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Methodology of Detection and Classification of
Selected Aviation Obstacles Based on UAV
Dense Image Matching

Marta Lalak

Abstract—Currently, more and more accurate data provided by
UAVs make it possible to analyze land cover, which requires the
detection of objects and their individual elements. Object detection
and determination of their geometric features is possible thanks to
dense point clouds generated based on imagery obtained from low
altitudes. 3D data from UAVs turn out to be extremely useful for en-
suring safety in the airspace in the close vicinity of the airport. This
article presents the methodology of automatic aviation obstacle de-
tection based on low altitude data (UAV). The research was carried
out on a dense 3D point cloud. The developed methodology for
detecting aviation obstacles consists of three main stages. The first is
point cloud filtration based on height-preliminary identification of
aviation obstacles, followed by 3D point cloud segmentation using a
modified RANSAC algorithm, supplemented with two-dimensional
vector data of aviation obstacles to improve the accuracy of the
segmentation process. The last stage is the classification of avia-
tion obstacles according to the adopted height and cross-section
criterion. The proposed method of detecting aviation obstacles is
characterized by high accuracy. The mean error of fitting the point
cloud to the obstacle database ranged from =+ 0.04 m to £ 0.07 m.

Index Terms—Accuracy, air traffic control, image processing,
remote sensing, unmanned aerial vehicles (UAVs).

1. INTRODUCTION

VER the past decade, the cost of using unmanned aerial
O vehicles (UAVs) in photogrammetric and remote sens-
ing applications has been increasingly low. UAV are a cheap
and effective alternative to obtaining data with the methods of
classical aerial photogrammetry. Until recently, airborne laser
scanning dominated the acquisition of spatial data. However,
for several years there has been increasing use of UAVs to
analyze 3-D objects using point clouds [1]. Thanks to easy
and universal data acquisition and processing, the low-altitude
technology is gaining an advantage over the previously used
aerial photogrammetry.
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Automatic detection and recognition of individual objects and
distinguishing their elements is critical for many applications, in-
cluding damage assessment and all research related to these ob-
jects. One of such applications may also be the retrieval of infor-
mation about aviation obstacles. Aviation obstacles with their lo-
cation and dimensions, especially height, may endanger aircraft.
Firstof all, it is essential during the aircraft’s take-off and landing
maneuvers. An unidentified obstacle may turn out to be a signif-
icant threat during critical phases of flight. As the detection of
aviation obstacles is extremely important for the safety of aircraft
in the airspace, The International Civil Aviation Organization
(ICAO) introduced a series of planes to limit obstacles in order
to ensure the safety of aircraft [2]. Objects that penetrate these
planes constitute aviation obstacles. According to the latest data
on the causes of air accidents, aviation obstacles belong to the
group of the highest risk factors that contribute to such accidents
(31, [4].

Currently, aerial photogrammetry may be the most efficient
technique of collecting data about obstacles. It is less automated
than such other techniques as the airborne laser scanning (ALS),
traditional ground measurements or synthetic aperture radar
(SAR), in particular for elongate objects [5]. Low-cost UAVs
that ensure high time resolution provide digital images that are
then used to create dense clouds of points describing 3-D objects.
However, the need emerges to develop process automation in
order to overcome the challenge of detecting air obstacles in form
of elongate objects. The detection of such objects is difficult and,
in fact, they may be detected only from lower altitudes, which
are offered by UAV [5].

Point cloud segmentation is the primary step in 3-D point
cloud processing. Considering a set of point clouds, the seg-
mentation process aims to aggregate points with similar charac-
teristics into homogeneous regions. The segmentation process
can be helpful in scene analysis in various aspects, such as
locating and recognizing objects, classifying, and extracting
features of these objects [6], [7]. In general, the analyzed objects
and their elements have unique geometrical features. Therefore,
3-D geometric features are used as basic information in object
detection and categorization of its subelements [8]. 3-D point
clouds are optimal for determining the geometric properties of
objects. So far, oblique aerial images have been a suitable source
for generating 3-D point clouds for object analysis because they
provided detailed information about individual object elements:
roofs, elevations, etc. Currently, UAVs offer photos with very
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high coverage and high resolution, generating very dense 3-D
point clouds in a minimum time and with a minimal financial
outlay [9]. Thus, low-level 3-D point clouds have become more
and more widely used to study 3-D objects.

The point clouds used so far from ALS are accurate and give
ready 3-D data. However, the main disadvantage of ALS point
clouds is that they are expensive to obtain [10]. For buildings,
ALS can only capture the roof and other parts of the building that
are only visible from a bird’s eye view, and those visible from
ground level, such as areas under balconies and building walls
that are obscured, are not acquired. Maltezos and Ioannidis [11]
argue that the LIDAR point clouds give false results because
they misinterpret buildings with smooth roofs.

