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Combining a Crop Growth Model With CNN for
Underground Natural Gas Leakage Detection Using
Hyperspectral Imagery

Ying Du"?, Jinbao Jiang

Abstract—Natural gas leakage occurs frequently due to aging
pipes and other factors, but is challenging to detect. In this article,
a new, robust method for nondestructive natural gas microleakage
detection was proposed. It combines a crop growth model with a
convolutional neural network (CNN) approach to quantitatively
detect underground natural gas leakage using unmanned aerial
vehicle (UAV) hyperspectral imagery. The environmental stress on
wheat was used as an indicator to reflect the intensity of natural
gas leakage. First, a crop growth model (simple algorithm for
yield, SAFY) was used to simulate the growth of wheat, and the
environmental stress factor in the model was used to construct
the natural gas stress index (Kgs). Subsequently, CNN models
were used to estimate the K ¢ value with a hyperspectral image
as the input. Finally, the CNN estimated K was used to detect
the natural gas leakage in the study area. Results showed that
the SAFY model K, value could effectively identify natural gas
leakage, with statistically significant differences (p-value < 0.05)
among three leakage levels. Furthermore, compared to a single
spectral index, K¢ had superior robustness throughout the wheat
growth period. The CNN-1D model with InceptionV2 architecture
exhibited the best accuracy in estimating K, with a robust nRMSE
of 6.9%. Overall, the combined CNN and SAFY models could
accurately detect natural gas leakage, and this approach is more
robust than traditional spectral index-based methods. This article
provides a new method for nondestructive detecting of natural gas
microleakage.

Index  Terms—Convolutional neural network (CNN),
hyperspectral image, natural gas microleakage, simple algorithm
for yield (SAFY) model.

I. INTRODUCTION

ATURAL gas is a safe, environmentally friendly, and
Nhigh-quality energy source, and occupies an important
market position. Pipelines are common methods of transport
and underground storage is widespread [1]. However, both are
susceptible to damage from natural or human factors, and the
resulting gas leakage can be hazardous and result in economic
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losses [2]. Therefore, it is important to detect natural gas leakage
in a timely and accurate manner.

Manual methods of underground gas leakage detection are
time-consuming and struggle to detect microleakage. Although
remote sensing technology is commonly used in environmental
monitoring, itis difficult to directly obtain underground informa-
tion by optical remote sensing due to its limited soil-penetrating
ability [3]. Underground gas leakage decreases soil oxygen
content, thereby inhibiting aerobic respiration in plant root cells
and negatively impacting plant health [4]. Therefore, the extent
of underground natural gas leakage can be monitored indirectly
by examining crop growth.

Hyperspectral sensors have a powerful ability to monitor
plant growth by virtue of the rich spectral information that they
capture [5]-[7]. In recent years, with the rapid development of
unmanned aerial vehicles (UAVs), hyperspectral images have
been increasingly used to monitor plant growth. Yuan et al
[8] and Kanning et al. [9] indicated that hyperspectral imagers
mounted on UAVs demonstrated an ability to estimate plant
population growth parameters such as leaf area index (LAI),
biomass, and chlorophyll content. Furthermore, Shivers et al.
[10] analyzed growth indicators such as crop transpiration rates
to monitor water stress, using shortwave and thermal infrared im-
ages obtained from the UAV platform. Most vegetation stresses
exhibited increases in visible wavelengths and a decrease in
near-infrared wavelengths [11]-[13], especially the red-edge
bands that are closely related to the chlorophyll content per
unit area of vegetation. For natural gas stress detection, many
vegetation indexes have been developed based on these bands.
For example, Smith et al. [14] proposed a spectra index using the
725 and 702 nm bands (D725/D702) to estimate the natural gas
stress of vegetation, such as grass, winter wheat, and bean. Ran
et al. [15] studied the characteristics of canopy spectral changes
in bean, corn, and grass under natural gas leakage stress, and
constructed the natural gas stress index (NGSI) to detect sites
of underground natural gas storage leakage. These studies were
mainly conducted by selecting key spectral bands based on a
few vegetation growth parameters (e.g., chlorophyll) within a
single or few growth periods. The physiological characteristics
of plants change during various growth periods. A single spectral
index is only effective in describing a specific plant physiological
characteristic, and it is difficult to effectively describe changes
in plant physiological characteristics throughout the entire
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growth period [16], [17]. This somewhat limits the detection of
underground gas leakage based on spectral indices limited. In
this context, introducing crop growth models may aid in detect-
ing underground gas leakage, as crop growth models can provide
adetailed description of the crop growth process during its entire
growth period and can more accurately simulate the crop’s key
physiological characteristics at various growth points as com-
pared to vegetation indices. In turn, the extent of underground
gas leakage can be more accurately diagnosed. However, few
studies have explored this aspect.

