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Abstract—Representativeness error caused by scale transforma-
tion (REST) is an intrinsic property of data assimilation, as assimi-
lating new observations likely involves the fusion of multisource and
multiscale data. Earlier studies focused on specific cases and failed
to obtain a general concept. This study attempts to achieve a further
understanding of REST in both theory and practice. Based on
scale-related definitions and formulations, the statistical RESTs of
observation errors and analysis errors are deduced in stochastic en-
semble data assimilation. Experiments based on ensemble Kalman
filter are conducted to validate the interpretability of the proposed
formulations. A synthetic experiment uses the stochastic Lorenz
model as the forecasting operator, and a real-world experiment
employs a simple biosphere model as the forecasting operator
and uses a series of mixed ground-based and remote sensing soil
moisture observations. The results confirm that REST should be
proportional to the scale difference when assimilating direct obser-
vations and both system states and observations are homogeneous
processes. Due to the nonlinearity in modeling, assimilation, and
scale transformation, increasing RESTs are found if the scale of the
observation is much larger than that of the state space, or multiscale
observations are added into the assimilation system. Quantifying
REST improves the understanding of uncertainty in data assimila-
tion, but further studies on REST are required in both theory and
practice, for example, REST correlates with other errors in forcing,
parameters, and models, and introduces an observation operator
to assimilate indirect observations.

Index Terms—Heihe watershed allied telemetry experimental
research (HiWATER), scaling, lorenz model, remote sensing, SiB2
model, soil moisture, stochastic process, uncertainty, wireless
sensor networks.
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I. INTRODUCTION

R EPRESENTATIVENESS errors in earth observations,
modeling, and assimilations mainly refer to errors caused

by inconsistencies in spatial-temporal resolution among differ-
ent geophysical observation and models [1]–[4], differences in
observation techniques and retrieval methods used for the same
geophysical variables [5], and deficiencies in available models
compared to ideal models [3]. The first type of representativeness
error has also resulted from spatial scale (for brevity, “scale”
hereafter refers to the spatial scale) transformation among multi-
source observations. Stemming from spatial heterogeneities and
irregularities [6], [7] in geographical variables across different
scales, this error is related either to significant dynamic process
variations in land surface systems, such as saturated hydraulic
conductivity [8]–[10], soil structures [11], long-term water bal-
ance simulations [12], the spatial correlations of surface soil
moisture [14], or to the physics of remote sensing, including the
radiative transfer process of vegetation [13] and the validity of
Planck’s law [15].

Representativeness error caused by scale transformation
(REST) has received increasing attention in the fields of data
assimilation and remote sensing. Data assimilation forms a
unified and generalized framework by combining earth sys-
tem modeling and observations [16], and consequently, it is
necessary to address changes in scales among different model
units and observation supports in data assimilation; thus, data
assimilation is an ideal tool for characterizing REST. Tradi-
tionally, scale and scale transformation are implicit in data
assimilation systems. However, studies can also be conducted
by dividing the system states into resolved and unresolved
portions [2], using restriction and prolongation operators [17],
considering the resolution-based relationships between the sys-
tem state and observation [3], deriving a new gain matrix
for the system state and observation in true and inaccurate
forecasting spaces [4], and assimilating cloud-profiling radar
observations [18]. Experimental studies investigating REST in
remote sensing, such as multiscale validations of soil moisture
observations [19], [20], solar radiation measurements [21], [22],
and upscaling carbon flux measurements [23], are continu-
ously conducted. These explorations are constructive; however,
they cannot lead to a unified understanding of REST, which
first requires theoretical studies that explicitly consider scale
transformation.
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Stochastic data assimilation mainly refers to data assimilation
employing stochastic process based geophysical variables. The
advantage of a stochastic framework is that it produces an infinite
evolution probability distribution space for both system state
[24] and observation. Stochastic data assimilation is an ongo-
ing problem [25]–[27]. Recently, a stochastic data assimilation
framework containing the explicit expression of scale trans-
formation was formulated [28]. This new framework provides
a promising approach to addressing REST by defining scale
and introducing scale into the posterior probability distribution
function (PDF) of data assimilation.

This study attempts to formulate the statistical REST in
stochastic ensemble data assimilation and further conducts syn-
thetic and real-world experiments by assimilating ground-based
and remote sensing observations to trace REST. To conduct more
practical and generalized experiments, we attempt to develop
approaches that simulate any heterogeneity in geophysical vari-
ables at diverse scales; therefore, cases in which observations
vary in isotropy or anisotropy are the main focus. In Section II,
basic knowledge regarding how to characterize REST is first
introduced. Rigorous definitions of scale and scale transforma-
tion are presented. The corresponding likelihood and REST in
observation error and analysis error are formulated in a stochas-
tic data assimilation system. The methods used to simulate
REST, including the adopted forecasting models, data types,
sampling, and development environment of data assimilation
systems, are presented in Section III. Sections IV and V present
two experiments evaluating REST when assimilating multiple
scales observations. The detailed analysis of the results, and
the corresponding discussion and conclusions are provided in
Sections VI and VII, respectively.

II. REST IN STOCHASTIC ENSEMBLE DATA ASSIMILATION

To quantify REST, specifying the scale should be given top
priority, and the scale-related errors need to be mathematically
identified. Note that all formulas hereinafter are deduced in the
sense of scale, and the partial derivatives are with respect to
the elements of scale s or state vector X(s). Therefore, the
formulas do not conflict with the existing expressions because
we only consider scale transformation. For more details about
the derivations in this section, please refer to [28].

