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Abstract—Land use/land cover classification of remote sensing
images provide information to take efficient decisions related to
resource monitoring. There exists several algorithms for remote
sensing image classification. In the recent years, Deep learning
models like convolution neural networks (CNNs) are widely
used for remote sensing image classification. The learning and
generalization ability of CNN, results in better performance in
comparison with similar type of models. The functional behavior of
CNNs is unexplainable because of its multiple layers of convolution
and pooling operations. This results in black box characteristics
of CNNs. Motivated with this factor, a CNN model with functional
transparency is proposed in the present study. The model is named
as Knowledge Based Morphological Deep Transparent Neural
Networks (KBMDTNN) for remote sensing image classification.
The architecture of KBMDTNN model provides functional
transparency due to application of morphological operators,
convolutional and pooling layers, and transparent neural network.
In KBMDTNN model, the morphological operator preserve the
shape/size information of the objects through efficient image
segmentation. Convolution and pooling layers are used to produce
minimal number of features from the image. The operational
transparency of proposed model is coined based on the mathemat-
ical understanding of each layer in the model instead of randomly
adding layers to the architecture of model. The transparency of
proposed model is also because of assigning the initial weights of NN
in output layer of model with computed values instead of random
values. The proposed KBMDTNN model outperformed similar
type of models as tested with multispectral and hyperspectral
remote sensing images. The performance of KBMDTNN model is
evaluated with the metrics like overall accuracy (OA), overall accu-
racy standard deviation (OASTD), producer’s accuracy (PA), user’s
accuracy (UA), dispersion score (DS), and kappa coefficient (KC).

Index Terms—Deep neural networks, granulation, knowledge
encoding (KE), morphological operators, remote sensing image
classification.

I. INTRODUCTION

LAND use/Land cover classification of remote sensing im-
ages provides information about the resources on the earth

surface [1]. Availability of remote sensing images of various
dimensionality in terms of spatial, spectral resolutions and tem-
poral resolutions paved path for the origin of automated models
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to classify the images. The automated models such as statistical
models are used for remote sensing image classification. The
traditional statistical models like Baysian classifier depend on
the statistical distribution of samples/pixels. In most of the
remote sensing applications, the image data is not statistically
well distributed. In the past decade, machine learning (ML) mod-
els are popularly used for image classification. The advantages of
machine learning models are due to learning and generalization
ability. Also, ML based classifiers produces better classification
results with unevenly distributed data. The basic classifiers
such as decision trees, random forests, K-nearest neighbour,
minimum distance to mean, Bayesian classifier are used to
classify the small size images on pixel by pixel approach. The
performance of basic classifiers is not significant in large size
images with multiple number of classes. With this motivation,
advanced ML models such as neural networks (NNs), support
vector machines (SVM), and genetic algorithms (GA) are widely
used for image classification [2]. The learning and generalization
ability of NNs can acquire the information from large size data
during the training process [3]. The combination of GA and
SVM was proposed by Salehi et al. [4] for urban land cover
classification using Radarsat-2 PolSAR images. The model out-
performed SVM and Wishart model in SAR image classification.
The superiority of model is due to three important steps such as
feature extraction, feature selection, and image classification in
GA+SVM model. The performance of ML models is signifi-
cant in classifying the images of temporal resolutions. Satalino
et al. [5] used Kittler–Illingworth method to classify temporal
SAR remote sensing data. ML models are also widely used
in nonremote sensing image classification. Some of the major
applications of ML models in other diversified fields include traf-
fic signals detection [6], brain image classification [7], human
pose estimation [8], pathological studies [9], multiple sclerosis
(MS) disease detection in magnetic resonance images [10], tea
category identification [11], text classification in images [12].

The ML based methods such as NNs work on pixel by pixel
based approach during the image classification. The pixel based
approach is confine to only minor details in the image. In
the recent years, convolutional neural networks (CNNs) with
object based image classification approach were proposed to
overcome the limitations of pixel based NN model. The CNNs
considers both major and minor level details of objects in
the image during the classification stage. Due to this reason,
CNNs performs better than NNs in image classification. CNNs
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posses the advantages like learning and generalization during the
classification. In the recent years, various type of CNN models
were suggested for remote sensing image classification. CNN
models are used in the diversified fields of remote sensing such as
crop classification, land use/land cover classification, vegetation
classification, and urban studies. CNNs are majorally applied on
multispectral, hyperspectral, and synthetic aperture radar (SAR)
remote sensing images. A deep belief networks (DBN) model
for Urban mapping using SAR images was proposed by Lv
et al. [13]. The DBN model was used to extract the effective
contextual mapping feature from the image. The performance
of DBN model was compared with SVM, NNs, and stochastic
expectation maximization. The DBN model uses supervised
learning approach during the classification approach. Zhong
et al. [14], proposed large patch CNN (LPCNN) model with
both supervised and semisupervised approach. The LPCNN
model is used to generate large number of scene patches for
the feature learning. In LPCNN model, fully connected (FC)
network is replaced with global average pooling. The perfor-
mance of LPCNN model was compared with similar type of
model by testing with hyperspectral remote sensing images.
Higher dimensionality and spare availability of labeled data are
two important challenges with multispectral and hyperspectral
remote sensing datasets. Motivated with this factor, Romero et
al. [15], proposed greedy layer wise pretraining CNN model
to extract efficient features from the image. The superiority of
greedy layer CNN model over standard principal component
analysis (PCA) and kernel based PCA models was justified
with multispectral and hyperspectral remote sensing datasets.
Extracting efficient features from the higher dimensional images
is a challenging task in remote sensing image classification.
Motivated with this factor, multiscale CNN (mCNN) model was
suggested by Zhao et al. [16] to extract deep features from hyper-
spectral remote sensing images. The mCNN model transforms
the original data into a pyramid structure such that each layer has
spatial information at multiple scales. The mCNN model then
automatically extracts high-level spatial features using multi-
scale training datasets. The superiority of mCNN model over
similar type of models is justified by testing with hyperspectral
and multispectral remote sensing images. The models such as
hierarchial deep CNN [17], extreme learning based CNN [18],
rotation equivariant CNN [19], markov random field CNN [20],
hybrid spectral CNN [21], graph-based CNN [22], resnet [23],
multitask CNN [24] were recently proposed for hyperspectral
remote sensing image classification. The CNN models are also
used in nonremote sensing image classification such as breast
cancer detection in mamographic images [25] and object recog-
nition in digital images [26].

The architecture of CNN consists of multiple layers like input
layer, convolutional and pooling layers, and FC neural network
(FCNN) [27]. The usage of multiple layers in CNN model results
in transforming the input pixel values in an image to minimum
number of features by applying convolution and pooling opera-
tors [28]. The increase in number of layers in CNN, results in lack
of operational transparency where the functional mechanism of
CNN cannot be explained in detail and thus, CNNs are called as
black boxes. Operational transparency of deep learning model is

based on interpretability of functional mechanism of each layer
in deep learning model instead of randomly applying the layers.
The interpretability of deep learning model is coined based on
the mathematical understanding of each layer.