The combination of remote sensing data and crop growth
models can effectively monitor regional-scale crop growth.
Satisfactory results have been achieved in previous studies for
crop growth monitoring and yield forecasting [18]. In addition,
some researchers have also used crop growth models coupled
with remote sensing data to simulate crop growth and stress
in areas with drought and heavy metal pollution [19], [20].
These models with strong mechanics have high accuracy but
are difficult to mainstream owing to their complex structures,
numerous constraints, and laborious parameter optimization
processes. Consequently, some studies have used several simple
crop growth models with clear principles and fewer parameters
to estimate crop productivity [21], [22]. The simple algorithm
for yield (SAFY) estimation model proposed by Duchemin
et al. [23] is a typical simple parametric model. This model sim-
ulates crop canopy growth in daily steps based on light energy
utilization with a few easily accessible parameters. Therefore,
it can be easily coupled with remote sensing data for crop
growth monitoring and yield forecasting [16], [24]. In addition,
some studies using the SAFY model have also considered the
impacts of crop growth limitations such as water stress [25].
Overall, research has shown that the SAFY model can effectively
simulate the crop growth process under varied environmental
stress conditions. However, few studies have used it to monitor
crop stress caused by natural gas leakage.

Most previous research on hyperspectral vegetation param-
eter estimation has used traditional machine learning methods,
such as support vector machine (SVM) and random forest (RF)
[26]-[28]. With the development of deep learning techniques,
researchers have found that this data-driven approach is suitable
for modeling structurally complex or high-dimensional data
[29]. As a mainstream deep learning method, the convolutional
neural network (CNN) has exhibited good performance in image
data analysis [30], [31]. Applications of CNN for hyperspectral
data are commonly aimed at image segmentation and target
detection [32]-[34]. However, fewer studies have used it to
retrieve quantitative land surface parameters. Barbosa et al. [35]
modeled the response between crop yield and factors such as
soil nutrients using CNN models with different architectures.
When compared with traditional linear regression and machine
learning methods, results showed the CNN models could better
discriminate differences in the data’s spatial structure and had
higher accuracy in crop yield simulations. In addition, Zhang
et al. [36] found that CNN performed better in terms of spec-
tral feature extraction and modeling, compared with traditional
methods, such as principal component analysis and wavelet
transform. All of the above-mentioned studies showed that CNN
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can effectively extract high-dimensional features from hyper-
spectral data. However, CNN does not perform well with small
datasets. Therefore, coupling CNN with theoretical models such
as crop growth models can improve their utility with respect to
small sample sizes.

In this study, we present a new robust approach to detect
underground natural gas microleakage based on hyperspectral
UAV imagery. As a typical dryland crop, wheat’s roots are
particularly sensitive to the toxicity of anaerobic respiration [37].
Thus, we detected underground gas microleakage indirectly
using the wheat’s environmental stress, as simulated by the
SAFY model. Instead of just using a spectral index or plant
growth parameter, we constructed NGSI (K ) based on the envi-
ronmental stress parameter of the SAFY model to quantitatively
detect underground natural gas microleakage. In addition, three
CNN models with different architectures were proposed and
used to estimate K, of wheat from hyperspectral data. Finally,
the most accurate model was selected to derive the natural gas
stress distribution map based on hyperspectral images of the
study area.

II. MATERIALS AND METHODS
A. Study Area and Experimental Design

The study area was located in Changziying Town (39°39°N,
116°34°E), Daxing District, Beijing, China. The average annual
temperature of the study area is 11.8°C and the average annual
precipitation is 550.3 mm, most of which occurs during summer.
Two varieties of winter wheat, i.e., Jingdong 18 (V1) and Zhong-
mai 415 (V2), were cultivated in the study area, with a sowing
date of October 10,2017. Underground natural gas microleakage
was simulated by laying underground natural gas pipelines in
the study area and setting leakage points on the pipelines. The
leakage points were located at a depth of 60 cm below the center
point of each small test plot. For each test plot, the central and
edge area was within 0.5 m and 1 m, respectively, from the
leakage point. The natural gas leakage rate in the pipelines was
set at three levels: 0 L (GO), 1 L (G1), and 1.5 L (G2) per minute.
A total of 16 test plots were designed, the details of which are
shown in Fig. 1.

B. Experimental Data

1) Leaf Area Index (LAI): From the jointing stage (April
27, 2018) to the maturity stage (June 4, 2018), data collection
was performed approximately every ten days for a total of five
periods. LAI data were measured using the LAI-2200C Canopy
Analysis System (LICOR Inc., Lincoln, Nebraska, USA). For
GO (no leakage), the LAI was only measured at the plot center.
In the plots with natural gas leakage (G1, G2), the central and
edge LAI was measured at 0.5 m and 1 m, respectively, from
the leakage point on the central axis of each plot (see Fig. 1). A
total of 24 sets of data were collected for each period.