A. Scale-Related Definitions

To improve the typical expression defining scale in terms of
distance, a two-dimensional definition of scale was proposed
[28] as follows:

s =

∫∫
A

dx1dx2 (1)

where scale s is a Lebesgue measure [29], [30] with respect to
the observation footprint or model unit A in the two-dimensional
real number space R2. This definition is related to the ability to
refer to scales in multidimensional spaces and distinguish more
complicated changes in scales.

If two different scales exist, i.e., s1 and s2, scale transfor-
mation can be defined based on the Lebesgue integration by
substitution as, (6) shown at bottom of next page.

s2 =

∫∫
A2

dy1dy2 =

∫∫
A1

|J (x1, x2)| dx1dx2

J=diag(ξ,ξ), ξ∈R
−−−−−−−−−−−→

s2 = |J |
∫∫

A1

dx1dx2 = ξ2s1 (2)

where J(x1, x2) or J is the Jacobian matrix, and A1 and A2 are
the arbitrary observation footprints or model units of s1 and s2,
respectively. Therefore, Jacobian matrix J(x1, x2) represents
the geometric transformation from A1 to A2. The right part of
(2) indicates that the transformation between s1 and s2 is one-
dimensional, i.e., s1 and s2 are similar geometries.

Accordingly, if the scale transformation is one-dimensional,
the Ito process based geophysical variables can be expressed as
follows:

dV = ϕ (s) ds+ σ (s) dW (s) (3)

where s, W (s), ϕ(s), and σ(s) represent the scale, Brownian
motion, scale-based drift and variance, respectively.

Stochastic data assimilation is formulated by introducing the
following stochastic process based state vector:

dX = ϕX (s) ds+ σX (s) dW (s) (4)

and/or observation

dY = ϕY (s) ds+ σY (s) dW (s) . (5)

In related studies on stochastic data assimilation [24], [27],
stochastic processes (4) and (5) used other physical elements,
such as time t, as independent variables.

B. Likelihood in Stochastic Data Assimilation

Assuming that the nonlinear observation operator H(s, x)
is scale dependent with the continuous partial derivatives
Hs, Hx, and Hxx, based on the Ito lemma [31], we
have X ∼ N(X0 + ∫sXs0 ϕX(s)ds, ∫ sXs0 σ2

X(s)ds), Y ∼
N(Y0 + ∫sYs0 ϕY (s)ds, ∫ sYs0 σ2

Y (s)ds), and H(sY , X(sY )) =
H(s0, X0) + ∫sYs0 [Hs +HxϕX + 1

2Hxxσ
2
X ]du+

∫sYs0 HxσXdW (u). Then, the likelihood in general terms
can be deduced in Eq. (6).

p (Y |X) = N

(
Y (sY )−

[
H (sX , X (sX)) + ∫sYsX

(
Hs +HxϕX +

1

2
Hxxσ

2
X

)
du

]
, ∫sYsX H2

xσ
2
Xdu

)
(6)
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In particular, if the observation has the same physical quan-
tity as the state vector (assimilating direct observation), i.e.,
H(s, x) = x, Hs = 0, Hx = 1, and Hxx = 0, the likelihood is
deduced as follows, (6) shown at bottom of next page.

p (Y |X)

= N

(
Y (sY )−

[
X (sX) +

∫ sY

sX

ϕXdu

]
,

∫ sY

sX

σ2
Xdu

)
.

(7)

Regardless of the heterogeneity, namely, ϕX =0 and σX =1,
when transforming the scale-dependent state vector from the
state space to observation space, (7) can be reduced as follows:

p (Y |X) = N {Y (sY )−X (sX) , |sY − sX |} . (8)

Let the conditions used to build (8) be Condition Sim. Condi-
tion Sim refers to the simplest situation in which the observation
is direct, and scale transformation only involves the Gaussian
process, viz., H = E, ϕX = 0, σX = 1.

Compared with ordinary data assimilation based on determin-
istic models, stochastic data assimilation provides a more appli-
cable and general framework for studying REST in integrated
and time-continuous synthetic experiments.

C. REST in Analysis Error of the Ensemble Kalman
Filter (EnKF)

As a widely accepted assimilation algorithm, the EnKF pro-
vides an operational way to evaluate the effect of REST on
analysis error. The analysis step of EnKF is given by

⎧⎪⎨
⎪⎩

K = P fHT
(
HP fHT +R

)−1

Xa = Xf +K
(
Y −H

(
Xf

))
P a = (I −KH)P f = 1

N−1

(
Xa −Xa

) (
Xa −Xa

)T
(9)

where K, P f , R, P a, Xa, and Xfare Kalman gain matrix,
forecasting error matrix, observation error covariance matrix,
analysis error matrix, analysis state vector, and forecasting state
vector, respectively.