Morphological operators like erosion, dilation, opening, and
closing considers the shape/size features in the remote sensing
images [29], [30]. Usage of cascaded morphological operators
produce shape/size features like lines, edges, and boundaries
of objects in the image through segmentation [31], [32]. The
cascaded operators are opening with closing and closing with
opening [33]. The features extracted using morphological oper-
ators are fed as an input to the next layer to classify the objects
in the remote sensing images.

A series of convolution and pooling layers are used to re-
duce the number of redundant features in the remote sensing
image [34]. In the convolutional layer, a spatial convolution
is implemented on the input pixels through moving average
method [14]. Convolution process provides the information
related to the edges, lines, and boundaries of objects in the image.
Pooling layers are used to reduce the redundant information in
the image [18]. The architecture of CNNs consists a series of
convolution—pooling layers. The informative features extracted
using series of convolution and pooling layers are fed as an input
to a FCNN. Furthermore, the NN is trained with the labeled data
using back propagation learning algorithm [16]. NNs are known
as black boxes because of nontransparent architecture, where the
functional mechanism is not clear.

An improved NN model named as transparent neural networks
(TNNs) [also called as Granular neural networks (GNNs)] were
suggested to overcome the black box nature of NNs [35], [36].
The architecture of TNNs is built based on the If–Then rules and
the functional mechanism of TNNs can be explained based on
the If–Then rules. TNNs operate on the information granules and
the computations performed on the granules are called granular
computing. A granule is defined as the group of objects or a
class of objects with similarity. There exists various methods of
remote sensing data granulation. Pal and Mitra [37] suggested
class un-related (CUR) granulation in which the input pixel is
granulated in to three linguistic variables called low, medium,
and high. An improved method of data granulation called class
related (CR) granulation of the input pixel was suggested by
Pal [38], [39]. In CR granulation, the input pixel is granulated
depending on the number of classes in dataset.

During the training of CNN, the performance of TNNs is
based on the learning algorithm. The initial weights of the TNN
model play an important role in effective learning. Traditionally,
during the training stage of TNN, the initial weights of TNN are
assigned with random values [40]. The better way of assigning
the initial weights is based on the values, which are computed
using soft sets like fuzzy sets [41]. The process of assigning
the initial weights of TNN using the computed values is called
knowledge encoding (KE) [40]. KE provides better learning
ability in TNN. Banerjee et al. [41], suggested a fuzzy set based
KE in NN. In this study, the required knowledge was com-
puted using rough set based functional dependency. Avatharam
et al. [42], suggested an improved method of computing initial
weights using rough set based functional dependency.
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Mellouli et al. [43], suggested morphological CNN (MCNN)
model for image classification. The architecture of MCNN
model consists of morphological operators, series of convolu-
tional and pooling layers, and FCNN layer. In MCNN model,
counter-harmonic mean morphology (CHMM) with basic mor-
phological operators like erosion and dilation is used to pre-
serve the shape/size features of the objects in the image. With
erosion, the boundary details of the object get improved and
with dilation the size of the object gets increased. Erosion and
dilation can individually enhance specific features of the objects
in the image. The individual application of erosion and dilation
operators can only preserve the shape/size information partially.
This is the first limitation of MCNN model. The limitation of
MCNN model in using morphological operators like erosion and
dilation can be handled with cascaded operators. The cascaded
operators are combination of erosion, dilation, opening, and
closing. The cascaded operators provide the scope to preserve
the shape/size information of objects in the image than applying
the operators individually [33]. Combination of erosion and
dilation provides the scope to preserve the information related
to shape/size features of objects (like lines, boundaries, and
edges) than applying the operators individually [44]. Also, the
output layer of CNN model consists of FCNN. The FCNN model
lacks in operational transparency in its architecture. Lack of
operational transparency in FCNN of MCNN model is the sec-
ond limitation. Motivated with these two limitations of MCNN,
a Knowledge Based Morphological Deep Transparent Neural
Networks (KBMDTNNs) model is proposed in the present study
for remote sensing image classification. The model consists of
advantages like 1) cascaded morphological operators (closing
followed by opening and opening followed by closing) used
in the preprocessing stage of KBMDTNNs for better image
segmentation and preserve the shape size features of the objects
in the image, 2) The optimum number of convolutional and
pooling layers and 3) The knowledge encoded (KE) TNN at
the output layer. The layers used in the proposed model were
selected based on the functional mechanism of each layer. Thus,
the proposed model has optimum number of layers unlike in
conventional DNN models, where the number of layers are
randomly selected. The data granulation and KE in the proposed
model supports better learning from the data in less number of
iterations and reduces the computational time during the training
stage in comparison with conventional DNN and MLP models.
In general, the TNNs are built using the if–then rules extracted
from the data. In the present study, the proposed model with
TNN is a FC network and the initial weights of TNN are assigned
with FRSD based method. The architecture of TNN in proposed
model is not built using the if–then rules. The transparency in
the proposed model is coined based on KE in the form of initial
weights. The architecture of TNN considered in the present study
is similar to fuzzy rough GNN suggested by Ganivada et al. [42].
The proposed model attains the transparency due to KE instead
of if–then rules in conventional TNNs. These three advantages of
KBMDTNNs model provide the operational transparency in the
functioning mechanism of CNN model for remote sensing image
classification. The superiority of proposed KBMDTNNs model

Fig. 1. KBMDTNN with input image, morphological operators, convolutional
and pooling layers, TNN and KE in TNNs. (a) Cascaded morphological operators
are applied on input image to extract the shape/size features. (b) The resultant
image obtained after the morphological operations is passed through the series
of convolution and pooling layers to obtain the finite details of edges, lines and
boundaries. (c) The informative feature vectors obtained from the previous layer
are used to design the architecture of TNN. (d) The initial weights of TNN are
assigned with the values computed using FRSD. (e) During the testing, the class
label is assigned to the input image.

over similar type of models is tested with both multispectral and
hyperspectral remote sensing image classification.

The remaining sections of the present work is presented as
follows. The proposed KBMDTNN model for remote sensing
image classification is presented in Section II. Description of
various type of remote sensing image datasets used in the study
and the results and discussions of the work is given in Section III.
The conclusions drawn from the work are given in Section IV.