2) Field Hyperspectral Data: The ground winter wheat
canopy reflectance was measured using an SVC HR-1024i spec-
trometer (Spectra Vista Corporation, Poughkeepsie, NY, USA).
The spectrometer was used to detect the full 350-2500 nm range,
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Fig. 1. Location of the study area and experimental design. (a) Location of the
study area. (b) Design of treatments and images of ground-measurement field
acquired from UAV mounted hyperspectral camera.

with a spectral resolution of 3.5 nm, 9.5 nm, and 6.5 nm for 350-
1000 nm, 1000-1850 nm, and 1850-2500 nm, respectively. Field
hyperspectral data were collected after each LAI measurement,
which was performed between 10:30 A.M. and 13:30 P.M., when
the weather was clear during the jointing stage (April 27, 2018)
until the maturity stage (June 4, 2018). Ten measurements were
made at each test plot, and the average reflectance was recorded.
The collected hyperspectral data were resampled to 1-nm spac-
ing using SVC processing software and were smoothed using the
5-point weighted average method [14] to reduce the influence
of instrument noise. The NGSI was selected as a spectral index
for natural gas stress on vegetation calculated as follows [15]:

NGSI = (Rg45 + Rgo0)) / Rsoo (1

where Re45, Rggo, and Rgog were the reflectances at wavelengths
of 645 nm, 690 nm, and 800 nm, respectively.

3) UAV  Hpyperspectral Imagery: In this study, the
UHDS185 imaging spectrometer (Cubert GmbH, Ulm,
Baden-Wiirttemberg, Germany) was mounted on the DIJI
M600 UAV (SZ DIJI Technology Co., Ltd., Sham Chun, China)
to acquire hyperspectral images. Each hyperspectral image
encompassed 125 wavelength bands between 450 and 950 nm.
The spectral resolution was 4 nm and the image resolution
was 1000 x 1000 pixels. At noon (10:30-13:30) on a clear
day, the UAV carried a sensor and flew at an altitude of 100
m to acquire a hyperspectral image of winter wheat at the
end of the filling stage (May 29, 2018) in the study area. The
hyperspectral image may be affected by factors such as sensor
performance and atmospheric transmission. In this study, the
Cube-Pilot software (Cubert GmbH, Ulm, Baden-Wiirttemberg,
Germany) was used for image fusion preprocessing. The study
area was small enough to be covered by a single view image.
Therefore, only radiometric and atmospheric correction and
cropping were necessary. The PIE-Hyp 6.0 software (PIESAT
Information Technology Co., Ltd., Beijing, China) was used
for these processes.
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4) Meteorological Data: The meteorological reanalysis data
used in this study were obtained from the European Center for
Medium-Range Weather Forecasts.! These data mainly included
daily maximum and minimum temperatures, and net surface
solar radiation in the study area during the entire wheat growth
period. The data were downloaded and interpolated to the same
spatial resolution as the UAV hyperspectral imagery, and further
processed using Python 3.7 (Python Software Foundation Inc.,
Portland, OR, USA) and MATLAB 2016 (Mathworks Inc.,
Natick, MA, USA). The downloaded maximum and minimum
temperatures were used to calculate the cumulative and average
daily temperatures.

C. SAFY Model Description

The SAFY model developed by Duchemin et al. [23] was
used to simulate the wheat grown during natural gas leakage.
The model simulates crop canopy growth and dry matter accu-
mulation based on the principle of light energy utilization. The
primary steps of the dry matter accumulation simulation were
as follows:

1) calculate the daily photosynthetic effective radiation ab-

sorbed per unit area of the canopy (APAR, MJ-m—2.d~!)
(2);

2) consider the effect of temperature on crop growth;

3) calculate the temperature limitation factor (Fp(T,)) (3);

4) calculate the daily dry matter growth per unit area

(ADAM, g-m~2-d™") (4), (2)—(4) shown at bottom of next
page.
Where €. is the climate efficiency factor, R, is the total radiation,
Tnin 1s the minimum temperature for crop growth (°C), ELUE
is the effective light energy utilization rate, k is the extinction
coefficient, T, is the average daily temperature (°C), and Tt is
the optimal temperature for crop growth.

The model simulates crop canopy growth by estimating LAI

at the leaf growth and senescence stages (Equations (5)-(8)).

ALAT" = ADAM x PL (3 T.) xSLA  (5)

PL (Z Ta) — 11— Pl, x P ETe 6)
ALAT = LAI, ; x (Z T, — STT) /R, %
LAIL = LAI,; + ALAI" + ALAT- ®)

where ALAIT is the daily increase in LAI, Pl,, and P}, are the
leaf allocation parameters, SLA is the specific leaf area (m?-g '),
the dry weight of the leaf per unit area, STT is the threshold of
cumulative temperature for leaf senescence (°C), and R; is the
rate of leaf senescence (°C-d~1).