Assuming that P f is not involved in scale transformation
and that R is constant for simplicity (also a common choice
for many data assimilation developments), then K is free
of scale transformation and can be regarded as constant in
the analysis step. Xa is also a stochastic process provided
by Xa = Xf +KΣ, where Σ = Y −H(Xf ) ∼ p(Y |X) =
N{Y (sY )−X(sX), |sY − sX |}. Considering the Condition
Sim, Xa ∼ N(Xf +K(Y (sY )−X(sX)),K|sY − sX |KT )
and

P a = K |sX − sY |KT . (10)

Equation (10) indicates that, under the condition that Y is
direct observation of X and both X and Y are homogeneous
processes, analysis error is proportional to the degree of scale
transformation.

Fig. 1. Three-dimensional curves of the (a) Lorenz and (b) SLMs, where
σ = 10, ρ = 28, and β = 8/3, with the stochastic parameters g1 = g2 =
g3 = 1/2.

III. MATERIALS

A. Common Land Data Assimilation Framework

All experiments are conducted with a common data assimila-
tion software package ComDA [33]. ComDA is used to fuse mul-
tisource earth observations in various land surface applications.
ComDA is capable of performing nonlinear and non-Gaussian
data assimilation methods (including a variety of nonlinear
Kalman filters and particle filters), general multiple observation
operators (such as radiative transfer models) and multiple model
operators (Common Land Model, SiB2, etc.). The corresponding
software is developed with parallel and distributed computing
technologies, and implemented in Linux-based programming
languages.

B. Stochastic Lorenz Model (SLM)

An SLM [see Fig. 1(b)] is a stochastically perturbed form of
Lorenz63 [see Fig. 1(a)] equations [25] as follows:⎧⎨

⎩
dX1 = σ (X2 −X1) dt+ g1dW1

dX2 = (ρX1 −X2 −X1X3) dt+ g2dW2

dX3 = (X1X2 − βX3) dt+ g3dW3

(11)

where σ, ρ, and β are the Prandtl numbers, normalized Rayleigh
number, and nondimensional wavenumber, respectively. State
vector X = {Xi, i = 1, 2, 3} is formed by the stochastic pro-
cess, where Wi, i = 1, 2, 3, are the independent Brownian mo-
tions, and gi, i = 1, 2, 3, are the variance coefficients.

The SLM performs well in regular ensemble data assimilation
strategies [25]. In this study, SLM is employed as a forecasting
operator and is assumed to be free of scale transformation.

C. SiB2

SiB2 [34] is the second version of the simple biosphere
model [35]. SiB is a typical biophysical process and empirical
hybrid model used to simulate the transfer processes of energy,
water, carbon, mass, and momentum among the atmosphere and
biosphere, in which physical state variables including radiation
fluxes, carbon cycle, and water stores are mainly considered.
In SiB2, the satellite data are further considered, and the carbon
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cycle, water exchanges, and land surface reflectance simulations
are improved by introducing more realistic models. SiB2 has
been widely applied in land surface modeling to understand
energy and carbon flux [36], exchanges [37], and hydrology [38].
SiB2 was also applied as a biophysical module in a regional data
assimilation system [39].

In SiB2, soil moisture is assumed to be measured in three
divided layers (surface, root zone, and depth zone) correspond-
ing to water evaporation, root uptake, and recharge. The cor-
responding governing equations are mainly based on Richards’
equation, which works well in the finer running spatial units
but has difficulty capturing large regional hydrological pro-
cesses. Meanwhile, Richards’ equation only formulates the
gravity-driven vertical flow through the unsaturated zone and
fails to incorporate horizontal flow through the saturated zone.
These characteristics suggest that soil hydrological processes
described in SiB2 are sensitive to the local geology and land
surface heterogeneities and, consequently, vary with scales.

D. Data Types

1) Synthetic Noise: A spatially correlated Gaussian random
field is generated by the geoR package (http://leg.ufpr.br/geoR/),
in which the spatial mean, nugget, and sill of the geostatistical
semivariogram model are 0, 1, and 1, respectively.

The following multiscale airborne–ground-based observa-
tions are used.

2) SoilNET: Ground-based soil moisture measurements are
provided, with each node configured with four sensors at the
depths of 4, 10, 20, and 40 cm, an observation interval of 10 min
and a spatial support of 10 cm.

3) COsmic-Ray Soil Moisture Observing System (COSMOS)
[43]: To measure the neutrons generated by cosmic rays within
air, soil, and other materials, a COSMOS probe was installed to
estimate the time series of area-average soil moisture retrieval
[46]. The corresponding observation interval and spatial support
are 60 min and a footprint circle of 600 m, and the effective
measured depth is from 76 cm (dry soils) to 12 cm (saturated
soils).

4) Polarimetric L-Band Multibeam Radiometer (PLMR)
Flight Multiangle Observations [44]: Through airborne passive
microwave radiation of the land surface with dual-polarization
and multiangled observation. PLMR generates soil moisture re-
trieval measured at a depth of 5 cm and a higher spatial resolution
of 700 m compared with coarser remote sensing products.

E. Metrics

1) Analysis Errors and Average Analysis Errors (AAEs):
According to (10), analysis error in each analysis step reflects
the change of scale in EnKF-based data assimilation, which will
be conducted in the following experiments. The AAE is further
provided to examine how REST affects analysis error during the
entire assimilation, i.e.,

oi =
1

n

n∑
k=1

oik (12)

where oi and oik denote the AAE and analysis error at the kth
analysis step of the ith element in the state vector, respectively,
and n denotes the total analysis time. Here, we assume that
each pair of elements in the state vector are independent. Using
many samples, AAE provides a simple statistic for surveying
the REST in ensemble data assimilation and checks the degree
of scale change in (10).