II. PROPOSED MODEL FOR REMOTE SENSING IMAGE

CLASSIFICATION

The proposed KBMDTNN model consists of four stages in
its architecture such as input image, morphological operators,
convolutional and pooling layers, and knowledge encoded TNN
layer. The functional block diagram of KBMDTNN model is
given in Fig. 1. The input layer consists the image used for
training/testing the model. The morphological operators are
used to extract the shape/size features from the input image.
The convolutional and pooling layers are used to increase the
information content in the image and to remove the redundancy
features in the image, respectively. The TNN model is used
to classify the input image. In the training stage, the initial
weights of TNN model are assigned with the values computed
using fuzzy rough set based feature dependency. The functional
blocks of KBMDTNN model are given in following sections.
The functional mechanism of each layer of proposed model (see
Fig. 1) is explained mathematically in the following sections to
make the architecture of KBMDTNN model as transparent.

A. Input Image

The input image of KBMDTNN model consists of pixel
values representing the reflectance from the objects on the earth
surface. The dimensions of input image varies from monochro-
matic to hyperspectral remote sensing images. The dimensions
of hyperspectral input image are more in comparison with the
dimensions of monochromatic image.
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B. Morphological Operators

The input image is preprocessed using cascaded morphologi-
cal operators to obtain the image segmentation with the features
like edges, lines, and boundaries. The shape/size information
in the form of feature values is obtained from the input image
by applying the basic morphological operators like erosion,
dilation, opening, and closing. Application of erosion operator
on the input image preserves the information content of region of
interest. The erosion operation on input image A by structuring
element B is performed according to the following:

A�B = {z|(B)z ⊆ A} (1)

where (B)z is structuring element B applied on pixel z. Dilation
on the input image adds the informative features to the region
of interest. Application of dilation operator (B—a sub image of
input image) on input image A is implemented according to the
following:

A⊕B = {z|[(B̂)z ∩A] �= ∅} (2)

where z is current pixel in A on which the structuring element B is
operating. (B̂)z symmetric rotation of structuring element over
the pixel z. Opening operation is erosion followed by dilation.
Opening eliminates the semiinformational features in the region
of interest and preserves the core informational features in the
region of interest. The opening operation on input image by
structuring element is performed according to the following:

A ◦B = (A�B)⊕B. (3)

Closing operation is dilation followed by erosion. Closing in-
cludes the semi-informational features to the core informational
features in the region of interest. The closing operation of
structuring element B on input image A is performed according
to the following:

A •B = (A⊕B)�B (4)

Application of cascaded operators like opening followed by clos-
ing extracts the independent and the core information features of
a class in the image. The cascaded operator opening followed by
closing on input image is performed according to the following:

Cas(A,B) = (A ◦B) •B. (5)

In the present study, a cascaded morphological operator i.e.,
opening followed by closing is considered to obtain the finite
shape/size features from the input remote sensing image. The
resultant images obtained after applying basic morphological
operators on IRS LISS III image are given in Fig. 2. The input
IRS LISS III image of Mumbai city is given in Fig. 2(a). The
resultant images obtained after applying multidimensional mor-
phological operators like erosion, dilation, opening, and closing
on IRS LISS III Image are given in Fig. 2(b)–(e), respectively.

C. Convolutional and Pooling Layers

The output image of morphological operators is passed to
the convolutional layer. In the convolutional layer, a moving
window or kernel is operated on the image to extract the lines,
edges, and boundaries in a image by moving average method. A
symmetric kernel is operated on the image, where the mean of
sum of products in the neighborhood of target pixel is replaced

Fig. 2. Basic Morphological operations applied on IRS LISS III image (Mum-
bai City). (a) Input image (b) Erosion (c) Dilation (d) Opening and (e) Closing.

Fig. 3. Example–Convolution operation on input binary image (I, size 7 × 7)
with binary structuring element (K, size 3 × 3) generating output image (L, size
7 × 7) [45].

in the center pixel. In the present study, an example for convo-
lution operation on input binary image (I) of size (7 × 7) with
binary structuring element (K) of size 3 × 3) is considered to
generate an output image (L) of size 7 × 7. The convolution
operation on example image is given in Fig. 3. In the pooling
layer, the redundant features are removed by applying strides
and max/min/average operators. As an example, a 2 × 2 max
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Fig. 4. Example—A 2 × 2 max pooling operation is applied on input image
of size 4 × 4 to generate output image of size 2 × 2 [46].

operator is applied on example image of size 4 × 4 to produce
the output image of size 2 × 2. The pictorial representation
of applying 2 × 2 max pooling operation on input image is
given in Fig. 4. In the proposed model, morphological layer
preserves the shape/size features in the input image and the series
of convolution and pooling layers are used to extract the features
like edges, lines and boundaries in the input image. Combination
of morphological operators, convolution, and pooling layers will
provide the finite level information about the features of objects
in the input image. In conventional CNN model, the informative
features extracted from image using series of convolution and
pooling layers are passed as an input to the FCNN. The lim-
itation of FCNN model is due to the black box nature of the
architecture where the functional mechanism of the network is
not transparent. Motivated with this factor, a Knowledge based
Transparent Neural networks (KBTNN) model is proposed in
the present study. In the proposed model, the extracted features
from the series of convolution and pooling layers are feed as
input to the TNN. The detailed architecture of KBTNN model
is given in following sections.

D. Knowledge Based Transparent Neural Networks

The feature vector generated by the series of convolutional
and pooling layers is fed as an input to the KBTNN model. The
KBTNN model process the granulated version of input feature
vectors generated by the convolutional and pooling layers. The
detailed architecture of KBTNN model is given in Fig. 5. The
architecture of KBTNN is similar to the architecture of feed
forward MLP neural network. The difference between KBTNN
and MLP is based on the type of initial weights assigned during
the training process. In MLP, the initial weights are assigned with
random values. The initial weights of KBTNN are assigned with
the values computed using FRSD. The architecture of KBTNN
model consists of input layer, hidden layer, and output layer.
Each layer of KBTNN consists of processing units called as
nodes. In Fig. 5, the number of input layer nodes (m) is equal
to the number of granulated input features applied to KBTNN.
The detailed explanation of two important granulation methods
is given in Section II-D1. The number of hidden layer nodes
is greater than number of input layer nodes. The number of
output nodes of KBTNN is equal to the number of classes in
the dataset. In conventional neural network, the initial weights
of the network are assigned with random values, which are
updated during the training by back propagating the output
error. Assigning the initial weights of the NN with the extracted

Fig. 5. Architecture of KBTNN. The architecture consists of (i) input layer,
(ii) hidden layer and (iii) output layer. I1,..., Im are the input layer nodes.H1,....,
Hq are nodes of hidden layers. O1, O2,..., Oc are the output layer nodes. B1,...,
Bq are the outputs at hidden layer nodes and D1,..., Dc are the outputs at the
output layer nodes.

knowledge from dataset would provide the better classification
performance instead of assigning the weights of NN, randomly.
Thus, the KBTNN model posses the advantages like operational
transparency due to granulation of input feature vector and
better learning due to KE in the form of initial weights in the
architecture. The KE in KBTNN is used to learn informative
features in less number of training iterations during the training
process. Thus, the proposed model produced better classification
results with less time complexity in comparison with conven-
tional DNN models and MLP models. The detailed explanation
of knowledge extraction and KE in KBTNN model is given in
Sections II-D2 and II-D3, respectively.

