Wieland and
Martinis [19]. For this study, we added Sentinel-1 data to the
dataset and used the existing reference water masks.

China, June 2016: A flood event caused by heavy monsoon
rainfalls. The reference mask is based on a RapidEye image
acquired on the June 23, 2016. Since the earliest available
Sentinel-1 acquisition was on the July 5, 2016, minor manual
corrections to the reference mask had to be made to correct for
changes in the water surface extent due to the temporal gap
between the acquisitions.

Peru, March 2017: A flood event caused by a strong local
El Niño. The reference mask is based on a RapidEye image
acquired on the April 1, 2017. Since a Sentinel-1 acquisition was
available from the same day, no corrections had to be applied to
the reference mask.

C. Dataset III—Sen1Floods11

Sen1Floods11 is a dataset containing Sentinel-1 and Sentinel-
2 data from various flood events, which has been recently used in

a number of studies (e.g., [23], [24]). Details on the dataset can be
found in Bonafilia et al. [21]. To be able to ingest the data with
our processing pipeline, we rebuild the Sentinel-1 data of the
Sen1Floods11 dataset using the provided metainformation and
the original Sentinel-1 GRD data as provided by the European
Space Agency. This enables us to preprocess the data using our
own preprocessing pipeline, as described by Twele et al. [14],
and make it compatible to our trained models and the S-1FS.
For this study, only the 90 hand-labeled tiles from the test set,
as specified in the Sen1Floods11 dataset, are used.

D. Training/Validation/Test Split

Dataset I is split into three sets on the level of the scenes
to prevent the occurrence of spatial autocorrelation between
the sets [30]. About 67 Sentinel-1 scenes are distributed to
the training, validation, and test sets using a random 60/20/20
split. In a next step, we ensure that every biome type [37] is
represented at least once in every set and move scenes between
sets if necessary. This is done to ensure that the data distributions
of the training, validation, and test datasets are as similar as
possible. Skipping this step could lead to a bias in the datasets
toward specific environmental conditions or land cover types,
since data from different biome types can inhibit very different
radiometric properties, which would in turn negatively affect
the generalization capabilities of the trained models. If less than
three scenes are available for a certain biome type, they are all
moved to the training set with the exception of the only scene
of biome type “Montane grasslands and shrublands” (scene 61),
which is left in the test set so evaluate the ability of the trained
models to generalize to a biome they have never seen before.
Only the biome “Tropical and subtropical coniferous forests” is
missing completely in the dataset.

III. METHOD

A. Model Selection

Several studies have shown that the U-Net architecture [40]
is able to deliver state-of-the-art results in water segmentation
tasks using either Multispectral (e.g., [19], [41]) or SAR data
(e.g., [22], [23], [30], [34]). After initial tests, a slightly modified
version of the U-Net architecture is chosen as the base model,
which has been shown to provide better segmentation results
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Fig. 3. Schematic architecture of AlbuNet-34 [42] which builds upon the common U-Net architecture. The encoder is replaced by a ResNet-34 and the information
flow from the encoder to the decoder is accomplished by summation, where the original U-Net concatenates the feature maps, which reduces the number of trainable
parameters.

than U-Net while using fewer parameters: AlbuNet-34 (AN-34)
[42]. The main differences between AN-34 and the standard
U-Net architecture are as follows. First, the encoder is replaced
by a ResNet-34 encoder to incorporate the concept of resid-
ual learning, which leverages information flow by adding skip
connections between the layers. These skip connections pass
the activations from shallow layers to deeper layers and allow
the model to easily fit the identity mapping, if necessary [43].
Second, where U-Net uses concatenation to let information flow
from the encoder to the decoder, AN-34 uses a simple summation
operation, i.e., the activations from the encoder are added to the
activations of the decoder, which reduces the number of trainable
parameters from 31 × 106 in the original U-Net architecture to
22.7 × 106 in AN-34. Fewer parameters increase the training
speed and reduce the required time for inference. Especially the
latter is considered as very important: reduced inference time
translates to faster map delivery times in an emergency scenario.
Fig. 3 shows the schematics of the AN-34 architecture. For a
detailed description, refer to [42].