This study mainly utilized the canopy growth simulation
module of the SAFY model, and the model input parameters
are shown in Table I [23]. The daily radiation and average tem-
perature were calculated as the average values from the obtained
daily net surface radiation and surface temperature. The model
parameters were divided into three categories. The first type

Thttp://www.ecmwf.int/
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TABLE I
MAIN INPUTS, OUTPUTS, AND PARAMETERS TO BE CORRECTED FOR THE SAFY MODEL USED TO SIMULATE THE CANOPY GROWTH OF WHEAT [23]

Description Notation Unit Value
Inputs Daily radiation R MJ-m2-d!
Daily average temperature Ta °C
Parameters | Initial dry aboveground biomass DAM, gm? 4.5
Climate efficiency ec - 0.48
Light interception coefficient K - 0.5
Minimum temperature for growth Thin °C 0
The optimal temperature for growth Topt °C 18
Maximum temperature for growth Trnax °C 26
Specific leaf area SLA m?g! 0.02
Parameters II Partition-to-leaf function 1 Pl - 0.1-0.7
Partition-to-leaf function 2 Ply - 10-102
Sum of temperature for senescence STT °C 600-2000
Rate of senescence R °C-day"! 1000-20000
Parameters III Date of emergence Do Day 10
Effective light use efficiency ELUE G-MJ! 0-2.5
Outputs Daily leaf area index LAI m?m?
Daily dry aboveground biomass DAM gm?-d!

was the crop parameters, which can be obtained based on prior
knowledge and do not need to be calibrated. The second type
was the phenological parameters, which are influenced by crop
cultivar. The third type was environmental stress parameters,
wherein ELUE is more influenced by the crop’s nutritional
status. Therefore, our wheat stress analysis focused on ELUE.
The ELUE ratio Ky (Kgs = ELUEg,mp1e/ELUEca1tny ) between
nonstressed and stressed samples was calculated to represent the
amount of natural gas stress, and ELUE;,¢,1¢1y Was the minimum
ELUE value for GO samples.

D. SAFY Model Parameters Calibration

Parameters that required calibration in the SAFY model in-
cluded the cultivar-specific parameters Pl,, Pl,, STT, and R,
and the environment-specific parameter ELUE. The calibration
was divided into two phases. In the first phase, each of the four
cultivar-specific parameters (Pl,, Ply,, STT, R;) were calibrated
against nonstressed plots of two cultivars (V1GO0 and V2GO0).
Subsequently, the environment-specific parameter (ELUE) was
calibrated in the second phase at the plot scale. The global
optimization algorithm SCE-UA was used for SAFY model
parameter calibration [38]. The algorithm is insensitive to initial

values and avoids poor parameter optimization due to a lack
of prior knowledge. This optimization algorithm was run 1000
times on each wheat dataset and the final output was the median
value of the 1000 runs. In this study, LAI was used as a state
variable to determine the optimal parameters, by minimizing
the difference between the simulated and measured value. Root-
mean-square error (RMSE) was used as a cost function (9) for
parameter optimization

n

1
min — RMSE = | = Y (LATLcasure — LAIpredict)® (9)

n <
1=1

where LAl casure is the measured LAI LAI,cqict is the model-
predicted LAI, and 7 is the number of samples.

E. CNN Model Architectures

Three CNN models with different architectures were pro-
posed and tested in this study. Each CNN architecture convolved
the corresponding adjacent input frames with 1-D and 2-D filters.
The input of the 1-D model was the 1-D raw spectral data of
125 bands of each pixel. For the 2-D model, spectral lines were
reshaped into images for efficient feature calculation [39]. The

APAR = ¢, x R, x (1 — AT

@)

1- [(Topt - Ta) / (Topt - Tmin)]2a ifiz—‘min < Ta < Topt

Fr(T,) =

1- [(Ta - Topt) / (T’Inax

— Topt)]?, if Topt < Ty < Thnax )

0,ifT, < TiminorTy > Tax

ADAM = APAR x ELUE x Fr(T},)

“
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Fig. 2. CNN models with ST architecture.

input was a 2-D 11 x 11 tensor, which was reconstructed by
rounding the first and last two bands of the spectrum of each
pixel. The output of every model was the NGSI K. The first
model was a simple CNN stacking architecture (hereafter, ST)
(see Fig. 2). For the 1-D model, eight 5 x 1 filters in the Conv1
layer transformed the 1-D spectral data into eight smaller feature
maps, followed by a 2 x 1 maximum pooling process. Outputs
were subsequently sent to the flatten layer, flattened, and then
sent to the fully connected layer with 16 neurons. Finally, the
outputs were sent to the output layer with a linear activation
function. In the 2-D model, sixteen 3 x 3 filters were used in the
Convl layer, and eight neurons were used in the fully connected
layer.

The second model was based on the Inception V1 architec-
ture [40] used by Zhang et al. [36] in the DeepSpectra model
(hereafter V1) (see Fig. 3). It reduced computational complexity
by improving the CNN’s traditional convolutional layers. To
further improve the CNN’s learning capability and prediction
accuracy, the Inception V2 architecture [40], which has a deeper
model depth, was used as a basis to construct the third model
in this study (hereafter V2) (see Fig. 4). For the Convl1 layer,
there are filters with various sizes and numbers that are opti-
mized in models depending on the input spectral features (see
Table IT). Since the dataset used in this study was small, the Early
Stopping mechanism was used to prevent overfitting, which
stops training if the model accuracy does not improve within
20 epochs. Furthermore, we applied BN layer, drop out, and L.2
regularization strategies to further avoid overfitting. Moreover,
three traditional machine learning modeling methods, partial
least squares (PLS), RF, and SVM, were used in this study. The
hyperparameters of the models (e.g., the number of principal
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Fig.3. CNN models with V1 architecture (blue: convolution module of size 3;
green: convolution module of size 1; red: convolution module of size 5; yellow:
max pooling module).
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TABLE II
MAIN HYPERPARAMETERS USED IN CNN MODELS

Yes

Optimized parameters
Pla, Pb, STT, Rs, ELUE......