1) Type of Data Granulations: Granulating the input feature
vector provide the operational transparency in the functional
mechanism of TNN unlike feed forwarding the feature vector
directly to the FCNN in conventional CNN model. A granule
is defined as the group of objects or a class of objects with
similarity. The process of grouping the objects based on the
similarity is called granulation. The concept of granulation was
first coined by Zadeh [47]. In granulation, the feature values
of a pixel are represented with fuzzy membership of pixel to
the classes. The fuzzy membership of a pixel is the measure
of possibility of input feature to the classes in the dataset. The
number of granulated features of a feature vector is more in com-
parison with ungranulated feature vector. As each granulated
feature vector represents the possibility of feature belongingness
to the classes in datasets, the proposed KBMDTNN model learns
from informative features in less number of iterations during the
training inspite of more number of granulated features. Thus,
the proposed model performs better classification in comparison
with conventional DNN models and MLP models in less number
of iterations and reduces the training time.

a) Class Un-Related Granulation: Pal et al. [37] sug-
gested fuzzy granulation of input feature vector, which was
named as CUR granulation. In CUR granulation, each feature of
input feature vector is granulated in to three linguistic variables
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called as low, medium, and high. The membership of a feature
to the three fuzzy granules is computed based on π-type mem-
bership function. A pixel/pattern (P ) with n number of features
is given in the following:

P =
[
f1 f2 . . . . fn

]
. (6)

The membership of feature value fn of a feature vector to
the granules low, medium, and high is given as μLow(fn),
μMedium(fn), and μHigh(fn), respectively. The membership of
a feature fi to a granule is given as follows:

μ(fi; c, β) =

⎧⎪⎨
⎪⎩

2(1− ‖fi−c‖
β )2, for β

2 ≤ ‖fi − c‖ ≤ β

1− 2( ‖fi−c‖
β )2, for 0 ≤ ‖fi − c‖ ≤ β

2

0, otherwise.

(7)

β and c are radius and central point of granule, respectively. The
membership of a feature fi is maximum value of 1 at the center
of granule. The membership value gradually drops down to zero
on either side of granule. The membership value is 0.5 at the
crossover points. The parameters c and β of three granules along
the feature axisfi are computed by using maximum feature value
(fimax ) and minimum feature value (fimin ), according to following
equations:

βMedium(fi) =
1

2
(fimax − fimin) (8)

cMedium(fi) = fimin + βMedium(fi) (9)

βLow(fi) =
1

α
(cMedium(fi)− fimin) (10)

cLow(fi) = cMedium(fi)− 1

2
βlow(fi) (11)

βHigh(fi) =
1

α
(fimax − cMedium(fi)) (12)

cHigh(fi) = cMedium(fi) +
1

2
βhigh(fi) (13)

the extent of overlapping among the granules is controlled by
the parameter α. Thus, the pattern P with n number of features
is granulated in to 3 × n features such as

Pug =

⎡
⎢⎣
μLow(f1), μMedium(f1), μHigh(f1)

· · · , · · · , · · · ,
μLow(fn), μMedium(fn), μHigh(fn)

⎤
⎥⎦ . (14)

b) CR Granulation: CUR granulation do not consider
class wise membership of feature vector to the classes [42]. Mo-
tivated with this factor, Pal et al. [38] proposed CR granulation of
feature vector. In CR granulation, each feature of a pattern/pixel
is represented in terms of membership to the classes in dataset.
The membership of feature fi to a class is given by

μ(fi;x, c, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, for fi ≤ x

2N−1( fi−x
r−x )N , for x < fi ≤ a

1− 2N−1( c−fi
c−x )

N , for a < fi ≤ c

1− 2N−1( fi−c
y−c )

N , for c < fi ≤ b

2N−1(y−fi
y−c )

N , for b < fi ≤ y

0, for fi ≥ y

(15)

a and b are the two crossover points with membership 0.5, and
c is the center point of granule with membership value 1. The

Fig. 6. π-type membership function for CR granulation.

values of a, b, and c are computed as c=mean of feature values
that belong to a particular class, a = c− (max(Fn)−min(Fn)

2 ) and

b = c+ (max(Fn)−min(Fn)
2 ). The value of N lies between 0 to 1

and min(Fn) and max(Fn) are minimum and maximum values
of a feature Fn. The points x and y are called extreme points,
which are given as x = c− (b− a) and y = c+ (b− a). The
PI membership function is pictorially given in the Fig. 6. In CR
granulation, a feature vector (P) with n number of features and
the dataset with c number of classes is represented with n × c
number of granulated features such as

Pg =

⎡
⎢⎣
μ1(f1), μ2(f1), μc(f1),

μ1(f2), μ2(f2) · · · ,
μ1(fn), μ2(fn), μc(fn)

⎤
⎥⎦ . (16)

μc(fn) is the membership of feature fn of pixel P to the class c.
2) Knowledge Extraction Using Feature Based Dependency:

The concept of knowledge extraction is based on the information
extraction from the labelled dataset. Knowledge extraction is
an attempt to find the reasoning between the input features
and the corresponding class labels. The research on knowledge
extraction from the dataset started with Yasdi [40]. In this
method, a rough set based dependency (RSD) of each feature is
computed and based on the RSD value, the initial weights of the
NN architecture were computed. Banerjee et al. [41] used RSD
method to extract the domain knowledge from a CUR granulated
labeled dataset. Furthermore, Ganivada et al. [42] used fuzzy
set based feature dependency for domain knowledge extraction
from CR dataset. Meher [48] worked on knowledge extraction
using neighborhood rough set theory. In the present study, a
fuzzy rough set based dependency (FRSD) is used to quantify
the relationship between the input CR granulated features and the
output classes. The theoretical explanation of FRSD is provided
in the literature [49]–[51]. A CR granulated feature vector Pg

with the membership values μ1(f1), μ2(f1), μc(f1),...., and
μc(fn) is obtained from a feature vector (P) with features
f1, f2, f3, . . ., fm. The FRS based functional dependency (r) of
granulated features μ1(f1), μ2(f1), μc(f1),...., and μc(fn) is
obtained as

r = Y(μ1(f1),μ2(f1),μc(f1),....,μc(fn))/X. (17)

where Y(μ1(f1),μ2(f1),μc(f1),....,μc(fn)) is the number of feature
vectors, which can be distinguished with the n × c features
i.e., μ1(f1), μ2(f1), μc(f1),...., μc(fn) in a given class, X is