2) Differences Between Data Probability Spaces: Since both
the states and observations obey given probabilities, quantifying
the distances among these probability spaces can contribute to
evaluating the impact of REST on the evolutions of states and
observations.

Both the correlation coefficient and Kullback–Leibler (KL)
divergence [40] are introduced to distinguish the data probability
spaces with different scales. The correlation coefficient is used
as a consistency check between different assimilation estima-
tion vectors. The KL divergence is used to define the distance
between two different probability spaces. If F1 and F2 represent
two discrete probability distributions and their probability den-
sity functions are f1 and f2, respectively, then the KL divergence
from F1 to F2 is DKL(F1, F2) =

∑n
i=1 f1(i) log[f1(i)/f2(i)].

Since the KL divergence is asymmetric, i.e., DKL(F1, F2) �=
DKL(F2, F1), the distance between two data probability spaces
F1 and F2 can be written as

dKL (F1, F2) =
1

2
[DKL (F1, F2) +DKL (F2, F1)]

=
1

2

n∑
i=1

[f1 (i)− f2 (i)] log [f1 (i) /f2 (i)] .

(13)

This distance follows the prime properties of a general dis-
tance: 1) nonnegativity means that dKL(F1, F2) ≥ 0; 2) symme-
try means that dKL(F1, F2) = dKL(F2, F1); and 3) definiteness
means that if dKL(F1, F2) = 0, then F1 = F2.

IV. SYNTHETIC EXPERIMENT

A. Design of the Experiment

By using (4) and (5) to represent the system state and observa-
tion in the analysis step, respectively, REST can be characterized
in a data assimilation system. Equation (6) presents a general
expression of REST in which the diverse heterogeneities across
different scales can be formulated by defining the scale-based
drifts ϕ and variances σ.

The simplest isotropic case follows the Condition Sim, where
the geophysical variables change evenly among different scales
(8), i.e., only Gaussian random errors are involved in scale trans-
formations between the state space and observation space. Addi-
tionally, the anisotropic case indicates more general conditions
under which scale-dependent variations should be considered.
Here, we design a special case of heterogeneity to present the
nonlinear variations in scale differences due to the nonlinear
dynamics of models and assimilation algorithms.

Fig. 2 illustrates how to simulate these two cases in a stochastic
data assimilation system with EnKF. For simplicity, we assume
that only scale transformation is involved in the analysis step

http://leg.ufpr.br/geoR/
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Fig. 2. Flowchart of simulating RESTs in a stochastic data assimilation system with the EnKF.

and that the observations are “direct” measurements of the state
vector, i.e., there is no observation operator in this data assimila-
tion system. SLM is used to produce both the observations and
state vector with different initial values. These two components
can be regarded as geophysical variables [(4) and (5)], and their
ensembles with respect to different scales are generated in the
analysis step.

In the case of isotropic change, the scale-dependent geo-
physical variables are defined as dV = dW (s) , and random
Gaussian distributed error occurs only when the geophysical
variables transform from one scale to another. Perturbing the
observations and state vector is performed by simply setting
Y o,p ∼ N(Y o, s) and Xb,p ∼ N(Xb, s), where Y o,p and Xb,p

are the perturbed observations and state vector, respectively.
Additionally, in the anisotropic case, we employ the definition of
dV = e−1.5+sds+ dW (s) as the scale-dependent geophysical
variables to investigate the variations; therefore, mapping the
state vector from the state space to the observation space should
consider the sampling space Xb,p ∼ N(Xb + e−1.5+s, s). We
add the synthetic noise into this sampling space to ensure the
introduction of spatially correlation with respect to scale. It
should be noted that this sampling space is only an example
and cannot be generalized to the concept of anisotropy. In fact,
modeling all anisotropic scenarios in one case is an impossible
mission.

B. Results

There are 500 running steps in total in the isotropic exper-
iment, and an observation is added into the data assimilation
system every 50 steps. The number of ensemble members of
the background field in the forecasting step and the number of
perturbations in the analysis step are both 100. The experiment
shown in Fig. 3 assumes that the scales of the state space and
two different observation spaces (obs1 and obs2) are 1, 1, and
2, respectively.

As shown in Fig. 3, two different assimilation results (assim1
and assim2) are obtained with respect to the observations in two
different observation spaces (obs1 and obs2). The first result
comprises the ensemble means (blue curves), forecasting and
analysis errors (blue histograms), and observations (blue dots).
The same elements shown in red constitute the second result.

TABLE I
AAES OF EACH ENSEMBLE IN THE ANALYSIS STEPS

Each assimilated result is found to simulate the truth accurately,
but the second result presents a more apparent trend of deviation
from the true state vector (such as periods from step 250 to 300,
from step 350 to 400, etc.). This phenomenon is due to scale
mismatches between the state space and observation space, i.e.,
scale in the second observation space is twice the scales in the
state space and the first observation space, leading to obvious
observation errors in mapping the state vector from the state
space to the observation space and to disagreement with the true
state vector.

The forecasting or analysis errors of the ensemble can also
provide similar information. As clearly shown in Fig. 3, errors
increase as the number of simulation steps increases until a
new observation is added into the data assimilation system, and
then the errors significantly decrease. Meanwhile, errors of the
second ensemble are larger than those of the first ensemble at
most simulation times, indicating that the greater the discrepancy
between the scales of observation and state space in the analysis
step, the larger the errors will be at the forecasting step.