ALS involves high costs of using specialist photogrammetric
equipment during the flight. As the UAVs are equipped with RTK
receivers (positioning with the accuracy of one decimeter), the
time of data collection and acquisition is very short, e.g., 25
hours are required to obtain and process 1000 ha. The overall
costs of collecting and obtaining data with use of UAV may be
even several times lower than with use of ALS [68]-[70]. Apart
from that, the point clouds obtained from ALS are characterized
by lower accuracy than the dense cloud of points generated as
a result of processing the image structure from motion (Pix4D,
Metashape-type software) from UAV. Images from UAV that are
used in the developed method of detecting aviation obstacles are
a source of 3-D data that reach the quality standards similar or
even higher than those provided by ALS.

Object detection in a 3-D point cloud, segmentation of points
belonging to an object, reconstruction of geometry, and object
topology are the essential components in the process of 3-D
object modelling.

The following section presents a literature review on the
classification and segmentation of 3-D objects using photos
obtained from UAVs. Additionally, the latest related works on
classification and segmentation are presented.

A. Aviation Obstacles

High artificial or natural vertical objects (obstacles) situated
near the runway can contribute to accidents during the take-off
and landing. The automation of the object detection process in
the vicinity of the airport is thus becoming extremely important
and necessary for ensuring security around the airport areas.
Safe movement at airports and on arrival areas in take-off areas,
landing and maneuvering, is an essential element of air traffic
safety. Terrain and obstacle data are key geospatial components
of aeronautical information. There are international ICAO reg-
ulatory documents [2] and national aviation regulations that
specify the requirements for collecting and assessing terrain
and obstacle data. According to the ICAO, boundary surfaces
correspond to the maximum allowable heights of objects in the
traffic areas of aircraft. Few studies are dealing with the problem
of detecting aviation obstacles in the vicinity of airports. Mitse-
vich [12] presented remote and effective obstacle identification
and assessment process technology using stereoscopic remote
sensing. Demir and Baltsavias [13] focused on the accuracy,
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resolution, and timeliness of data about objects in the vicinity of
airports and the automation of 3-D model generation processes
using airborne laser scanning. In another work by Demir et al.
[14], the authors focused on detecting buildings in the airport
environment by combining information from aerial imagery and
LIDAR data. They used four different methods. The first was
based on a DSM/DTM comparison combined with an NDVI
analysis. The second was the supervised multispectral classi-
fication refined by the standardized DSM. The third approach
used empty spaces in the Lidar DTM and NDVI classification
(method 3), while the last method was based on the density
analysis of Lidar DTM and DSM raw data. A study by Parrish
and Nowak [15] presents the methodology of modelling objects
using very dense, detailed point clouds, in which the vertical
structures of objects are well characterized. The existing recom-
mendations [5] concerning the detection of aviation obstacles
focused on using point clouds from ALS. However, as one
cannot exclude omitting elongate obstacles, object detection is
verified with use of traditional ground measurements, which
significantly increased the duration of the process. Additionally,
ALS does not ensure high time resolution of data. In terms of
ensuring safety in the air space, time resolution and accuracy of
data on aviation obstacles are of key importance in performing
aviation operations. Objects that are taller than the boundary
surfaces, in certain conditions may cause the need to increase
the relative or absolute altitude of flight above the obstacles for
precision instruments landing approach or any other flight pro-
cedure. Such objects may also have an operational influence on
designing flight procedures. There is no doubt that the accuracy
of determining aviation obstacles affects the safety during the
flight of an aircraft [12].

According to the latest provisions of the Eurocontrol manual
[5] the detection of elongate aviation obstacles should be ensured
at a much higher image scale than that obtained from traditional
photogrammetric missions.

B. Segmentation

Segmentation [16] is one of the critical phases of point cloud
processing. It aims to group the points into significant clusters
with homogeneous properties [17]. Point cloud segmentation,
the aggregation of 3-D points into many homogeneous groups
with standard features [18], has been studied for decades. A
majority of the authors have focused on designing and develop-
ing hand-made algorithms for point classification and [19]-[29].
However, finding the optimal segmentation method remains a
challenge [30].

Conventional segmentation methods such as region growing
[31] or clustering examine points in the vicinity of initial seeds or
origins and check if they belong to the same group or not accord-
ing to the given criteria. Euclidean distance [32], density [33],
[34], vector normal deviation [35], [36], surface smoothness
[37], and curvature [38] of points are representative criteria. Be-
sides, segmentation may also be performed in the feature space.
Distinctive geometric features or RGB information are also
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introduced as segmentation criteria [39]. However, all these seg-
mentation methods are easily affected by noise and outliers in the
dataset, resulting in over- or undersegmentation with different
granularities of the segments obtained. Besides, complex seg-
mentation criteria will significantly increase the computational
time. In addition, the gaps between the point clouds (mismatch of
the points from the image matching for each pixel of the image)
and different point densities make this a more problematic issue.
Overall, point cloud segmentation can be considered a difficult
topic.