KUMAR: KNOWLEDGE-BASED MORPHOLOGICAL DEEP TRANSPARENT NEURAL NETWORKS 2215

TABLE I
EXAMPLE: THE DATASET WITH FOUR FEATURE VECTORS AND TWO CLASSES

Fig. 7. KE in TNN with architecture having one output node, one hidden
node and (m = n × c) input nodes. The initial weights between the input
layer nodes and hidden layer node w11 = r/m, · · · ,wm1 = r/m. The initial
weights between the hidden layer node and the output layer node v11 = r.

the total number of feature vectors in the dataset. If all the (n
× c) granulated features are considered to compute FRSD, the
value of r = 1, otherwise r<1. The computation of r value is
explained with an example as given in Table I. In Table I, the
number of CR granulated feature vectors is X = 3 (i.e., Pg1,
Pg2, and Pg3) with features μ1(f1), μ2(f1), and the number of
classes is 2. The FRSD is computed for the features μ1(f1),
μ2(f1), and (μ1(f1), μ2(f1)). The r value for the feature μ1(f1)
is r = Yμ1(f1)/X = 1/3. In this case, the value of Yμ1(f1) = 1
because with the granulated feature μ1(f1), the vector Pg3 can
only be identified. The feature vectors P1g and P2g cannot be
uniquely identified with the feature μ1(f1). The FRSD value
of feature μ2(f1) is r = Yμ2(f1)/ X = 3/3, the value of Yμ2(f1)

= 3 because with the feature μ2(f1), the feature vectors Pg1,
Pg2, and Pg3 can be uniquely identified. Similarly, the FRSD of
both the features in combine μ1(f1) and μ2(f1) is obtained as
r = Y(μ1(f1),μ2(f1))/X = 3/3. The value of Y(μ1(f1),μ2(f1)) = 3,
because with μ1(f1), μ2(f1)) the feature vectors Pg1, Pg2, and
Pg3 can be identified. In the present study, all the CR granulated
features were considered to represent the information content of
images in the dataset with r = 1. Based on the FRSD, the initial
weights of KBTNN model is assigned during the training stage.

3) KE in TNN: All the granulated feature vectors are fed as
input to the TNN model. The FRSD value of dataset with all
the granulated features is a maximum value 1 (r = 1). The
initial weights of the TNN model are assigned such that the
functional dependency at each output nodes (O1, O2,..., Oc) is
1. As an example, the initial weights of TNN model with one
output node, one hidden node, and m input nodes are assigned
based on the r value as given in Fig. 7. In Fig. 7, the weights
between the hidden layer node H1 and the output layer node
O1 is the maximum value r = 1. The weights between the

Fig. 8. KE in TNN with architecture having one output node, two hidden node
and m input nodes. The initial weights between the input layer nodes and hidden
layer nodes w11 = r/2m,...., wm2 = r/2m. The initial weights between the
two hidden layer nodes and a output layer node v11 = r/2 and v21 = r/2,
respectively.

input layer nodes and the hidden layer node are assigned with
each weight value w11 = r/m,...., wm1 = r/m, where m is the
number of CU/CUR granulated features. In the case, when the
number of hidden layer and output layer nodes are more, the
weights are uniformly distributed in the architecture of TNN.
The initial weights of TNN model with m input nodes, two
hidden nodes and one output node is given in Fig. 8. The
weights between the hidden layer nodes and the output layer
node are assigned with the value r/2. The weight values v11
and v21 = r/2 representing the two hidden nodes. The weight
values w12 = r/2m,....., wm2 = r/2m represent the uniform
distribution of r value among the input layer nodes and the
hidden layer nodes.

4) Learning Process of KBTNN Model: The learning mech-
anism of TNN is similar to the feedforward neural network [3].
The TNN model is trained using back propogation learning
algorithm. During the training, morphological operators, series
of convolutional, and pooling layers are applied on the the input
image to obtain the minimal features from the image. These
informative features are granulated to obtain the membership
value of each feature to the class (explained in Section II-D1).
The membership values of a features are provided as inputs
to TNN. In the feedforward process, the membership value
of each feature is multiplied with corresponding initial weight
in the connecting link (the initial weights are computed using
FRSD as given in Section II-D2) and the resultant value is
feed forwarded through the architecture of TNN. The output
at hidden node is the sum of product of the input feature values
and the initial weights. Similarly, the output at the output layer
node is the sum of product of output at hidden layer and the
corresponding hidden weights. Later, the error at each node of
output layer is computed. If the output error is equal to zero
then the weights of TNN are not updated. In the case, the output
error is a nonzero value, the weights between the layers of TNN
are updated by back propagating the output error. Updation of
weights is implemented by passing the input labeled image
through the layers of KBMDTNN. The weights of the TNN
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model are updated to reduce the overall cost function (CF). In
the present study, the mean square CF is used to compute the
overall error. The selection of mean square CF during the training
is due to the usage of sigmoid activation function at each node
of TNN in feed forward process. The CF of TNN for individual
sample image (x) is given in the following:

Cx =
1

2

c∑
k=1

(Zk −Dk)
2 (18)

where c represents the number of classes in the dataset, Zk is
desired value at the output node Ok. The overall CF of TNN for
the entire dataset is given in the following:

CF =
1

P

P∑
i=1

Ci (19)

where P is the number of sample images in the dataset. Similarly,
there exists various type of cost functions such as multiclass
cross entropy loss, sparse multiclass cross entropy loss, and
Kullback Leibler divergence loss. The mechanism of back prop-
agating the output error and updation of weight parameters in
TNN is similar to the conventional neural networks.

The initial weights of TNN in proposed model are computed
from the dataset using FRDS method. During the training of
KBMDTNN model, the images from the dataset are passed one
by one and the initial weights are updated based on the output
error. Initial weights are computed independently by considering
the dataset and the weights of TNN in proposed model are
updated during the training process. The detailed explanation
about the computation of initial weights and training TNN model
is given in the literature [37], [41], and [42].

III. RESULTS AND DISCUSSION

A. Datasets Used

In the present study, the performance of CNN models was
tested with six remote sensing image datasets. The images in
the datasets have unique spatial and spectral resolutions. The
collection of six datasets is made such that four datasets consists
of multispectral remote sensing images and the remaining two
datasets consists of hyperspectral remote sensing images. The
panaromic view of remote sensing images used in the present
study is given in Fig. 9(a)–(f). The detailed description of these
datasets is given in the following sections.