More detailed information regarding REST can also be pro-
vided by the AAE. The corresponding numbers are listed in
Table I. In the first two rows, assim2 clearly produces a larger
error regardless of whether the element of the state variable
is X1, X2, or X3. This result indicates that if a variable is
disturbed by larger scale-dependent unbiased noise, simulating
this variable requires sampling the space with larger variance.

AAE is related to (10). In this isotropic experiment, we
regard Y as a direct observation of the state vector; there-
fore, AAE should be proportional to |sY − sX |. Fig. 4 shows
AAEs of ensembles X = ∫sYsX dW (s), with sX = 1 and sY =
2, 3, 4, 5, 10, 20, 30, and 50. An ideal result is that all AAE
curves are parallel to or overlap with the reference line. However,
the gradually upward-moving trend of these lines is unstoppable
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Fig. 3. Isotropic experiment simulating RESTs in a stochastic data assimilation system (assim = assimilation; ana = analysis or forecasting error; obs =
observation).

as the scale increases. All AAE curves present a slope similar
to that of the reference when the scale is smaller than 10, but
the slope is steeper when the scale is larger than 10. This phe-
nomenon contradicts (10). Another set of figures also challenges
the prior conclusion that AAE should be proportional to the scale
differences between the state and observation space. The average
difference between sY = 1 and sY = 2, sY = 2 and sY = 3,
sY = 3 and sY = 4, and sY = 4 and sY = 5 is 1.24, which
is very close to the scale difference |sY − sX | = 1. However,
this value increases to 16.12 between sY = 5 and sY = 10 and
further increases to 78.97 between sY = 10 and sY = 20 and
between sY = 20 and sY = 30, both of which are far from
their scale differences. We assume that except for the limitation
of sampling, this inconsistency between the simulation results
when sY > 10 and (10) is mainly due to the over-perturbation
involved in the scale transformation. Thus, if the noise variances
are much larger than the values of the geophysical variables,
this theory is no longer true. In this experiment, the range of the
state variables is approximately –15 to 40; thus, perturbations
with a variance greater than 10 may significantly influence the
dynamic processes of the state and thereby produce increasing
AAEs.

The anisotropic experiment uses the same configuration set-
tings as the isotropic experiment. Fig. 5 shows the assimilated
results of the anisotropic experiment. The corresponding simu-
lations greatly differ from the true value (such as the period from

step 200 to 300 for all state variables). The deviations are mainly
caused by the scale variation of the geophysical variables and
are proportional to the intensity of the variation. As shown in
Fig. 5, since assim2 has stronger scale variation, its assimilation
results are more likely to depart from the true values than those
of assim1. Accordingly, the analysis errors of assim2 are larger
than those of assim1. Another significant difference is that the
analysis errors in this experiment are much larger than those in
the isotropic experiment. For example, the analysis errors in step
300 of state variable X1 are approximately 30 in the isotropic
experiment and more than 40 in the anisotropic experiment.
Furthermore, based on (7), the scale-dependent dynamic process
ϕX can impact the likelihood. If the state vector is more likely
to be influenced by scale transformation, a larger the error will
be produced. Thus, if a geophysical variable is liable to be scale
variant, its assimilated results will be no better than those of
scale-invariant variables.

The AAEs of assim1 and assim2 are listed in the third and
fourth row of Table I. Assim2 still produces larger variances in
this experiment. However, compared with the isotropic experi-
ment, AAEs stem not only from the scale-dependent unbiased
perturbation but also from the scale-variant dynamic process of
the state vector.

The AAEs of ensembles X = X(sX) + e−1.5+s|s=sY
s=sX

+
∫sYsX dW (s), with sX = 1 and sY = 2, 3, 4, 5, 6, 7, 8 , and 9
are shown in Fig. 6. All lines representing AAEs have a slope
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Fig. 4. AAEs of ensembles (Pa) versus the scale of observation space (sY ) on
logarithmic coordinates. The gray dashed line references the function sY = Pa.

similar to that of the reference when the scale is no more than
5, but the slope is higher when the scale is larger than 5. The
upward trends of these lines are steeper than those shown in
Fig. 4. We assume that in addition to over-perturbation, this
phenomenon is attributed to the nonlinear scale variation of
the geophysical variable. When mapping the state vector from
the state space to observation space, the value may become
very different from its original value, resulting in inaccurate
simulations and extraordinary errors.

V. REAL-WORLD EXPERIMENT

A. Study Area and Data Processing

The study area of the real-world experiment is the 962 m×
962 m Yingke-Daman irrigation district in the midstream re-
gion of the Heihe River Basin, which is the core experimen-
tal region of Heihe Watershed Allied Telemetry Experimental
Research (HiWATER) [41]. Multiscale airborne–ground-based
observations have been conducted in HiWATER including Eco-
Hydrological Wireless Sensor Networks (EHWSN) [42], COS-
MOS, and PLMR observations. There are 50 SoilNET nodes in
total installed in EHWSN, a COSMOS probe was installed in the
center of the study area, and several synchronized PLMR flights
have been conducted. The configurations of the observations are
illustrated in Fig. 7.