Similar to Bai et al. [24], we choose DeepLabV3+ [44] (DL)
as a second well-known model architecture to evaluate if a better
segmentation can be achieved by employing different architec-
tural concepts. DL applies atrous spatial pyramid pooling by
using diluted convolution kernels with different rates to extract
information on multiple scales simultaneously. Furthermore,
depth-wise separable convolution is applied to decrease compu-
tation complexity. To compare AN-34 to different modifications
of U-Net, we additionally select the U-Net-ResNet-34 (UN-34)
[45] and U-Net++ (UN++) architectures [46]. UN-34 is a
modification of the standard U-Net that uses ResNet-34 as an
encoder but keeps the concatenation operation compared to
AN-34. UN++ is a more extensive modification of U-Net that
aims to overcome the problem of finding the right network

depth for a segmentation task by fusing multiple U-Nets of
varying depths, all sharing the same encoder. Furthermore, its
skip connections are designed in a way that allows fusion of
feature maps from different scales in the encoder, with the goal
to let the network decide how feature maps from various depths
should be fused to obtain the best results. The hypothesis is that
the architectural differences in the UN++ and DL architectures
may allow the models to have a higher level of context-awareness
and hence lead to better segmentation results in areas prone
to misclassifications, e.g., arid regions or smooth surfaces like
airport runways. Finally, we train a fully convolutional network
[47] with a ResNet-50 (FCN-50) encoder to compare if any
significant difference in performance can be seen between ar-
chitectures with and a symmetric encoder-decoder structure and
the FCN architecture. Refer to [40], [44], [46], and [47] for
detailed descriptions of these model architectures. We use the
DL, UN-34, and UN++ implementations of Yakubovskiy [45]
and the FCN-50 implementation provided by PyTorch.

B. Loss Function

Loss functions are used to measure how well the predictions
of a model match the reference data during training [48]. We
investigate the effect of using members of two different families
of loss functions to train our models: the distribution-based
weighted cross entropy loss and the region-based Lovász loss
[49]. Distribution-based loss functions describe the similarity of
the probability distribution of the predictions of the model and
the training data, whereas region-based loss functions maximize
the overlap between the predicted segmentation mask and the
reference data [48]. The majority of previous studies related to
water mapping with convolutional neural networks and SAR
data focused on the cross-entropy function. Bai et al. [50]
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evaluated combinations of various loss functions, including the
focal loss and showed that they can lead to better performance
compared to the standard cross entropy loss on the segmentation
of temporary water bodies, while also reporting decreased per-
formance for permanent water bodies on the Sen1Floods11 test
dataset. Since both types of water surfaces are equally important
to provide accurate maps in rapid mapping scenarios, we decided
to test the combination of the distribution-based weighted cross
entropy loss and the Lovász loss. The weighted cross entropy
is often used for imbalanced datasets, if one or more classes
are underrepresented. It uses the inverse occurrence of a class
as a weight to penalize the class specific loss and therefore
prevents the model from focusing solely on the dominant class.
In the training data of dataset I, there are 2.59 times more land
pixels than water pixels, hence 2.59 is used as the cross-entropy
weighting factor. The region-based Lovász loss function allows a
direct optimization of the intersection-over-union score, which
is a commonly used and very intuitive metric to measure the
performance of models for semantic segmentation [51]. We
follow Rakhlin et al. [52] and Bai et al. and implement a weighed
combination of both loss functions:

L = (1− αLoss) ∗ LCE + αLoss ∗ LLov′asz.

The weighting coefficient αLoss is used to weigh the two loss
functions. LCE denotes the weighted cross entropy loss and
LLov′asz denotes the Lovász loss.

C. Data Augmentation

To investigate the effect of different commonly used data
augmentation techniques on the generalization capabilities of the
models individually, we apply six types of data augmentation:
Left-right flip (DA-Flip) flips an image tile around its vertical
axis. Rotation (DA-Rot) rotates an image tile in 90° increments
in a random direction. Intensity augmentation (DA-Int) changes
the intensity values of all pixels in an image tile by adding or
subtracting a fraction of the standard deviation of the intensity
values of all water pixels in the training set. Zoom (DA-Zm)
enlarges an image tile by a random factor between 0% and 10%.
Following the ideas of Ding et al. [53] and Rusak et al. [54],
we test two approaches for generating speckle: Speckle Gamma
(DA-SpG) samples from a Gamma-distribution, Speckle Normal
(DA-SpN) samples from a normal distribution. We resample the
image tile by a factor of 2, add speckle noise and perform a
simple averaging operation, where a 2×2 window with stride
2 is used to compute the average of four neighboring pixels,
resulting in an image tile with the same size as the original
tile. The resampling and averaging steps are done to imitate the
multilooking process that is commonly applied to SAR images
to reduce speckle noise.