1) Hyperspectral Remote Sensing Images: The hyperspec-
tral remote sensing datasets like ROSIS and AIVIRS were
considered in the present study. The detailed description of the
datasets is given in following sections.

a) ROSIS: The hyperspectral ROSIS image covers the parts
of Pavia University, Northern Italy. ROSIS sensor consists of
spectral information in 103 bands with 610 × 610 pixels. The
image has a spatial resolution of 1.3 m with nine land cover
classes. The number of pixels per class in ROSIS dataset is given
Table II.

b) AIVIRS: The AIVIRS dataset is also called as Indiana’s
Indian Pines dataset. The dataset consists of information related

Fig. 9. (a) ROSIS image of Pavia University, (b) AVIRIS image of Indiana
Pines, (c) Sentinel MSI image of Bangalore City, (d) IRS LISS IV image of
Kakinada City, (e) IRS LISS III image of Mumbai City and (f) IRS LISS II
image of Kolkatta city.

TABLE II
HYPERSPECTRAL DATASETS AND NUMBER OF SAMPLES

to 145 × 145 pixels in 200 spectral bands. The detailed descrip-
tion of the classes and the number of pixels in each class of
AIVIRS dataset is given in Table II.

2) Multispectral Remote Sensing Images: In support to the
hyperspectral remote sensing images, multispectral remote sens-
ing images acquired from four sensors like 1) sentinel multispec-
tral instrument (MSI), 2) indian remote sensing linear imaging
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self scanning sensor (IRS LISS IV), 3) IRS LISS III and 4)
IRS LISS II were considered to evaluate the performance of
KBMDTNN model. The four sensors are unique interms of the
characteristics like spatial and spectral resolutions. A total of five
classes were considered in the study area. The classes are named
as (i) Urban Dense (ii) Urban Sparse (iii) Water (iv) Agriculture
and (v) Forest.

a) Sentinel MSI–Bangalore City: The sentinel MSI sensor
has the spectral information of the objects in 13 spectral bands.
Out of 13 spectral bands, four bands has the spatial resolution
of 10 m, six bands has the spatial resolution of 20 m and
three bands has the spatial resolution of 60 m. In the present
study, MSI image of Bangalore city, India is considered for
evaluation.

b) IRS LISS IV–Kakinada City: IRS LISS IV is a mut-
lispectral sensor with operational spectral bands over the range
(0.52–0.86 μm). The spatial resolution of the sensor is 5.8 m.
The IRS LISS-IV image of Kakinada city, India is considered
in the present study to test the performance of CNN models.

c) IRS LISS III–Mumbai City: IRS LISS III image of
Mumbai city, India is used to test the performance of CNN
models. LISS III image has the spectral information of the
classes in four operating wavelengths ranging from 0.52 to
1.7 μm. The spatial resolution of IRS LISS III image is 23.5 m.

d) IRS LISS II–Kolkatta City: IRS LISS II image of
Kolkatta region, India is considered to test the performance of
CNN models. The spatial resolution of IRS LISS II is 36.25 m
and the sensor operates in four spectral bands ranging 0.46–
0.86 μm. In the present study, various type of CNN models were
considered for performance analysis. The performance of these
CNN models was evaluated using the metrics like OA, UA, PA,
KC, DS, OASTD, and NOI. The detailed description of the CNN
models is given in following sections.

B. Model Description

In the present study, seven deep learning models were con-
sidered to compare the performance of proposed KBMDTNN
model. The models were tested with six remote sensing image
datasets. The selection of models was based on the type of
morphological operator used to extract the lines, edges, and
boundaries in image, the type of granulation method used for
feature vectors, method of computing the initial weights of the
NN, and the type of NN model for classifying the image.

1) Model : Morphological operator + Type of Granulation +
Initial weights + Type of Neural network

2) Model 1 (M1) : Counter-Harmonic Mean + Ungranulated
+ Randomly + Conventional NN [43]

3) Model 2 (M2) : Closing + CUR + FRSD + TNN
4) Model 3 (M3) : Opening + CUR + FRSD + TNN
5) Model 4 (M4) : Opening + CR + FRSD + TNN
6) Model 5 (M5) : Cascaded operator + CR + FRSD + TNN
7) Model 6 (M6) : Cascaded operator + CR + FRSD + TNN

(Proposed model)
8) Model 7 (M7) : Cascaded operator + Ungranulated +

Randomly + Conventional NN

Model 1 (M1) is a CNN model with CHM morphological
operator at the morphological layer to extract the informative
features. The feature vectors generated by the convolutional and
pooling layers of M1 are directly fed in to the output layer
without granulation. The output layer of model 1 consists of
FCNN which is trained with random initial weights. Model 2
(M2) is CNN model with closing operator on the input image.
The input feature vector of M2 is granulated using CUR method
and the granulated feature vector is processed using TNN. Model
3 (M3) is similar to M2 with the only difference in applying
the Opening operator on the input image. Model 4 (M4) is
a CNN model similar to M3 and with CR granulated feature
vector. Model 5 (M5) is CNN model with the cascaded operator
(opening followed by closing) applied on the input image. The
initial weights of model M2, M3, and M4 are assigned with the
values computed using FRSD. The initial weights of model 5 are
computed using using RSD method. Model 6 (M6) is similar to
(M5) and the required knowledge for the model 6 is computed
using FRSD method. The output layer of the models M2, M3,
M4, M5, and M6 consists of TNN to process the granulated
feature vectors. Model 7 (M7) is CNN model with cascaded
operator in morphological layer and the features generated by the
series of convolution and pooling layers are fed to conventional
NN in the output layer.

A five facet approach is chosen in the present study to justify
the superiority of proposed model M6 over the models M1, M2,
M3, M4, and M5. In the first facet, comparison between M1

(base model) and M2 is performed to show the improvement in
the performance of the CNN model due to 1) CUR granulation
of feature vector and 2) KE in the TNN. In the second facet
of comparison, M2, M3, and M4 are compared to demonstrate
the superiority of M4 over M2, M3 is due to efficient feature
extraction using opening operator in morphology layer and CR
granulation of input data. In the third facet, M4 and M5 are
considered to show the superiority of M5 over M4 due to the
use of cascaded operator (opening followed by closing operator).
In the fourth facet, the performance ofM5 andM6 are compared
to know the superiority of proposed model over M5 due to
FRSD based KE in TNN. In the fifth facet of comparison, M6

is compared with M7 to justify the superiority of KBMDTNN
model over M7 because of transparency obtained due to FRSD
based KE.

In the present study, the size of input image for all models
is considered as 500 × 500 × B, where B is the number
of spectral bands in the remote sensing image. The archi-
tecture of proposed model comprise of thirteen layers with
one input image, cascaded operator, six convolution layers
(Conv), four pooling layers (Pool), and a transparent neural net-
work. The detailed architecture of KBMDTNN model is given
as : Input image–Cascaded operator–Conv1–Conv2–Pool1–
Conv3–Conv4–Pool2–Conv5–Conv6–Pool 3–Pool 4–KBTNN.
The KBTNN model in the output layer consists of three layer
transparent neural network. The architecture of TNN is given as
(28 × 28) 784 : 100 : 5, where 784 is the number of pixels
received from series of convolution and pooling layers, the
number of hidden layer nodes is taken as 100 and the number
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TABLE III
EXPERIMENTAL RESULTS OF MODELS FOR ROSIS DATASET

of output nodes is equal to number of classes (no. of classes =
5 for LISS III dataset).