The observed time span from June 23, 2012 00:00 to August
9, 2012 16:00 (GMT+8, and similar hereinafter) is selected
as the experimental period. During this period, there are 1000
COSMOS observation times in total, and soil moisture data
from SoilNET are hourly averaged to match COSMOS data in
terms of collection frequency. PLMR data are only available
from noon on June 30, 2012; July 7, 2012; July 26, 2012; and

TABLE II
ASSIMILATION STRATEGY FOR TWIN TESTS ADDING SOIL MOISTURE IN

THREE LAYERS IN SIB2

August 2, 2012. The corresponding datasets are provided by
CASEarth Poles.1 Note that spatial averages may introduce extra
uncertainties into the assimilation system; therefore, only one
SoilNET node and one pixel of PLMR are selected for direct
comparison with COSMOS (see Fig. 7).

In the study area, the root and deep zones are 0.48 and 1.5 m,
respectively [47]. Therefore, the observations of SoilNET at 4
and 20 cm are used to represent the soil moisture in the first two
layers in SiB2, and assimilating the observations at 40 cm into
the soil moisture in the third layer is performed for reference
only due to the lack of data.

B. Design of the Experiment

Based on the multiscale observations in the study area, the
following six time series are created to characterize REST in a
real-world land data assimilation system.

1) Data i describes the soil moisture data observed by the
hourly averaged SoilNET at a depth of 4 cm.

2) Data ii describes the hourly averaged SoilNET data at a
depth of 20 cm.

3) Data iii describes the hourly averaged SoilNET data at a
depth of 40 cm.

4) Data iv describes the soil moisture data observed by COS-
MOS.

5) Data v is a time series of alternating data i and iv, i.e.,
taking turns to sampling the observations from data i and
iv at each time.

6) Data vi is a time series of combining data v and available
PLMR data.

Regarding these time series as both forcing and observation
data of soil moisture in the three layers in SiB2, twin tests (see
Table II) are conducted to examine the evolution of REST when
assimilating the observations at different scales (i.e., the support
scales are SoilNET with a circle of radius 0.1 m, COSMOS with
a circle of radius 600 m, and PLMR with a square of side length
700 m, respectively) and depths. The reference test uses data
i–iii; then, the first control test is the same as the reference but
replaces data ii with data iv, and the second control test uses data
vi to replace data i. Compared with the reference test, the first
control test aims to assimilate larger-scale soil moisture at the
root zone, the second control test tries to simulate assimilation of
multisource and multiscale observations. Note that it is reason-
able to employ COSMOS data for both surface and root layers
because the vertical support of COSMOS is an effective depth,
which certainly covers the measured ranges of SoilNET nodes
at the depths of 4 and 20 cm. All tests are examined according

1[Online]. Available: http://www.tpdc.ac.cn [45]

http://www.tpdc.ac.cn
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Fig. 5. Anisotropic experiment simulating RESTs in a stochastic data assimilation system (assim = assimilation; ana = analysis or forecasting error).

Fig. 6. AAEs of the ensembles (Pa) versus the scale of the observation space
(sY ) on logarithmic coordinates. The gray dashed line references the function
sY = Pa.

to the correlation coefficient, KL divergence, and analysis errors
produced in terms of REST.

C. Results

There are 1000 observation times in total during the exper-
imental period both for SoilNET and COSMOS. SiB2 is also
implemented during this period. The interval of assimilating

Fig. 7. Configurations of multiscale observations in the study area during
an intensive observation period of HiWATER. The support scales of SoilNET,
COSMOS, and PLMR are 0.1, 600, and 700 m, respectively.

a new observation is 49, which ensures that the SoilNET and
COSMOS data are alternately added into data assimilation sys-
tem. Observations are also assimilated when PLMR data are
available. The numbers of ensemble members and perturbations
are both 100.

Fig. 8 presents the corresponding results of the reference and
control tests. Clearly, with no available observations, neither of
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Fig. 8. Real-world experiment in the Heihe River Basin assimilating multiscale observations and evaluating the corresponding RESTs. (Assimilation algorithm:
EnKF, forecasting operator: SiB2, running frequency: 1 h, assimilation frequency: 49 h.)

TABLE III
CORRELATION COEFFICIENTS OF THE ASSIMILATION RESULTS BETWEEN THE REFERENCE AND CONTROL TESTSa

aFH = The First Half of the results, SH = The Second Half of the results.

the assimilation results simulates the trend of the background
in the depth zone. Therefore, this case is not covered in the
following text. However, the soil moisture assimilation results
in the surface and root zone present similar trends to that of the
reference and have obvious characteristics when adding multi-
scale observations. In the root zone, the soil moisture forcing
data in the reference and the first control test are, respectively,
collected by SoilNET and COSMOS, which indicates that the
initial values of these two assimilation systems are different.
The trends of reference and first control test are consequently
distinguished from each other at the beginning of the experimen-
tal period, but they may have an increasing resemblance and
become continually closer until the next observation is added
into system. In addition, irrigation period and meteorological
forcing such as rainfall are not considered in this experiment;
therefore, in a few steps, the soil moisture values are slightly
larger and result in the corresponding overestimates in the land
surface layer in SiB2.