D. Pre- and Postprocessing

We split the scenes contained in the test and validation set into
tiles with a size of 256×256 pixel. To ensure that the input data
is zero-centered and has unit variance, we standardize every
tile during training and inference with the mean and standard
deviation of the intensity values of the training set of dataset I,

TABLE I
DESCRIPTION OF THE USED PERFORMANCE METRICS [56], [57]

a common preprocessing step when training a neural network
[55], [56]. During testing, we split the Sentinel-1 scenes into
tiles using an overlap of 0.3 and feed the tiles to the trained
models. The resulting segmentation maps are then recombined
to the original scene size by using a tapered cosine function as
described by Wieland und Martinis [19] to reduce the prediction
errors close to the tile borders. This procedure is applied to the
test scenes from datasets I, II, and III. Since only precut tiles are
provided in the original dataset III, we extract the corresponding
regions from our segmentation results using the bounding boxes
of the original Sen1Floods11 reference masks and align the data.

E. Performance Metrics

To evaluate the performance of the trained models, several
common performance metrics based on the true positives tp,
true negatives tn, false positives fp, and false negatives fn are
used (see Table I).

We compute the performance metrics for every scene in
the test set individually in a first step. Then, we compute the
weighted averages for all metrics for all scenes, based on the
number of valid pixels per scene as defined by the valid pixel
mask. By doing so, we can evaluate the performance of the
models on the level of the individual scenes as well as the average
performance on the complete test set. To make the results of the
trained models comparable to the results of the rule-based S-1FS,
we must apply the HAND exclusion mask to the model output
before computing the metrics, i.e., pixels marked as non-flood-
prone by the HAND exclusion mask are set to value 0 (class
land) in the output segmentation masks of the models. However,
the HAND exclusion mask is not used for the evaluation of the
CNN model for the Sen1Floods11 dataset, to allow a more direct
comparison to the literature. Our implementation of the used
metrics is published as an open-source Python package [54].
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Fig. 4. General processing workflow used for this study. Dataset I is used for training and testing of the models. Datasets II and III are solely used for testing.
Dataset I contains Sentinel-1 and Sentinel-2 data. Dataset II contains only Sentinel-1 data and the reference water mask derived from RapidEye data by Wieland and
Martinis [19]. Dataset III contains only the Sentinel-1 data that was used to recreate the Sen1Flood11 dataset by Bonafilia et al. [21] to work with our preprocessing
pipeline, as well as the provided reference water masks.

TABLE II
HYPERPARAMETERS USED FOR TRAINING

F. Setup and Hyperparameters

All models are trained using the hyperparameters specified in
Table II, which have been obtained through initial experiments.
The learning rate is halved if the Intersection-over-Union (IoU)
score stagnates for three epochs. Early stopping is applied if
the IoU score does not increase for ten epochs. Random seeds
are set to 1 for Numpy, PyTorch, and Python. CUDA deter-
ministic mode is activated to allow reproducible results. All
model parameters are initialized using He initialization [60].
During training the best model state is determined by the highest
validation IoU score and stored for evaluation. The general
processing workflow used in this study is summarized in Fig. 4.
All experiments are conducted on a machine running Ubuntu
18.04 with and Intel Xeon W-2133 CPU and a Nvidia Quadro
P4000 GPU.

G. Experiment Setup

All experiments are listed in Table III in chronological order.
For every experiment one training parameter is varied, while all
other parameters remain constant.

TABLE III
EXPERIMENT SETUP

Note: Bold text indicates which parameter is varied for a given experiment.

To evaluate how the models trained on data showing no
explicit flood events generalize to data obtained during a flood
event, we further test the best performing model from dataset I
and the S-1FS on datasets II and III.