The review of methods, algorithms and solutions that can be
applied at individual modelling stages is provided in [40]. At the
last stage of modelling, buildings are usually formed as a combi-
nation of planes in 3-D space. For this reason, the second stage of
the modeling process is crucial, as this is when subsets of points
describing (modeling) individual planes are extracted. This task
is complicated by the presence of erroneous points in the set. At
this stage, the most commonly used algorithms are RANSAC,
rising planes, and the Hough transform, with possible modifica-
tions, with the first two of the methods mentioned above being
dominant.

In their research, Nguyen and Le [41] presented segmentation
methods divided into five categories: edge-based; region-based;
attribute-based; chart-based; and model-based. In model-based
methods, all points with the same mathematical characteristics
are grouped into a single segment, such as a sphere, plane, and
cylinder. Schnabel et al. [42] proposed a model-based algo-
rithm for detecting basic shapes from disordered point clouds.
Their algorithm is based on RANSAC. In their works, Bauer
et al. [43] and Boulaassal [44] use the RANSAC algorithm
to detect building facades. To optimize the operation of this
estimator in the plane extraction process, it has undergone
numerous modifications. Awwad et al. [45] and Delmerico
et al. [46] propose to consider the direction of the normal
vector calculated at each point of the cloud. Concerning the
detection and modeling of aviation obstacles, the application of
several algorithms was presented, which allow to isolate the
shape of obstacles and to adjust the point cloud [52], [53].
Knowing the height and location of the obstacles is sufficient
for the aircraft to avoid them. Several other methods of de-
tecting aviation obstacles have also been presented in subject
literature [54], [55].

The authors of this article will attempt to prove the
following hypothesis: point cloud segmentation with the
modified RANSAC algorithm through the use of vector data
parameter, the introduction of a new point cloud classification
algorithm, which is adapted to the geometric features of
aviation obstacles, and the criterion of point cloud filtration
obtained from low altitude will allow for the detection of
aviation obstacles with an accuracy compliant with ICAO
regulations [56]-[59].

The research aimed to develop a methodology for auto-
matic detection of aviation obstacles being elongated ob-
jects and their classification based on dense matching of
UAV images.

The rest of this article is organized as follows: in Section II,
the test data are introduced. In Section III, the research method
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Fig. 1. Location of the Lask military airport.
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Fig. 2. (a) Trimble UX-5 — before flight. (b) Example of GCP location.

is explained. Section IV presents experimental results. In Sec-
tion V, the results are discussed. Finally, Section VI concludes
this article.

II. MATERIALS
A. Study Area

The research was carried out on several selected experimental
areas, which were located around the Lask military airport. It is
an Air Force airport located in central Poland, south of the town
of Lask (51°33'06”"N; 19°10'45"E) (see Fig. 1). The surface of
the area covered with photos was approx. 25 km?.

B. Description of the Dataset

The source data for the dense point cloud generation was ob-
tained using the Trimble UX-5 airframe [see Fig. 2(a)], equipped
with a Sony a7R camera. The aerial platform was equipped with
a single-frequency GPS receiver, recording data at a frequency
of 10 Hz.

The flights were carried out in the test area in April 2019.
The weather conditions were good, i.e., the sky was covered
with a small number of cumulus clouds, and the average wind
speed was about 2 m/s. Camera settings were defined in manual
mode, while the focus of the lens was set to infinity. The test area
covered the area around the Lask military airport. The measure-
ment campaign consisted of 30 test blocks, where each block
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TABLE I
CHARACTERISTICS OF THE TEST EXPERIMENTAL AREAS IN LASK

Experimental area number 1 2 3 4
Number of lines 18 17 16 17
Number of photos 608 576 565 580

Camera / lens focal length
[mm]

Average
longitudinal/transverse
coverage [%]

Flight altitude [m] 300

Sony a7R /36.34

75175

Number of control points 4 6 5 6

Number of independent
checkpoints

Value of the standard
deviation of a'priori
control points and
checkpoints X, Y, Z [m]

GSD [m]

0.03,0.03, 0.03

0.04

consisted of approximately 600 images on average. The data
was obtained from about 250 m altitude above the ground. The
flights were carried out in the east-west direction, assuming that
the transverse and longitudinal coverage was 75%. In the study
area, the marked control points were designed and measured [see
Fig. 2(b)]. All points were measured using the RTK technique in
the GNSS system. The terrain coordinates of the control points
were determined with the mean error mg, ,, , = £0.03 m.

C. Characteristics of the Experimental Area

Four experimental areas (1, 2, 3, and 4) were used for further
research (see Fig. 3).