The correlation coefficients (see Table III) between the twin
tests for the different layers also provide remarkable informa-
tion. Clearly, each control test strongly agrees with the reference,
except the estimates of the first control test at the root zone, which
uses COSMOS data as larger-scale observations. Moreover, the

TABLE IV
AAES (M3 × M–3) AND THEIR KL DIVERGENCES OF EACH REAL-WORLD TEST

correlation coefficient of the second half of this estimate is sig-
nificantly lower than that of the first half, implying that, respec-
tively, assimilating the observations at different scales can result
in increasing deviation between these sequential assimilation
estimates. Another important detail in the information concerns
the differences between the reference and control tests, which
become larger over time for all layers. That is, the correlation
coefficients of the second half are lower than those of the first
half even though the observations are the same, for example, the
reference and first control tests in the land surface layer, or the
reference and second control tests in the root zone layer.

The corresponding analysis errors and KL divergences can
indicate how REST impacts the assimilation system. In Ta-
ble IV, it is found that the AAEs in both the land surface
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layer of the second control test and the root zone layer of the
first control test are larger than their counterparts. It is certain
that assimilating observations at different scales can result in
increasing REST, followed by larger analysis errors. However,
the increase in analysis errors is less remarkable than that in the
synthetic experiments and is also inconsistent with (10). The
KL divergences between reference and control tests agree with
the above results. The probability spaces of the two mentioned
assimilation analysis errors are distant from that of the reference,
which proves that REST can further influence the probability
distribution of the analysis error.

VI. DISCUSSION

A comprehensive understanding of REST requires studies in
both theory and applications. Based on the proposed theory
of scale and scale transformation, this study puts forward the
formulations of REST in observation errors and analysis errors
in ensemble assimilation, and further introduces a series of
synthetic experiments and real-world experiments to evaluate
the REST in data assimilation systems.

A. Synthetic Experiments

The advantages of simulating and quantifying REST using
a stochastic process are that the related experiment is control-
lable, and the results are general. If deterministic operators are
introduced, the corresponding results could be influenced by the
deterministic processes, which would not lead to a complete
understanding of REST under the data assimilation framework.

Two synthetic experiments are conducted to simulate scale-
dependent geophysical variables in a stochastic data assimilation
system and quantify RESTs by setting the observation spaces
with various scales. Basically, the proposed theory of formulat-
ing REST in data assimilation is confirmed. However, we further
determine that this theory cannot provide a reasonable explana-
tion for why the AAEs became remarkable when the scale of the
observation is much larger than that of the state space. Although
this problem may be caused by the sampling techniques, un-
reasonable scale-dependent perturbances, and significant scale
variations in the dynamic processes, this limitation indicates
that the REST theory needs to be refined in our future work.
Furthermore, the interpretability scope of this theory should be
further defined.

Both the scale variations of the dynamic process and stochas-
tic disturbance can result in heterogeneity across different scales.
Compared with the stochastic perturbances, the impact of the
scale variation in the dynamic process on heterogeneity is cru-
cial, which may result in accumulating REST and significant
errors. The stochastic state vector in the anisotropic experi-
ment, i.e., dX = e−1.5+sds+ dW (s), may be too simple and
incorrect for some true geophysical variables, but this special
case performs well in producing assimilated results if the scale
variation in the geophysical variable is considered. Defining σX

based on scale s or Brownian motion W (s) produces stochastic
heterogeneity. However, this special case is not included in
this study because this heterogeneity is beyond the current
understanding of earth observation, modeling, and assimilation,

and the synthetic experiment involves complicated solutions
for stochastic differential equations, which does not appear to
facilitate drawing the final conclusions.

An apparent limitation of this synthetic experiment is that
not all anisotropic cases can be simulated. Stochastic data as-
similation is a nonlinear system and is simulated by the en-
semble method. However, the methods presented in this study
can simulate only limited cases that produce REST, i.e., one
isotropic case and one anisotropic case in which the geophysical
variable monotonically increases with the change in scale. In
contrast to the isotropic case, which is based on only one defini-
tion, anisotropic cases present infinite variations. Simulating all
anisotropic cases in one synthetic experiment is impossible, but
we believe that similar conclusions can be obtained regardless
of how the anisotropic case is defined.

B. Real-World Experiments

REST in the real-world experiment performs differently from
that in the synthetic experiment. The following factors may
contribute to understanding this phenomenon.

1) Theory Validation: There are three observations at dif-
ferent scales involved in the twin tests, namely SoilNET (0.1
m), COSMOS (600 m), and PLMR (700 m). However, only
SoilNET and COSMOS data can be used to validate the REST
in the analysis error since PLMR is not continuously observed.
We consequently only consider the estimates of the root zone
between the reference and the first control test. In Fig. 8, the
estimate of the first control test is considerably different from
that of the reference, which is also presented in Tables III and
IV, and its corresponding correlation coefficients and KL diver-
gences are inconsistent with those of the second test. In Table IV,
compared with the second test, the AAE of this estimate is
slightly larger, which proves that (10) is basically correct since
the REST in the analysis error increases with an increasing
difference between scales. However, the current results cannot
indicate that REST is proportional to the scale difference. Due
to the lack of available observations at different scales in the
real-world settings, we cannot design an intensive test to quan-
tify the relationship between REST and scale difference. More
importantly, (10) is deduced under the condition of assimilating
direct observations and homogeneous system states, which is
largely different from the real world. Therefore, (10) needs to be
generalized. Following these numerical experiments, the related
mathematical understanding is consequently needed.