Hyperparameter CNN-1D CNN-2D
ST A\ V2 ST V1 V2
Convl kernel size 7 7 7 3 3 3
Convl1 Stride 2 2 2 2 2 2

Hidden number 16 32 32 8 32 32

Batch size 64 64 64 64 64 64

Dropout rate 0.1 0.2 0.2 0.1 0.2 0.2

Learning rate 0.01 0.01 0.01 0.01 0.01 0.01

Learning rate decay ~ 0.001  0.001  0.001 0.001 0.001 0.001

Simulation of wheat growth Simulation of Kg‘ in the study area
e
I [ 1
: Meteorological data Initial parameters « : : :
| Daily radiation Pla, Plb, STT, Rs, ELUE...... ') 1
\ Daily average temperature . |
1 § . [ —" () 1
1 ’ : 1 1
| Lt ™ ¥ :
| - N [ Hyperspectral imagery 1
! i from UAV !
: ’ ¥ :
! | SAFY model [ = 1
| i |
| [ Measured LAI | [ Simulated LAT | SCE-UA| | 1 |
| (I} 1
b Cost function | . CNN models .
] If (] CNN-ST 1
I [ CNN-V1 1
: No : : CNN-V2 :
I () 1
I [ 1
I (B} 1
1 (B} 1

__________________________________________

‘ Detection of underground natural gas leakage in the study area |

Fig.5. Description of the detection of underground natural gas leakage in the
study area.

components in the PLS model, the number of decision trees in
the RF model, and the penalty factor in the SVM model) were
optimized by the grid search method. Our dataset consisted of
spectra of the five uniformly selected sample sites in each LAI
test area. Each sample site had five tests, for a total of 600
sets of data. In total 10% of the dataset constitutes the test set.
During the model training process, 20% of the remaining data
constitutes the validation set, which is used for hyperparameter
optimization. A flowchart illustrating underground natural gas
leakage detection in the study area is shown in Fig. 5.

III. RESULTS AND ANALYSIS
A. Calibration of SAFY Model Parameters

The calibrated cultivar-specific parameters (Pl,, Pl;,, STT, and
R;) are shown in Table III. The photosynthetic partition parame-
ters (Pl,, Ply,) of the two cultivar samples had smaller differences
compared to STT and R,. Compared to the V1 cultivar, the V2
cultivar senesced earlier with a lower senescence accumulated
temperature threshold (STT) and a higher senescence rate (R;).
A major reason may be that P1, and Pl;, had a smaller parameter
adjustment range compared to STT and R,. As shown in Fig. 6,
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TABLE III
CALIBRATION RESULTS FOR THE CULTIVAR-SPECIFIC PARAMETERS OF THE
SAFY MODEL
Cultivars Pl. Pl (10%) STT (°C) Ry (°C day?)
\'2! 0.68 1.73 1505.56 9998.44
V2 0.65 1.87 1264.23 12572.11
GO G1_Center G1_Edge G2_Center G2_Edge
* RMSE=0.12 RMSE=0.14 RMSE=0.23 RMSE=0.11 RMSE=0.18
20
Ll
15
s
1.0
0.5
— 00
5 25
RMSE=0.13 RMSE=0.17 RMSE=0.16 RMSE=0.16 RMSE=0.17
20
15
IN]
10
0.0

90 120 150 90 120 150 90 120 150

DoY
(Day of Year)

90 120 150 90 120 150

Fig. 6. LAI simulated (lines) and measured (scatters with error bars) over
ten gas leakage scenarios divided according to cultivar, gas leakage rate, and
sampling location.

the early LAI growth stages were similar for both cultivars,
whereas the V2 cultivar had an earlier slowdown in LAI growth
and a lower LAI peak. This phenomenon was more significant
in the samples with greater stress. For the V1 cultivar, when the
natural gas leakage rate increased from G1 (1 L-min~") to G2
(1.5 L-min~"), the decrease in the LAI peak was approximately
0.2 for the central and edge area samples, respectively. The edge
area samples were more sensitive to increases in gas leakage
rate, whereas this phenomenon is not obvious in the V2 cultivar
samples with an overall small LAI peak. This may be due to
crop response to stress typically being nonlinear, and its effect
on the crop has been found to increase and then decrease as
stress level increases [41]. According to the simulated LAI
curve peak, stress amounts (from high to low) were as follows:
G2_Center, G1_Center, G2_Edge, and G1_Edge. Although the
RMSE values of the various gas leakage rate samples were all
satisfactory, the GO sample exhibited the best simulated LAI
curve with the least deviation from the measured LAI, especially
during the late stage of wheat growth. This may be because the
oxygen demand of roots varies throughout wheat growth, and the
direct result of natural gas leakage on wheat is root hypoxia [4].
While the environment-specific parameter ELUE of the SAFY
model was fixed, the resulting errors accumulate as the wheat
grows, such that the difference between simulated and measured
LAI was greater during the late growth stage.