They were located close to the runway strip of the Lask
airport. The 1st area consisted of 18 lines, 608 photos; the 2nd
area included 17 ranks consisting of 576 photos. The 3rd area
consisted of 16 lines with 565 photos, and, finally, the 4th area
consisted of 17 lines with 580 photos (see Table I).

For the experimental areas, ground control points (which are
used in the aerotriangulation process to determine elements
of external orientation of images) were measured, as well as
independent checkpoints to assess the accuracy of alignment
of the block. All images are oriented to the Polish national
coordinate system PL-2000 zone VI.

The military airport with the 32nd Tactical Air Base (BLT)
is located in Lask (see Fig. 4). The recent modernization of the
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Fig. 4. Diagram of the Lask airport based on [aip mil].

airport, i.e., extension of the runway and the modernization of
the airport infrastructure, has made the 32nd BLT one of the
most modern units of the Polish Air For, pce.

D. Experimental Areas

The research used data obtained from four flights (see Fig. 3).
Each of the flights was carried out in the vicinity of the Lask
military airport. The first criterion for selecting the research
area was to fit into the area coinciding with one of the obstacle
limiting surfaces, i.e., the approach surface. The second criterion
was the presence of objects protruding above the ground surface,
which may pose a potential threat to aircraft traffic. Due to
the negligible number of obstacles in the vicinity of the Lask
military airport, the research ignored the top-down dimensions
and slopes of the approach surface in Poland [60]. That change
allowed for the extension of the scope of the study, so that studies
could be performed for a larger number of data. Additionally,
the developed methodology was universal and possible to use
under various constraints and limitations.

1) First Experimental Area: The first area was located very
close to the runway of the Lask military airport. Four control
points and five independent checkpoints were identified in the
study area. Small, heterogeneous buildings characterized the
studied area.

2) Second Test Area: The second area was approximately 20
km from the runway. In the study area, six control points and
eight independent checkpoints were measured. Most of the area
was covered with high, compact buildings.

3) Third Experimental Area: The third area was located ap-
proximately 3 km from the runway strip. In the three study area,
five control points and five independent checkpoints were deter-
mined. The research area was distinguished by small buildings
and the presence of numerous power lines.

4) Fourth Experimental area: The fourth area was approxi-
mately 10 km from the runway strip. Six control points and seven
independent checkpoints were identified in the study area. The
site is characterized by scattered development.

E. Obstruction ldentification Surfaces

The airspace around the airport should be clear of all aviation
obstacles to enable the safe conduct of flight operations and
to prevent the airport from being unusable due to obstacles
forming in its vicinity. This objective is achieved by establishing
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Obstruction identification surfaces for the Lask military airport based

a series of obstacle limitation surfaces that define the limits
to which objects in the air can protrude. Objects that exceed
the obstacle limitation surfaces under certain conditions may
require an increase in the altitude or obstacle crossing altitude
for instrument approach procedures or any other circular visual
flight procedure. These objects may also have an operational
impact on the design of flight procedures.

Obstacle limitation surfaces at aerodromes for airplanes shall
be established considering the number and location of runways
at the airfield, airfield reference code digits, landing approach
category, and visual aids for navigation. The dimensions and
slopes of the obstacle limiting surfaces for the runways for the
Lask military airport have been determined based on Annex
3 to the Aviation Obstacle Ordinance [60], obstacle limiting
surfaces and devices of a hazardous nature. Obstacle limiting
surfaces include but are not limited to a conical surface, an
inner horizontal surface, a transitional surface, and an approach
surface (see Fig. 5).

An approach surface is an inclined plane or pattern of planes
located at a specified distance from the runway strip. The ap-
proach area for the Lask military airport consists of three planes
(see Fig. 6). The first (1) plane is 3000 m long and rises by 2%, the
second (2) plane is 3600 m long and rises by 2.5%, and the third
(3) plane is 8400 m long and horizontal. The approach surface
boundary determines the height which objects in the airspace in
the vicinity of the airport can reach.
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TABLE II
TYPE OF AVIATION OBSTACLE

Type of aviation obstacle

Mast, antenna

Wind turbine

Building, skyscraper

Chimney

Tower

Energy pole

== == [[I[)—- >

FE. Characteristic of Aviation Obstacles

Aviation obstacles are all fixed (permanent or temporary) or
movable objects or their elements that:

1) arelocated in the zone designated for the movement of air

vessels on the ground; or

2) exceed a specific surface designated to protect the air

vessel during the flight; or

3) remain outside those defined surfaces, but have been clas-

sified as threats for air traffic [5], [57].

Data about aviation obstacles are necessary for the design
of landing approach procedures, the creation of aeronautical
charts and base databases, and the analysis of aircraft operating
limitations. The collected data may also determine the height
restrictions or the removal of obstructions that pose a risk to
air navigation [57]. The following types of elongated aviation
obstacles are listed in the register of aviation obstacles or marked
on aerial charts: masts and antennas; wind farms (i.e., wind
turbines); buildings, blocks and skyscrapers; chimneys; towers;
energy poles (see Table II) [5]. The aviation obstacles listed
above represent man-made objects.