IV. RESULTS

A. Results Dataset I

The results for all experiments are shown in Tables IV to
IX (bold values indicate the highest scores for a given metric).
The average testing scores in Table IV show that the model
trained on VV polarized data persistently yield the lowest testing
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TABLE IV
AVERAGE TESTING SCORES FOR THE MODELS TRAINED USING VARYING

POLARIZATIONS AS INPUT FEATURES

TABLE V
AVERAGE TESTING SCORES FOR THE MODELS TRAINED USING DIFFERENTLY

WEIGHTED COMBINATIONS OF THE WEIGHTED CROSS-ENTROPY LOSS AND

THE LOVÁSZ LOSS FUNCTIONS

TABLE VI
AVERAGE TESTING SCORES OF THE MODEL TRAINED USING DIFFERENT TYPES

OF DATA AUGMENTATION

scores. The S-1FS, which also ingests only VV polarized data,
performs better than the corresponding model in every metric.
However, the models trained using either VH polarized data or
both polarizations reach significantly higher F1, IoU and Kappa
scores than the S-1FS.

The reported scores for the models trained using differently
weighted combinations of the weighted cross entropy loss and
the Lovász loss function in Table V show that a weighting
coefficient of α equal 0.5 yields the best performing model for
all metrics except recall.

The scores for the models trained using different kinds of data
augmentation are shown in Table VI. Intensity augmentation
yields the model with the best precision, F1, IoU, and Kappa
score, whereas Speckle simulation using a normal distribution
yields the highest accuracy and recall.

The scores obtained by the model based on the DL architecture
with differently sized ResNet encoders (FCN-50, UN-34, and
UN++ with a ResNet-34 encoder) are shown in Table VII. For
DL, using a ResNet-34 encoder leads to the highest scores in all
metrics. UN-34 yields the highest F1, IoU, and Kappa scores.

Fig. 5 lists the IoU scores for the best trained models from
each experiment for all scenes in the test set of dataset I. The
S-1FS yields the lowest IoU scores for 8 out of 14 scenes.

TABLE VII
AVERAGE TESTING SCORES OF ALL TESTED MODEL ARCHITECTURES

TABLE VIII
PERFORMANCE METRICS FOR THE FLOOD EVENTS IN CHINA AND PERU IN

DATASET II (AN-34 WITH INTENSITY AUGMENTATION AND THE S-1FS)

TABLE IX
IOU AND MIOU SCORES FOR DATASET III FOR THE BEST PERFORMING MODEL

FROM DATASET I AND THE S-1FS

Note: ∗Sentinel-2 weak, ∗∗Augments + Focal Loss (as named in the publication).
The results from Bonafilia et al. [21] and Bai et al. [24] are shown for reference.

B. Results Dataset II—Case Studies Peru and China

Table VIII lists the scores obtained by the best AN-34 model
(DA-Int) for the two flood events contained in dataset II, as well
as the results of the S-1FS. It can be clearly seen that there is no
significant difference in performance between AN-34 and the
S-1FS for these two events.

C. Results Dataset III—Sen1Floods11

Table IX lists the IoU score and the mean IoU (mIoU) scores
obtained by the best performing model from dataset I and the
S-1FS on the Sen1Floods11 test set. The scores are computed
following the procedure described by Bai et al. [24].

V. DISCUSSION

A. Polarization

The segmentation results depend strongly on the choice of
polarization we use for training and inference. Contrary to the
S-1FS, which tends to produce higher recall, precision and kappa
scores if VV polarized data is used for inference [14], the models
trained using either VV-VH or only VH polarized input data
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Fig. 5. IoU scores of the best trained model from every experiment and the S-1FS for all scenes from the test set of dataset I. The letter A denotes the S-1FS, B
denotes the experiment on polarization, C the experiment on loss functions, D the experiment on data augmentation and E the experiment using different model
architectures (scene numbers according to dataset definitions).