C. Criteria for Training and Testing

The remote sensing image pixels are labeled based on the
ground truth and furthermore, the labeled pixels are used to
prepare the dataset. The entire dataset is divided into two disjoint
sets with the first set of pixels named as training set and the
second part of the dataset is named as testing set. The parameters
of the models are computed from the training dataset. The
division of dataset is based on the selection of 10%, 30%, 50%,
and 70% pixels in to training sets and the remaining 90%, 70%,
50%, and 30% pixels of the dataset in to test sets. The selection of
sub images in to training and testing sets is done randomly. The
results of models are obtained through tenfold cross validation
and the average accuracy of all the folds is taken as OA.

D. Performance Measurement Index

After implementing the training and testing phases, the perfor-
mance of models was evaluated using the performance metrics.
Six performance indices like OA, PA, UA, DS, KC, NOI, and
OASTD were used in the present study. The indices are computed
using confusion matrix (CM). CM is a table of actual classified
output classes assigned by a model. The sum of diagonal el-
ements of the CM divide by total number of pixels is termed
as OA. The limitation of OA lies in considering the overall
agreement between actual and predicted class labels because
of which the decision making capability of the model will
be reduced. As a solution to this problem, other metrics like
DS, UA, PA, KC, NOI, and OASTD were considered to obtain
the detailed performance of the models. The probability of a
reference pixel being correctly classified is called as UA. UA is
defined as correctly classified pixels of a class to the total number
of pixels which are classified to the class. The performance of PA
is better than UA. DS is the measure of distribution of classified
pixels among the classes in a dataset. DS is used to understand
the characteristics like intersection of various class boundaries.
Kappa coefficient is used to measure the performance of a model
depending on the individual class-based agreement.

E. Performance of Models With ROSIS Dataset

The performance of CNN models with ROSIS dataset is
given in Table III. In Table III, M6 performed better than the
remaining CNN models with the OA of 96.84%. The superiority

Fig. 10. Performance of M1 to M6 in terms of OA with ROSIS DATASET.

of proposed KBMDTNN model over other models is due to the
use of cascaded morphological operator and also due to FRSD
based KE in the TNN. In the first facet of comparison, the OA
of M2 is 0.62% better the base model M1. The superiority of
M2 is due to the use of closing morphological operator, which
considers the finite information in the image and FRSD based KE
in the TNN. In the second facet of comparison,M4 outperformed
M2 andM3 with 2.08% and 0.78%, respectively. The superiority
of M4 over M2 and M3 is due to the CR granulation of feature
vectors and application of morphological opening operator. In a
similar comparison, M3 better than M2 because in M3 closing
operator preserves the semiinformation of objects in the image
while the opening operator in M2 eliminates the semiinforma-
tion features and preserves the major information in the region
of interest. In the third facet of comparison, M5 is better than
M4 with 1.12% OA. The superiority of M5 is due to the use
of cascaded operator that extracts efficient features from the
image. In the fourth facet of comparison, M6 performed better
than M5 with 1.24% improvement in the OA. The superiority
of M6 is due to the FRSD based KE in KBMDTNN model.
The proposed KBMDTNN model is 4.97% better than the base
model M1 [43]. The NOIs were taken as 50 for the CNN models
in the present study. The superiority of KBMDTNN over other
models is justified with highest KC value of 0.932. The pictorial
representation of the performance for M1 to M6 is given in
Fig. 10. The classified images of ROSIS sensor for KBMDTNN
model (M6) (best classifier) and (M1) (worst classifier) are given
in Fig. 12(a) and (b), respectively. The class labels are given in
Fig. 12(b). In the fifth facet of comparison, M6 is 4.25% better
than M7 in terns of OA. The superiority of M6 over M7 is due
to KE in TNN and CR data granulation. The superiority of M6

over M7 is justified with KC as M6 has KC value of 0.932 and
M7 has KC value of 0.856.

In support to the performance metrics like OA and KC,
the metrics such as UA, PA, and DS were considered in the
present study. The characteristics of UA, PA, and DS is that
these metrics provide class based analysis of the labeled images.
The performance of M1, M3, and M6 were analyzed with the
metrics UA, PA, and DS. The results of M1, M3, and M6 in
terms of three metrics UA, PA, and DS are given in Table IV.
The performances of the models with UA, PA, and DS are given
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Fig. 11. Performance of M1, M3, and M6 in terms of UA (%) with ROSIS
dataset.

TABLE IV
NINE CLASSES OF ROSIS DATASET WITH UA, PA AND DS FOR M1, M3, AND

M6 FOR 50% TRAINING DATA

in Fig. 11. In Table IV, M6 produced better UA and PA values as
compared with M1 and M4 in all the classes. The UA of M6 for
class 1 is 92.12%, UA of M3 for class 1 is 89.45% and UA value
for model 1 is 83.36%. This indicate a significant improvement
in UA from M1 to M6. In a similar analysis, an improvement in
PA is noticed from M1 to M6. M6 outperformed M1 and M3 in
terms of DS. The superiority of M6 over M3 and M1 is justified
with less value of DS for M6.

1) Comparison of KBMDTNN Model With Other Basic Clas-
sifiers for ROSIS Dataset: The performance of proposed KB-
MDTNN model is compared with some of the basic CNN
models like large patch CNN (LPCNN), multiscale deep CNN
(MSDCNN), CNN with overfeat pretrained model (CNNOPM),
CNN with extreme learning machine (CNNELM), deep random-
scale stretched CNN (SRSCNN), and deep-local-global feature
fusion framework (DLGFF). The selected models have deep
layers of convolution and pooling operators. The performance
of proposed model in comparison with similar type of CNN
models with the metrics like OA, KC and OASTD is given in
Table V. The proposed KBMDTNN model is 4.46%, 3.78%,
2.49%, 1.96%, 1.38%, and 0.9% better than the models LPCNN,
MSDCNN, CNNOPM, CNNELM, and DLGFF, respectively.
The superiority of the proposed model over similar type of basic
CNN classifiers is due to the usage of cascaded operators, CR
granulation of feature vector and knowledge encoded TNN in the

Fig. 12. Output classified images of (a) ROSIS sensor with M1 (worst classi-
fier), (b) ROSIS sensor with M6 (best classifier), (c) AVIRIS sensor with M1,
(d) AVIRIS sensor M6, (e) LISS IV sensor with M1, (f) LISS IV sensor with
M6, (g) LISS III sensor with M1 and (h) LISS III sensor with M6.

output layer. The graphical representation of the performance of
KBMDTNN model and other CNN models is given in Fig. 13.