III. METHODS

This section introduces and describes a mathematical model
that can be used to automatically detect aviation obstacles and
classify them based on a random point cloud obtained from a
low altitude. The entire process is shown using a flowchart (see
Fig. 7). The diagram shows the stages of detection of objects
in the vicinity of the airport, assuming that objects above a
certain height are considered obstacles to the air. The first stage
consisted in acquiring photos from a low level. Then, using the
Pix4D software, the images were processed, and point clouds
were generated for the various research areas. The works started
with the automatic filtration of the point cloud, where the height
of aviation obstacles above the approach surface was adopted as
the filtration criterion. Then, point cloud segmentation was per-
formed to determine obstacles to aviation. This process started
with the implementation of vector data about 2-D objects on
the basis of an orthophotomap. The attributes of 2-D objects
were directly loaded into segmented point clouds. The use of
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the geometry of the examined objects made it possible to fit the
point cloud into the obstacle database precisely and save the
attributes from the 2-D layer to the structure of each segmented
point cloud. The final stage was the automatic classification of
the point cloud based on the ratio of the object height to its width
and geometric relationships of the cross-section of the objects.
This classification made it possible to determine the type of
obstacle, where GCP’s is ground control points.

A. Aviation Obstacle Detection

This section describes the raw point cloud filtering to identify
points that may be part of aviation obstacles. The point cloud
filtration was carried out in the vicinity of the airport for the area
contained in the obstacle limiting surface, called the approach
surface. The primary purpose of point filtration was to detect
points on or above the approach surface automatically. At this
stage, filtered point cloud applied only to the filtration of point
clouds by their height, according to the set criterion Hy (see
Fig. 8). The use of the altitude criterion made it possible to
detect points that may belong to aviation obstacles (see Fig. 8),
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where 7 is planes of approach surface, Pi(xi, yi, hi) is points
belonging to the 7 plane, H, is the height of the obstacle, H,; is
the height of the approach surface for the first plane, H,o is the
height of the approach surface for the second plane, and H,3 is
the height of the approach surface for the third plane.

The first stage of point plane cloud filtration involved defining
a plane that would uniquely identify points belonging to the
approach surface. For this purpose, the equation 7 (1) passing
through three points was used. Every three noncollinear points
Pi(xi, yi, hi), where i = 1, 2, 3, define exactly one plane 7 that
contains it. The equation for this plane has the form

T —x1y—y1h — M
T x — Ty —ya h — ho
T —z3y—ysh — h3

= 0. (1)

This is called the determinant equation of the plane. The
extreme points being the beginning of the approach surface were
adopted as point P;(x;, y;, h;) and point Po(xa, o, hs), (see
Fig. 9). Point Ps(x3, ys, hs) is at the end of the approach surface
passing through the axis of the runway at a distance n from the
edge of the runway strip.

After defining the planes 7 of the approach surface, the point
cloud was filtered with the height of the H; points as the main
filtering criterion. The airspace object on the approach surface
has a specified H, height. If the H, is equal to or greater than
the height of the approach surface, then the object is considered
an obstacle to flight (see Fig. 10).

For the first part of the approach surface, the object will be an
obstacle if

Ho > Ha1~ (2)
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The approach surface height was calculated using the follow-
ing formula:

H,1 = X;i + Hijt. 3)

where X is the distance from the runway and Hiy¢, is the height
above sea level at the end of the runway.

For the second part of the approach surface, the object will be
an obstacle if

H, > H,s. 4

The approach surface height was calculated using the follow-
ing formula

Hyp = Xi1 + Hu (5)

where X is the distance from the runway.
For the third approach plane, an object will be an obstacle if

H, > H,s. (6)

The 3rd approach plane height, a horizontal surface, is equal
to the maximum height of second plane and is constant

H,3 = constans. (7)

The points above the designated planes were classified as
obstacle points and used for further research. Points below the
plane did not constitute aviation obstacles; therefore, they were
omitted in further studies.

B. Point Cloud Segmentation

The second part of the methodology is the extraction of flat
features using the RANSAC algorithm operating on nonground
points classified in the previous step.

A new vector data parameter has been added to the RANSAC
algorithm, defining the shape and attributes of the tested objects
(aviation obstacles).