outperform the model trained on VV polarized data by a con-
siderable margin in every metric, confirming the observations of
Liu et al. [31] and Katiyar et al. [23]. Fig. 6 shows two extreme
examples from the test set where the choice of input polarization
has a particularly strong effect on the segmentation results. Scene
62 shows a small group of lakes in an otherwise extremely arid
environment. Probably due to the low contrast in backscatter
intensity in the VV band, the model trained using only VV
polarized data drastically overestimates the water surfaces. The
models using either single polarized VH or dual polarized VV-
VH data produce a much more accurate segmentation mask,
benefiting from the stronger backscatter intensity contrast in the
VH band, even though in this particular scene there are still
many misclassifications, especially if VV-VH data is used. Scene
65 is more representative of the overall results. Again, using
only VV polarized input data leads to a significant number of
false positives (similar to the S-1FS) and a high number of false
negatives at the water-land boundary close to the coast and on
the open water surface. The contrast between land and water in
the VV band is quite low, probably due to strong surface winds,
which are known to decrease the backscatter intensity contrast
between water and land surfaces more strongly in VV than in
VH polarized data, which is caused by the higher sensitivity of
VV polarized electromagnetic waves to waves and ripples [1],
[62]. Hence, the models using either VH or VV-VH polarized
input data achieve IoU scores of 0.94 and 0.97, respectively,
compared to the 0.84 yielded if only VV data is used and 0.91
reached by the S-1FS.

B. Loss Function

The proposal to use a weighted combination of distribution-
based and region-based loss functions by Rakhlin et al. [52]
and Bai et al. [24] also leads in our case to better results than
using either of the two loss functions on their own and can be
recommended for the combination of the weighted cross entropy

loss and the Lovász loss. A weighting coefficient of 0.5 leads to a
2% higher IoU score compared to using only the weighted cross
entropy loss and a 1.5% higher IoU score compared to using
only the Lovász loss. This is consistent with the results of Bai et
al., who reported good performance using a combination of the
distribution based focal loss [50], the Structural SIMilarity loss
[63], and the region-based IoU loss [64]. Hence, the combina-
tion of distribution and region-based loss functions appears to
generally be of benefit in the case of water and flood mapping
using SAR data and should be employed when training CNNs
for this task.

C. Data Augmentation

The testing scores of the models trained using different kinds
of data augmentation vary only slightly. Compared to using no
data augmentation, random flipping, rotation or zooming lead
to slightly worse testing scores. With regard to rotation, this
confirms Zhu et al. [65], who state that rotating an SAR image
leads to unrealistic data, since the azimuth and range direction
in SAR imagery are not arbitrary. Due to the close-to-constant
orbital altitude of 685 km, introducing zooming might also lead
to unrealistic imagery and can be omitted. Left-right flipping of
the tiles can be seen, at least to a first order, as a change of the ac-
quisition geometry from the ascending to the descending path or
vice-versa. Hence, the observed deterioration of the performance
of the models is surprising and cannot be entirely explained with
the introduction of unrealistic image geometries. Radiometric
data augmentation on the other hand leads to slightly increased
testing scores if either intensity augmentation or speckle noise
augmentation is used. For speckle noise augmentation, no signif-
icant difference between using a normal or a gamma distribution
can be observed, hence using a simple normal distribution to
augment the data might be sufficient to use, neglecting the actual
gamma distribution of speckle noise. Interestingly, Bai et al.
[24] applied left-right flipping, rotation and image cropping in
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Fig. 6. Segmentation results for scenes 62 (Argentina) and 65 (Australia) for
AN-34 models using either VV, VH or VV-VH polarized input data, and the
S-1FS.

TABLE X
AMOUNT OF MODEL PARAMETERS AND IOU SCORES FOR ALL TRAINED

MODEL ARCHITECTURES AND THE RELATIVE DEVIATION COMPARED

TO AN-34

their study and reported a minor increase of the IoU score of
0.031 for detecting all water surfaces. However, this difference
in the score can probably be attributed to differences between the
datasets and to the unknown contribution of the image cropping
augmentation.