The performance of proposed KBMDTNN model is com-
pared with the recently proposed DNN models such as Resnet,
VGGnet, alexnet, mobilenet, and darknet. The performances of
these DNN models are given in Table VI. In Table VI, the per-
formance of proposed model is 0.72 %, 0.60%, 1.16%, 2.52%,
and 0.8% better than ResNet, VGGNet, alexnet, mobilenet, and
darknet models, respectively. The superiority of proposed model
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TABLE V
PERFORMANCE COMPARISON OF KBMDTNN MODEL WITH OTHER CNN

CLASSIFIERS FOR ROSIS DATASET WITH THE METRICS LIKE OA, KC,
AND OASTD

Fig. 13. Performance of KBMDTNN (M6) and other classifiers in terms of
OA (%) with ROSIS dataset.

TABLE VI
PERFORMANCE COMPARISON OF KBMDTNN MODEL WITH MOST RECENTLY

USED CNN CLASSIFIERS AND MLP FOR ROSIS DATASET

over these models is due to the KE and data granulation during
the training process. The superiority of proposed model over
the recent CNN models is justified in terms of other metrics
also. In Table VI, the NOI of proposed model is 50 and NOI
of MLP is 700. Model 6 performed better than MLP with
additional advantage of less number of iterations. KE and data
granulation in KBMDTNN model provides the understandable
learning process using possibility and convergence of lowest
gradient descent value in less number of iterations. Due to this
reason, the proposed model produces better results than MLP
with less time complexity.

The performance of proposed model is compared with other
basic TNN models such as decision trees (DT), random for-
est (RF), fuzzy multilayer perceptron (FMLP) [37], rough
fuzzy multilayer perceptron (RFMLP) [41], fuzzy rough GNN
(FRGNN) [42]. These models were considered in the present
study because of operational transparency due to KE (assigning
initial weights with computed values). The results of TNNs

TABLE VII
PERFORMANCE COMPARISON OF KBMDTNN MODEL WITH OTHER TNN

CLASSIFIERS FOR ROSIS DATASET

TABLE VIII
EXPERIMENTAL RESULTS OF ALL THE MODELS FOR AVIRIS DATA WITH

60% TRAINING DATA

models are given in Table VII. In Table VII, the performances
of models were evaluated based on the number of rules (NOR),
NOI, OA, and KE procedure. DT with 35 rules produced 84.78%
OA. RF with 55 rules produced 85.68% OA, FMLP with FC
architecture and FRSD based KE produced 87.26% OA. RFMLP
with 25 rules and RSD based KE produced 88.46% OA. FRGNN
model with FC architecture and FRSD based KE produced
89.68% OA. The proposed model produced 96.84% OA, which
is 12.06% better than the DT (lowest OA of 84.78%). Similarly,
the proposed model outperformed other TNN models in OA.
The superiority of proposed model over other TNN models is
due to deep transparent architecture and FRSD based KE.

F. Performance of Models With AVIRIS Dataset

The superiority of M6 over similar type of CNN models
in terms of OA, KC and OASTD is justified with AVIRIS
dataset. The results of six models for AVIRIS dataset is given in
Table VIII. In Table VIII, M6 outperformed other models with
OA of 96.69%, KC value of 0.912, and OASTD of 1.89. The
performance of M1 is lowest with OA of 90.24%, KC value of
0.812, and OASTD of 6.42. The superiority of M6 over other
models is due to 1) The cascaded morphological operator that
preserves the shape/size features of the objects in the image,
2) Fuzzy rough set based KE in TNN at the output layer that
provides the best possible solution during the gradient descent.
The performance of M1–M6 for AVIRIS dataset is pictorially
given in Fig. 14. The classified images of AVIRIS sensor for
KBMDTNN model (M6) (best classifier) and (M1) (worst
classifier) are given in Fig. 12(c) and (d), respectively. The 10
class labels of AVIRIS images is given Fig. 12(c) and (d).

G. Performance of Models With Sentinel MSI, LISS IV, LISS
III, and LISS II Datasets

The performance of six models were tested with the datasets
such as Sentinel MSI, LISS IV, LISS III, and LISS II. The results
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Fig. 14. Performance of M1 to M6 for AVIRIS dataset.

TABLE IX
PERFORMANCE OF M6 (BEST CLASSIFIER) AND M1 (WORST CLASSIFIER) IN

TERMS OF OA, KC AND OASTD FOR SENTINEL MSI, LISS IV, LISS III, AND

LISS II DATASETS

Fig. 15. Performance of M1 and M6 interms of OA (%) for MSI, LISS IV,
LISS III, and LISS II datasets.

of M6 (Best classifier) and M1 (Worst classifier) for the four
datasets is given in Table IX. In the case of MSI dataset, M6 is
having the best performance with OA of 91.86%, KC value of
0.914, and OASTD of 0.986. M1 is having the least performance
with OA of 82.45%, KC value of 0.823, and OASTD of 5.789.
The performance of M6 and M1 is similar in the case of other
datasets like LISS IV, LISS III, and LISS II. The performance
of models M1 and M6 for MSI, LISS IV, LISS III, and LISS
II is pictorially represented in Fig. 15. The classified images
of LISS IV and LISS III sensors for KBMDTNN model (M6)
(best classifier) and CHM based MCNN (M1) (worst classifier)
are given in Fig. 12(e)–(h), respectively. The five land use/land
cover classes of IRS LISS III and LISS IV images such as urban

dense, urban sparse, water, forest and agriculture are given in
Fig. 12(h), Fig. 12(g) and Fig. 12(e), Fig. 12(f), respectively.

IV. CONCLUSION

A KBMDTNN model is suggested in the present study for
remote sensing image classification. The model uses cascaded
morphological operators to extract the information related to
lines, edges, and boundaries of objects from the input image.
The model uses optimum number of convolutional and pooling
layers in the remote sensing image classification. The output
layer of KBMDTNN model consists of TNN with FRSD based
initial weights. The KBMDTNN model provides the operational
transparency in all the layers starting from morphological opera-
tors to the output layer. Thus, the model overcomes the black box
nature of conventional CNN. The superiority of KBMDTNN
model over similar type of deep learning models is evaluated
with multispectral and hyperspectral remote sensing image clas-
sification. The model produced an highest OA of 96.84% with
4.97% better than the MCNN as tested with ROSIS dataset.
The proposed model produced similar type of classification
results with other datasets. Furthermore, the proposed model can
be used for multisensor multiresolution remote sensing image
classification.
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