The RANSAC algorithm is an iterative method used to esti-
mate the parameters of the searched mathematical model of an
object in a data set containing a significant number of points not
belonging to the modeled surface [61], [62]. That fact makes the
RANSAC estimator particularly interesting for processing point
clouds with noise and erroneous measurements. The algorithm’s
operation consists of two phases: initialization and test, repeated
iteratively (see Fig. 11). The initialization phase was preceded
by creating 2-D vector data on the basis of an orthophotomap
for the detected aviation obstacles, containing information about
these obstacles and automatic loading of vector data in the .shp
format, where i is initiation stage, CS is consensus set, f is
number of points matching the set, M; is model, S is data, P is
plane, M ; is maximum distance between the tested point and the
hypothetical model, p is point matching the model, d is distance
between the point and the assumed model, s; is minimum sets,
Titer 1S number of minimum sets, k is the smallest number of
data necessary to unambiguously define the assumed geometric
model, ¢ is probability of identification of the wrong plane, and
trest 18 threshold value.

The initialization stage consisted in randomly selecting the
minimum set of points that are necessary for the unequivocal de-
termination of the parameters of the estimated geometric model.
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Segmentation of a filtered point
cloud (RANSAC)
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obstacles (.shp)

Fig. 11. Point cloud segmentation—algorithm RANSAC and vector data of
aviation obstacles.

It is the smallest number of k data necessary to unequivocally
define the assumed geometric model. For plane extraction, the
minimum set consists of three points. The implementation of the
algorithm begins with the drawing of a predetermined number
of Tjter of minimal sets s; (8), which is successively modified
during the algorithm

ss e {SCP|S] =k} —1 (8)

Next, the parameters of the Mt model are calculated for each
of the sets (in the case under consideration, the model is a
plane passing through three points). The identified model is a
hypothesis that is tested in the next step—the test. The test stage
requires the determination of the value of the m, parameter,
which defines the maximum distance of the tested point from
the hypothetical model. If the point meets the distance criterion,
it is added to the so-called CS (Consensus Set). In this article,
the set consists of data that were considered to belong to the
considered plane: X

CSy € {p € P, d(M;, p)} < ma 9
where
d(M;, p) (10)

determines the distance of the point from the assumed model
[63].
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After performing the test (9) for all data, the next minimal set
is selected as the basis for the sequence of two steps— hypothesis
and test—that are then repeated. If a CS set containing a greater
number of points than the previous one is found, the existing set
is replaced with the more numerous one and the Tii, value is
modified (number of samples of the minimum sets)

loge
log (1 —q)

where ¢ is the probability of identifying the wrong plane, and ¢
is calculated from the following equation [64]

B A 7—] k
q N '
wherein

Ny is number of points belonging to the identified plane,

N is number of all points belonging to the input data set, and

k  isthe smallest number of data allowing for an unambiguous
determination of the model.

Titer = (11)

12)

When the identification of the first plane is completed, the
described process is repeated, except for the points qualified
to it. Identification of successive planes is completed when the
number of points not added to them is lower than the assumed
threshold value of #egt.

C. Point Cloud Classification

The point cloud classification was aimed to detect aviation
obstacles representing a specific group of elongated objects
with regular cross-sections. The first criterion was the height
of the objects determined based on point clouds. The second
classification criterion was based on the geometric properties of
objects formed by point clouds (see Fig. 12), where w,, is the
obstacle width and H,, is the obstacle height.

It was assumed that for objects belonging to the group of
obstacles: masts, wind turbines, chimneys, towers, power poles
and skyscrapers, the ratio of the width w, of the object to its
height H, [65] should be within the following range:

1 Wo 1

0 < — - (13)

< —-.
H, 2
For aviation obstacles belonging to a group of buildings, the
ratio of the width of the object w, to its height H, should be in
the range:

Wo 1
7 > 5" (14)
The height of aviation obstacles was determined in iterations,
based on the cloud of points. Points that belonged to a plane at a
certain height were searched in the dataset. Point searches were
performed at 10-cm intervals, until the top point of the obstacle
was found. This point was the basis for determination of height.
The divisions for classifying obstacles, considering their width
and height, were determined at the confidence level of Pr(y — 1o
<X < pu+ 1o) = 68.27%. Obstacles that did not fall into the
ranges described above (13, 14) did not meet the adopted criteria
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Fig. 12.  Aviation obstacle filtration process.

for elongated objects, so they were excluded from further stages
of the analysis.

The point clouds assigned to the appropriate groups of ob-
stacles were classified according to their cross-sections. For
this purpose, for each object, its centroid Si was determined
by calculating its coordinates (x,ys) based on the following
formulas:

_ X

xs (15)
n

Ys = & (16)
n

where x; is x coordinate of the centroid [m], ys is y coordinate
of the centroid [m], and n is number of points in the point cloud
of the tested object.

The tested objects were classified based on the distance d; [see
Fig. 13(a) and (b)] of each point cloud point from the object’s
centroid Ci. The distance of the points from the centroid was
calculated using the following formula:

b = \(ws — 2’ + (s — )’

where d; is the distance of the points from the centroid, x; is x
coordinate of centroid [m], y, is y coordinate of centroid [m], x;

A7)
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di

(a) (b)

Fig. 13.  Cross-section of an aerial obstacle. (a) Circular. (b) Polygonal.

isx coordinate of a point from a point cloud [m], y; is y coordinate
of a point from a point cloud [m].