D. Model Architecture

The DL, UN++ with a ResNet-34 encoder and the FCN-50
architectures lead to very comparable results to the AN-34 ar-
chitecture. The results for DL with deeper encoders indicate that
deeper models with more layers do not necessarily improve the
predictive capabilities of the models. Furthermore, a visual com-
parison of the segmentation results reveals no systematic differ-
ences between the output of AN-34, UN-34, and DL/UN++,
whereas the output of FCN-50 tends to produce noisy predictions
near image borders in a few cases. The hypothesis that the con-
cept of ASPP incorporated in DL or the multidepth encoders and
multiscale feature map fusion incorporated in UN++ help with
the correct classification of areas prone to misclassifications,
such as airport runways or arid regions, can be discarded, at least
within the scope of the data used in this study. This is well aligned
with the results from Bai et al. [24], who also reported that DL
yields results similar to other CNN architectures. The inherent
multiscale information flow in AN-32 or UN-32 that is intrinsic
in any encoder might be sufficient for this task, hence using a
dedicated architecture focusing on multiscale information fusion
does not improve the performance. Furthermore, problematic
structures such as airport runways or sand patches are naturally
heavily underrepresented in the training data. Hence, the models
cannot significantly reduce the training loss by focusing on these
areas and might tend to ignore them. This would indicate that
the model architecture might not be the limiting parameter for
obtaining better segmentation results at this stage. To further im-
prove the performance of the models, adding additional training
data with a focus on hard examples might be more beneficial
than optimizing the model architecture.

Table X lists the amount of trainable model parameters for
each architecture, the best achieved IoU score and the relative
deviation of both compared to AN-34. Using concatenation
instead of summation to fuse the feature maps from the encoder
to the decoder, as done in UN-34, yields an increase in IoU score
of 0.41% at the cost of requiring 7.5% more trainable parameters.
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Fig. 7. Segmentation results for the case studies in Peru and China for the best performing AN-34 model (DA-Int) and the S-1FS.

E. Comparison of the S-1FS and CNNs

The scores achieved by the best-performing models on the
test set from dataset I show that a CNN-based approach to water
mapping using dual polarized VV-VH data can outperform the
rule-based S-1FS in general by a considerable margin. All tested
model architectures outperformed the S-1FS in every metric,
at least if dual polarized VV-VH input data is used. There are
certain conditions that present major difficulties to the CNNs
and the S-1FS alike (scenes 23, and 61 and 62 in Fig. 5). Scenes
23 and 62 show very arid environments with large areas with
low backscatter intensities, whereas scene 61 shows an arid,
mountainous environment containing a large fraction of radar
shadow. Both, arid environments and radar shadow, are well
known to cause problems with water mapping in SAR imagery
[1], [66]–[71]. Furthermore, scene 61 is the only scene from
the biome “Montane grasslands and shrublands” in the dataset,
hence it is an out-of-training-distribution sample for the model.
Another aspect that must be considered when comparing both
approaches, is the flexibility of the methods. While the S-1FS
is a rather complex system that cannot easily be modified to
incorporate additional information, it is straight-forward to add
new information to the CNN. Further research should assess
if this might help with arid or mountainous scenes, i.e., by
adding slope, land cover or climatic information and further
hard training examples.

F. Transferability to Flood Detection

While the performance metrics show no significant difference
in the scores between AN-34 and the S-1FS for the flood events
in Peru and China, a closer look at the segmentation masks in
Fig. 7 reveals that there are qualitative differences to be noted.

In Peru, the S-1FS detects a number of false positives in
the south and south-east regions of the scene, confusing arid
land areas and sand patches with inundated areas. While AN-34
produces almost no false positives in these areas, the inundated
area in the very south is slightly overestimated by AN-34 and

by the S-1FS alike. The inundated strip close to the coast in
the northern half of the scene is slightly underestimated by both
methods, probably owed to the weak contrast between water
and land in the VV band. With the results from dataset I in
mind, this is not surprising, as both methods sometimes exhibit
problems with the correct segmentation of water bodies in arid
regions. In China, S-1FS tends to miss parts of smaller rivers,
which are captured with a higher (but not perfect) accuracy
by AN-34. Generally, the processor tends to produce more
false negatives, whereas AN-34 tends to produce more false
positives. However, both methods produce very detailed water
extent maps that accurately depict every major water body. This
shows that a model trained only on Sentinel-1 data showing
no particular flood events can learn a sufficient representation
of water surfaces that can be transferred to detect inundated
areas during flood events. However, the problematic scenes from
dataset I indicate that the robustness of the CNN models must
be further improved to reliably work in all conditions.