In addition, the calibration results of the environment-specific
parameter (ELUE) were consistent with the LAI simulation
results. Fig. 7 shows that the ELUE values for the samples
without natural gas (GO) were larger than those with natural gas
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TABLE IV
DUNCAN MULTIPLE RANGE TEST FOR THE STRESS INDICES K5, NGSI, AND LAI AT DIFFERENT TREATMENTS

Cultivars Gas Sampling Kes NGSI LAI
treatment location S1 2 3 S3-UAV S1 2 3

V2 G2 Center 0.55¢ 0.32b 0.87ab 1.45a 1.35b 0.97¢ 0.69de 1.32¢
Edge 0.80d 0.36ab 0.75b 1.29ab 1.27b 2.13b 1.22b l.41c

Gl Center 0.78d 0.29b 0.68cd 1.06ab 1.11b 0.89¢ 0.84cde 1.12¢

Edge 0.87¢ 0.29b 0.56¢d 1.00b 1.14b 2.22ab 1.36b 1.15¢

GO - 1.03a 0.30b 0.23e 0.43¢ 0.62a 2.56a 2.02a 2.12b

\%! G2 Center 0.66¢ 0.38ab 1.10a 1.48a 1.43b 0.86¢ 0.61e 1.25¢
Edge 0.84cd 0.60a 1.06a 1.41ab 1.45b 1.04¢ 1.13bc 1.09¢

Gl Center 0.79d 0.26b 0.51cd 1.25ab 1.31b 0.87¢c 1.02bcd 1.31c

Edge 0.96b 0.28b 0.42de 1.00b 1.26b 1.18¢ 1.3% 1.27¢

GO - 1.06a 0.36ab 0.26e 0.46¢ 0.69a 1.19¢ 2.12a 2.82a

*Kgs, NGSI, and LAI are the average of Kgs, NGSI, and LAI values for each dataset, respectively; S1, S2, and S3 are early, medium, and late growth stages, respectively; the
groups marked with different letters have significant differences (p-value < 0.05) and the groups marked with the same letter do not have significant differences (p-value > 0.05).
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Fig. 7. ELUE simulated over ten gas leakage scenarios divided according
to cultivar, gas leakage rate, and sampling location.

(G1 and G2). The ELUE values of the samples without natural
gas stress were all greater than 1.5. For the stressed samples,
the ELUE values of the edge samples were larger than those at
the center. The ELUE values of the samples at the center of the
leakage plot were approximately 1, whereas the ELUE of the
edge samples leakage ranged from 1 to 1.5. There is a highly
significant correlation between ELUE and natural gas leakage
rate (r = 0.94; p < 0.01), as ELUE is mainly a reflection of
the soil environment (e.g., moisture and nutrients), and natural
gas leakage alters soil oxygen content. Overall, ELUE provides
an accurate description of the impacts of natural gas leakage on
wheat growth.

B. Analysis of Natural Gas Stress Index (NGSI)

The stress index K5 and NGSI were calculated from the
calibrated ELUE and hyperspectral data, respectively. The NGSI
was calculated for three phases (S1: April 27; S2: May 13;

S3: May 29) based on ground canopy hyperspectral data, and
one phase (S3: May 29) based on UAV hyperspectral imagery.
In Table IV, the datasets are divided by cultivar, gas leakage
rate, and sampling location. Duncan multiple range tests were
performed on the calculated K5, NGSI, and measured LAI
(see Table IV). For LAI alone, it was only able to distinguish
between stressed and nonstressed samples of V1 cultivar and
the three gas treatments of V2 cultivar in the S2 phase. The
situation was similar for NGSI, which also performed best in
the S2 phase. NGSI could distinguish all three gas treatments of
both the V1 and V2 samples. However, the differences between
sampling locations could not be distinguished for all samples
with NGSI. Furthermore, comparing the ground-based NGSI
with the UAV-based NGSI, it was found that the former could
distinguish samples into three groups, whereas the latter could
only distinguish samples into two groups during the S3 period.
The UAV-based NGSI exhibited less variation between samples
during the same phase, which may be due to the mixed pixels
of the UAV hyperspectral imagery. The performance of NGSI
on UAV hyperspectral imagery was inferior to that on ground
hyperspectral imagery, which too may be caused by the mixed
pixels of the UAV imagery. Furthermore, in Ky, which com-
prehensively incorporated crop growth information, differences
were observed among the three gas treatments for both the V1
and V2 samples. In addition, except for the V2 cultivar G1 gas
treatment samples, samples with different sampling locations but
the same gas treatment could be distinguished from each other.
In comparison, K¢ constructed from ELUE was advantageous
in detecting the extent of natural gas leakage in wheat-growing
areas. A low K, value meant heavy stress on the wheat and a
serious degree of gas leakage.