Based on the distance of the point cloud along object edges, a
group of regular and irregular cross-section objects was defined.
For objects with a typical cross-section, it was assumed that
if the distance from the extreme points of the cloud of points
constituting the object’s edge is constant, we are dealing with
objects with a circular cross-section [see Fig. 13(a)]. On the
other hand, if the distance from the extreme points of the cloud
of points constituting the object’s edge was not constant, we are
dealing with objects whose cross-section was a polygon [see
Fig. 13(b)]. Therefore, objects such as chimneys, towers, build-
ings, and skyscrapers were classified as objects with a regular
cross-section. Objects with an irregular shape included masts,
wind turbines and power poles. Objects classified as regular (i.e.,
typical cross-section) were used for further research.

IV. EXPERIMENTS AND RESULTS

This section presents the research experiments and the corre-
sponding results obtained from the UAV images. Initial filtration
of the point cloud was performed to detect objects that exceed
the boundary surfaces, i.e., aviation obstacles. Then, using the
RANSAC algorithm, segmentation of the point cloud was per-
formed. The final stage consisted in the automatic segmentation
of the point cloud based on the geometric relationships in the
detected objects, which allowed for the selection of objects of a
regular cross-section and uniform shape. During the experiment,
the authors attempted to use the developed method to detect
obstacles of irregular cross-sections and shapes, such as poles,
masts, and antennas, but the obtained results were difficult to
interpret.

A. Generating a Dense Point Cloud

After determining the external orientation of the photos, the
so-called “rare” 3-D point cloud, which is the starting position
to generate the so-called “dense” point cloud, the point cloud
was generated using the image matching algorithm. The point
cloud extraction process requires relatively small effort, as the
only input elements are photos with external orientation. The
results of the point cloud compaction are presented in Table III.
The RMS error of the 3-D point location for the first test area
was 0.02 m, for the second test area 0.01 m, for the third test
area 0.03 m, and for the fourth test area 0.01 m.
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TABLE III
POINT CLOUD DENSIFICATION RESULTS

Number of test RMSE 3D .
area point [m] Average Density (per m3)
1 0.02 81.62
2 0.01 80.22
3 0.03 77.20
4 0.01 80.49

Profile 1

Ny 4

Fig. 14.

Profile 2

Eask military airport—Ilocation of the terrains profiles.

B. Assessment of the Height Accuracy of Dense Point Clouds
Based on the Terrain Profile

The accuracy of dense point clouds was then assessed by
means of the following.

1) Comparing the altitude accuracy of point cloud profiles
with the terrain profile measured in the open area using
the GPS RTK method,

2) Semi Global Matching (SGM): Generated point cloud
profiles comparison with LiDAR point clouds [66].

Five field profiles were measured in the study area (see

Fig. 14).

Field profiles 1, 2, and 5 were measured in open areas, where
the satellite signal reaching the receiver is characterized by the
maximum possible strength, which affects the quality of the
obtained results. Profiles 3 and 4 ran close to the forest, where
growing trees could somewhat disrupt the signal.

The terrain profiles used to determine the precision character-
istics of the point cloud were measured for each of the four test
areas. Profile no. 1, approximately 750 m long, consisted of 131
points and was measured with an interval of 4-9 m. Profile no.
2, approximately 600 m long, consisted of 91 points, and was
measured with an interval of 4-8 m. Profile no. 3 with a length of
about 500 m and the number of points 82 was measured with an
interval of 5-9 m. Profile no. 4, about 650 m long, consisted of
119 points, was measured from interval 4-9 m. Finally, profile
no. 5, about 670 m long, consisted of 123 points.

Based on the differences in height between the examined point
clouds and the measured field profile, parameters characterizing
the accuracy were calculated, such as the average height differ-
ence, maximum negative, and positive deviations, mean error
and standard deviation. The results are summarized in Table IV.
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TABLE IV
STATISTICAL VALUES CHARACTERIZING THE HEIGHT ACCURACY ALONG THE
TERRAIN PROFILE, CALCULATED FOR THE DENSE POINT CLOUDS STUDY

Mean Maxim Mea  Standar
height um Maximu n d
differe  negativ m error  deviati
GSD .
Profile [m] nce e positive [m] on
[m] deviati  deviation [m]
on [m]
[m]
1 0.04 -0.06 -0.16 +0.05 0.06 0.07
2 0.04 -0.03 -0.05 +0.10 0.08 0.11
3 0.04 -0.04 -0.04 +0.11 0.08 0.08
4 0.04 +0.03 -0.12 +0.18 0.06 0.15
5 0.04 -0.05 -0.07 +0.09 0.07 0.12
TABLE V