The results obtained on the hand-labelled Sen1Floods11 test
set show that AN-34 achieves results comparable to the methods
used by Bonafilia et al. [21] and Bai et al. [24]. The lower
IoU and the mIoU scores are not surprising, since, contrary
to the other models, AN-34 was not trained on data from
these flood events. While the S-1FS actually performs com-
paratively very well if the IoU score is computed over the
complete test set, it performs worse with regard to the equally
weighted mIoU score, which is more strongly influenced by the
scores from individual tiles. However, a close inspection of the
Sen1Floods11 dataset reveals a few deficiencies that have to be
addressed.

1) The data of individual events is distributed into the train-
ing, validation, and test sets. As noted by Kang et al. [30],
this can lead to the occurrence of spatial autocorrelation
between the sets and should be prevented. While there is a
small set of data from a single flood event in Bolivia that is
held separately and not used for training, there are only 15
samples contained in that set, which is hardly a sufficient
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sample-size to assess the generalization capacity of newly
developed methods. Using data from multiple, completely
unseen events would be preferable.

2) Five out of these 15 Bolivia samples are taken from the
border area of the underlying Sentinel-1 data. This leads to
a sharp edge between image data and no-data areas. Even
though these no-data areas are marked as non-valid, the
effects of these sharp edges are naturally propagated by the
CNNs into the image regions that are evaluated. Hence,
these samples inherently measure the ability of the models
to cope with these no-data borders, even though they rarely
occur if complete scenes are processed during an actual
flood event.

3) Out of these 15 samples, only approximately 73% (∼85%
for the complete test set) of the pixels are marked as valid,
which further hampers the expressiveness.

VI. CONCLUSION

In this study, we compared the performance in water and
flood mapping of a state-of-the-art rule-based Sentinel-1 flood
processor (S-1FS) with five CNN architectures and assessed the
impact of various hyperparameters on the performance of the
trained CNN models.

1) We confirmed the observation by Liu et al. [31] and
Katiyar et al. [23] that VH or VV-VH polarized data is the
preferred input feature for the purpose of water mapping
using CNNs and Sentinel-1 data.

2) We further showed that a linearly weighted combination of
the weighted cross entropy loss function and the Lovász
loss function yields better testing results than either of
the loss functions on their own. Considering other stud-
ies which reported similar results using either different
loss functions [24] or data from a different domain [52],
our results strengthen the assumption that combining
distribution-based and region-based loss functions is ben-
eficial for many segmentation tasks.

3) Our results further indicate that geometric data augmen-
tation methods should be treated with care when working
with SAR data for water mapping, whereas radiometric
data augmentation in the form of intensity augmentation
or speckle noise simulation leads to better testing results.

4) All examined CNN architectures outperform the rule-
based S-1FS in the task of water mapping, however, prob-
lems can arise in arid or mountainous environments using
either method. Since all tested CNN model architectures
perform very comparable to each other on a high level,
we suggest that more potential for further enhancement
of the segmentation performance lies with optimizing the
training data itself than with further optimization of the
model architectures.

5) Using data from two flood events we showed that CNNs
trained solely on data containing no distinct flood events
can work very well on data that includes inundated areas.

6) Benchmarking our methods on the Sen1Floods11 dataset
leads to results that are comparable to the literature, con-
sidering that our models have not trained on data from the
events contained in the dataset. However, within the frame

of our study, we conclude that the Sen1Floods11 dataset is
not suited as a benchmark dataset for flood detection using
Sentinel-1 data, due to several qualitative deficiencies.

CNNs appear to be a superior choice for flood and water
mapping using SAR data and could replace rule-based systems
in operational environments, e.g., for rapid mapping purposes
during or after flood disasters or for the monitoring of water
surfaces. Even though we assessed only Sentinel-1 data, our
methods should be easily transferable to other SAR sensors. To
tackle the problems with arid and mountainous environments,
further research should assess if additional information in the
form of slope or land cover information or the extension of the
training set with more scenes from difficult environments can
improve the results and increase the robustness of the models.
The release of an improved version of dataset I is under prepa-
ration [72].
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