C. Estimation of the Degree of Natural Gas Stress

K,s was used as the target feature to train the CNN-ST,
CNN-V1, and CNN-V2 models with 1-D or 2-D inputs, re-
spectively. The inputs were derived from the raw spectra of
high dimensionality for each pixel on the hyperspectral image.
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TABLE V
TEST ACCURACY OF MULTIPLE CNN MODELS

Model Architecture nRMSE(%) R?
CNN-1D ST 16.5 0.83
Vi1 12.4 0.86
V2 6.9 0.90
CNN-2D ST 9.4 0.82
V1 12.9 0.85
\ 10.8 0.74
PLS 12.6 0.78
RF - 10.5 0.82
SVM 14.3 0.71
PLS RF SVM
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Fig. 8.  Prediction results of stress index Ky for machine learning models

(PLS model, RF model, and SVM model).

The predicted results of the models on the test set are shown in
Table V. For models with 1-D inputs, after introducing the Incep-
tion module into the simple ST architecture (nRMSE = 16.5%,
R?> = 0.83), the prediction accuracy of the model improved.
The K, prediction accuracy of the 1D-V2 model (nRMSE =
6.9%, R*> = 0.90) improved significantly compared to the 1D-V1
model (nRMSE = 12.4%, R?> = 0.86). For models with 2-D
inputs, compared to the ST architecture (nRMSE = 9.4%, R*> =
0. 0.82), the prediction accuracy of the 2D-V1 model (nRMSE
= 12.9%, R*> = 0.85) and 2D-V2 model (nRMSE = 11.5%,
R? = 0.74) were not improve significantly. Furthermore, three
machine learning methods (PLS, RF, and SVM) were used to
predict Ky based on hyperspectral data with 125 bands. The
RF model exhibited higher accuracy (nRMSE = 10.5%; R?
= 0.82) than the SVM (nRMSE = 14.3%; R?> = 0.71) and
PLS (nRMSE = 12.6%; R*> = 0.78) models. The distribution
of Ky estimated by the machine learning models also shows
that the RF model is best among the machine learning models,
with predicted and calculated K, values closest to the 1:1 line
(see Fig. 8). This may be because we used raw hyperspectral
data and RF had a better tolerance for outliers and noise. In
addition, the accuracy of the CNN models was generally higher
than that of traditional machine learning models. Fig. 9 shows
the distribution of K¢ estimated by the CNN models. The dots
in the machine learning models prediction results (see Fig. 8)
generally show more discrete distribution compared to dots in
the CNN models prediction results (see Fig. 9). Among the
CNN models, the output of CNN-1D-V2 model was closest to
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the target value. Furthermore, there were overestimations of the
low values in the CNN-1D-V1, CNN-2D-V1, and CNN-2D-V2
models, indicating that these models could not estimate the stress
index effectively when natural gas stress occurred. Overall, the
1-D models had better learning ability for hyperspectral data
features compared to the 2-D models. This may result from
when hyperspectral data were used as 1-D vector inputs, the
bands were continuous in the 1-D direction and the importance
of the features learned by the network was high. In contrast,
when the data were converted to a 2-D input, the bands’ infor-
mation became discontinuous, making the features learned by
the network less important. In addition, based on the V1 model,
the V2 model replaced one convolutional module of size 5 with
two convolutional modules of size 3 and added a BN layer. It
introduced more nonlinear transformations while reducing the
computational effort, and further enhanced the CNN’s ability
to learn hyperspectral features. Therefore, the V2-CNN model
with 1-D inputs was eventually selected to analyze the natural
gas stress on wheat in this study.

Based on the above results, the NGSI K¢ was calculated for
each pixel of the hyperspectral image to quantitatively describe
natural gas leakage in the study area (see Fig. 10). An obvious
distinction could be made between the leakage and nonleakage
regions within the study area. Areas without natural gas leakage
are shown in green in Fig. 10, with Ks >1. Natural gas leakage
areas are shown in yellow or red (see Fig. 10), with Kg<1.
Although the K value did not exhibit the typical center-to-edge
increasing distribution observed in some natural gas leakage
plots, the simulation results in the study area were generally
consistent with the test design. For V2G1 plot (labeled 12 in
Fig. 10), the stress phenomenon was not obvious, possibly due
to the gas leakage controller showing very small readings at
the late wheat growth stage. In general, the plots with a higher
gas leakage rate (G2) appeared redder and exhibited a circular
feature spreading from the center to the surroundings, with
Kgs<1. For the plots with a smaller gas flow rate (G1), some
green pixels with K >1 were evident in the image. Overall, this
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Fig. 10. Image of the extent of natural gas stress in wheat in the study area.

result was satisfactory for the detection of underground natural
gas microleakage.