2) Nonlinear Performances: Due to the nonlinearity of the
data assimilation system, REST should display fast divergence
or convergence. However, no remarkable fluctuation is found
during the experimental period. There is also no chaotic behavior
in the real-world assimilation since the estimate is not sensitive
to the initial states (see Fig. 8, estimates of the root zone in
the reference and first control tests). These phenomena prove
that the data assimilation system is long-term controllable and
predictable.

Another nonlinear characteristic of assimilation may be in-
troduced by the related variables, that is, introduction of scale-
changed observations to update a specific state can impact its
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related states. Considering the land surface layer in the first
control test or the root zone in the second control test, although
both use the same data as that in the reference, the corresponding
estimates gradually deviate from the reference, as shown in both
Fig. 8 and Table III (the correlation coefficient of the second
half is smaller than that of the first half). The AAEs of the
corresponding estimates are further larger than those of the ref-
erence (see Table IV). This deviation may also be caused by the
random perturbances, but the increasing AAE proves that REST
is propagated from one state of assimilating observation at a
different scale to the related variables. The relationships between
correlated variables, such as the soil moisture at these two layers,
have been certainly formulated in physics, but developing an
understanding of the nonlinear propagation process of REST
between the correlated variables still needs further studies.

3) Assimilating Multiscale Observations: It is widely recog-
nized that introducing multisource observations can, in prin-
ciple, improve the predictability of an assimilation system.
However, multiple observations generally lead to scale issues
since they are collected at different resolutions. The surface layer
estimate of the second control test is designed to examine the
corresponding REST. Table IV summarizes that both the AAE
and its KL divergence in this test are larger than those in the first
test when assimilating multiscale observations at the surface
layer. However, if using the same observations as those in the
reference in the other layers, these two figures become lower
than those of the first test. We therefore presume that assimilating
multiscale observations can result in increasing REST; however,
this presumption should be further proven in future theoretical
studies.

We only examine the strategy of assimilating one observation
in one analysis step, and its formulation and related experiments
are further conducted. The simultaneous assimilation of multiple
observations is not included in this study since the corresponding
theory and experiments are more complicated. For example, the
extra correlation between the multiple observations should be
considered. We plan to address this problem in future work.

In the real-world experiments, the errors originating from
the horizontal distances among the centroids of different ob-
servations are not considered. Studying REST implies that all
centroids of the observations/simulations are coincident, which
usually cannot be met due to the lack of data. This issue may
result in additional uncertainties and requires intensive investi-
gation in future studies.

C. Intercomparison

The synthetic experiment can create a series of pseudo-scale-
continuous observations to evaluate REST and deduce general
conclusions, whereas real-world experiment only uses limited
observations but presents more practical significance for studies
of REST.

REST has been explicitly formulated under a stochastic en-
semble data assimilation framework. However, the interpretabil-
ity and limitation of this theory still need to be validated by obser-
vations and experiments. Considering that an adequate concept
of data assimilation that directly matches REST is lacking, two

elements, i.e., AAE and KL divergence, were used to represent
the REST estimates and the distance between different REST
PDFs. However, REST still cannot be fully understood in this
study since other errors, for example, random perturbances of
ensembles, are involved. Moreover, REST in a real-world ex-
periment may encounter further interference from the uncertain-
ties of forcing, parameters, and dynamic forecasting processes.
RESTs are correlated with other errors and cannot be simply
identified; therefore, understanding REST in data assimilation
still requires in-depth studies.

Based on theory and the synthetic experiment, scale trans-
formation is shown to cause remarkable variation in REST.
However, this variation is restricted to a specific region in the
real-world experiment, considering the control mechanism of
the assimilation system and the weak feedback of the land
surface process, and seemingly, REST has a limited impact
on the entire system. However, this finding does not preclude
the urgency of studying REST. In the real-world experiment,
only one scale-change state is involved. In reality, the scale
issue is inevitable in both the forcing data and parameters, and
models are also not free of scale variation. In comprehensive
assimilation studies, scale transformation can be found in each
interaction between data and models; therefore, the correspond-
ing RESTs constitute more key components of uncertainty, and
the mechanism by which they influence the final results needs
further study. The study of REST can effectively improve the
understanding of uncertainty in data assimilation.

This study considers only direct observations. Introducing
indirect observations into stochastic data assimilation requires
the formulation of stochastic observation operators (such as
stochastic radiative transfer models), which requires an analysis
or numerical solutions of the stochastic operators. However, a
stochastic model suitable for the stochastic data assimilation
framework that produces the desired outputs is unavailable. We
will attempt to address this problem in the future.

VII. CONCLUSION

Introducing stochastic processes and models in data assimila-
tion does not change its basic formulations. The results confirm
that the proposed theory holds under the circumstantial setting
of a small change in scale but do not offer sufficient evidence that
this theory works well when the scale changes by any significant
degree.

This study provides scale-related definitions of REST in both
observation error and analysis error, and designs synthetic and
real-world assimilation experiments to validate the correspond-
ing formulations. We further prove that introducing multiscale
observations into data assimilation can produce considerable
representativeness errors, and ignoring REST is unreasonable
because scale transformation is an intrinsic property of earth
observations, modeling, and assimilations. This study provides
a feasible approach to simulating and quantifying REST in
data assimilation when introducing multisource observations
including remote sensing and ground-based measurements.
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