IV. DISCUSSION

In this study, the NGSI K, was constructed to quantify natural
gas leakage in wheat-growing areas, based on the environment-
specific parameter ELUE in the SAFY model. K,s was simulated
by CNN models using UAV hyperspectral imagery, to identify
natural gas leakage in the study area. Results were consistent
with previous studies of underground oil or gas leakage in crop-
growing areas [13], [42], [43]. Compared to the studies by Jiang
etal. [11] and Noomen et al. [13], who used traditional empirical
statistical and simple machine learning models to detect natural
gas leakage, this study achieved better quantitative natural gas
leakage detection results using CNN models. The main reasons
for the improved results were that the SAFY model used in this
study could simulate crop growth more mechanistically than
empirical models alone, and the CNN model could extract fea-
tures from hyperspectral data more effectively than traditional
machine learning. Another difference from other studies that
have relied on spectral indices of the crop canopy to detect gas
leakage [14] is that we used the magnitude of environmental
stress suffered by the crop as a means of detecting gas leakage.
When a natural gas leakage occurs, the environmental stress
on the crop is the first thing to change, followed by the plant’s
physiological effects that are reflected in canopy changes. In
addition, plants can recover to some degree, such that the amount
of stress from underground gas leakage is different from that
reflected in the canopy. Therefore, there are traditional lags and
inaccuracies in detecting gas leakage through canopy spectrum
changes. Our method represents a potential solution to these
issues.

Hyperspectral data combined with crop physiological indi-
cators can provide better monitoring of crop stress levels. For
example, He et al. [44] used chlorophyll content as an indicator
to detect crop stress, and the spectral features from continuous
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wavelet processing of hyperspectral data were used to retrieve
the characteristic physiological index. Our study differed from
He’s study because we considered crop growth in an integrated
manner. Specifically, we obtained a more accurate calibration
of the comprehensive environmental stress parameter ELUE by
using the time series of LAI as an input to the SAFY model, and
subsequently constructed a NGSI (K,) based on this parameter.
A comparison among K, the spectral index, and LAI revealed
that LAI and the spectral index may exhibit stability throughout
crop growth. Neither the formation of crop parameters (e.g.,
LAI) nor the response of spectral indices to crop growth is linear.
In contrast, Kys demonstrated robustness throughout the period
of crop growth.

It is generally believed that the predictive ability of the model
is better when the training set is larger. The model output has
a smaller variation coefficient with a larger sample size [45].
The model is more robust [35] The sample size of this study
was small due to the small study area. Therefore, we trained
the model several times to analyze its prediction accuracy and
robustness on our dataset. We retrained the CNN-1D model with
V2 architecture 50 times and analyzed the prediction accuracy
nRMSE of K, values. As shown in Fig. 11, the most common
nRMSE values ranged from 0 to 7.5%, nearly half of the overall
total. For the first two intervals (0-12.5%), the cumulative fre-
quency was 80%, and improved to 90% for the optimal accuracy
interval (0—20%). For model accuracy evaluations, itis generally
accepted that the difference between predicted and measured
values is small when nRMSE < 20%, indicating optimal model
accuracy [46]. In conclusion, the CNN model with this architec-
ture exhibited satisfactory accuracy and robustness. Although
the sample size was small, it was reliable enough to estimate
K, using hyperspectral imagery.

K¢ simulated by hyperspectral imagery were also effective
in identifying the extent of natural gas leakage. This was con-
sistent with previous research on the sensitivity of SAFY model
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parameters to environmental stress [47], [48]. Although results
were overall encouraging, the simulation results of some plots
did not completely match the experimental design, possibly due
to a few weed disturbances in those sample plots. The image
for this study was acquired at the wheat filling stage when
the wheat leaves began to wither and fall off in the field, and
the canopy mainly consisted of wheat ears with low coverage.
Plots with fewer natural gas leakage (G1) also exhibited better
weed growth, with some weed pixels mixed in. This had a
direct impact on the estimated results for the stressed plots, as
some exhibited an anomalous green color near the gas leakage
center. Meanwhile, some red pixels appearing at the edges of
nonnatural gas plots were probably caused by the diffusion of
underground gas between adjacent plots. Overall, the results
support the detection of underground natural gas microleakage
on a small scale. However, future studies are necessary to de-
scribe the environment-specific parameter of the SAFY model
in dynamic detail and couple it with remote sensing data for
regional extension applications.

V. CONCLUSION

In this study, we collected hyperspectral imagery using a UAV,
then constructed NGSI (Kg) based on the SAFY model. Ky
was estimated using three CNN models with different architec-
tures. Compared to a single vegetation growth parameter (LAI)
and spectral index (NGSI), K, effectively reflected natural
gas leakage, with good robustness observed throughout winter
wheat growth. Among the CNN models, the CNN-1D model
of V2 architecture could most effectively extract the feature
from the original spectrum and optimally estimate Ky with
good robustness (nRMSE = 6.9%). These results can in turn
provide theoretical and practical guidance for the quantitative
and accurate detection of underground leakage.
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