STATISTICAL VALUES CHARACTERIZING THE HEIGHT ACCURACY ALONG THE
TERRAIN PROFILE, CALCULATED FOR THE LIDAR POINT CLOUDS

Maxim

Mean Maximu Standar
Dens height um Mea d
Profile ity differe negatty positive n deviati
[pt/m e L. error
P nce L. deviation on
1 deviati [m]
m] [m] [m]
1 4.0 0.09 -0.07 +0.18 0.11 0.06
2 4.0 0.08 -0.06 +0.15 0.09 0.04
3 4.0 0.09 -0.06 +0.18 0.09 0.08
4 4.0 0.10 -0.04 +0.17 0.09 0.07
5 4.0 0.07 -0.08 +0.14 0.12 0.06

Terrain profiles were measured on point clouds obtained
from airborne laser scanning. It was assumed that the satellite
measurement data are error-free, and that the error would be
determined in relation to them.

The assessment of the accuracy of dense point clouds was
compared with the parameters characterizing the accuracy of the
LiDAR point clouds. The results are summarized in the table.

The data presented in Tables IV and V constitute the basis for
assessing the altitude accuracy of SGM point clouds compared to
LiDAR point clouds, taking into account the factors influencing
the properties of SGM point clouds. Based on the results of
the accuracy analysis, several regularities were noticed are as
follows.

1) LiDAR point clouds are burdened with a greater system-

atic error than SGM point clouds.

2) Images obtained from UAV provide a point cloud with
greater horizontal accuracy (lower mean error) than Li-
DAR point clouds.

3) Standard deviation of the LiDAR point cloud is smaller
than almost all SGM point clouds.

4) Value of the standard deviation is slightly higher for the
SGM point cloud, which indicates that the images obtained
from the UAV also provide a point cloud that correctly
reflects the topography.
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C. Detection of Objects That are Aviation Obstacles

Dense point cloud became the basis for further research on
the detection of aviation obstacles. After the initial processing of
data obtained from the UAV and testing the accuracy of the point
cloud, the point cloud was filtered. To do so, obstacle limiting
surfaces were determined as the initial step in detecting aviation
obstacles. The Lask military airport belongs to the first class
of airports [2], [60] and has strictly defined surfaces limiting
obstacles. Each of these surfaces is at a certain height, and objects
whose height is higher than the obstacle limiting surfaces are
called air obstacles. The equations of planes 7 constituting the
obstacle limiting surfaces were determined in compliance with
the ICAO requirements (see Fig. 15).

Each of the planes rises to a particular height H. This height
became the point cloud filtration criterion. Points with a height
equal to or greater than the height of the approach surface
were classified as elements of aviation obstacles H, > H,1 (see
Fig. 15) and were used in further stages of the research. During
the study, they were introduced to the regulations that define the
range of obstacle limiting surfaces. The altitude requirements
in the close vicinity of the airport have changed. In the area of
the Lask airport, the obstacle limiting surface was modified for
research purposes (see Fig. 16) by increasing the range of the
surface and lowering the height, which allowed the authors to
obtain more research material in the form of further obstacles.

The modified obstacle limitation surface has defined the limit
heights above which objects become aviation obstacles. Points
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Fig. 18.  Location of aviation obstacles near the Lask military airport.

from the point cloud that pierced the limiting surface were used
for further development. Ten obstacle objects were detected
in the four experimental areas (see Fig. 17). Points below the
boundary surface are marked in green. Points above the bound-
ary surface are marked in red.

D. Segmentation and Classification of Point Cloud

After the filtration of the point cloud, ten objects were selected
for further analysis as aviation obstacles in the vicinity of the
Lask military airport. Three obstacles were chimneys, and four
more were buildings; a power line pole; a wind turbine; and the
last one was a water tower. All of the abovementioned obstacles
were located near the airport (see Fig. 18).

The ten analyzed data sets were characterized by the fact that
they represented tall structures. The facilities differ significantly
in terms of their architecture. However, three groups of objects
may be distinguished based on their cross-section. The industrial
chimney is a slender structure but similar in its round cross-
section to a water tower. The skyscraper is a tall building, slightly
different from the apartment block, but there is an analogy in
the cross-section. Both the power line pole and the wind turbine
are elongated objects, but their cross-sections are irregular. The
primary objective of the research was to develop a methodology
for detecting aviation obstacles of an elongated shape, where
the main emphasis was placed on the most accurate reflection of
their actual height. Given the above, the segmentation algorithm
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was aimed at the most precise determination of the height of
aviation obstacles.

All analyzed objects were segmented and classified to detect
their actual shapes and heights. The previously filtered point
clouds were used as input data. The implementation of the seg-
mentation algorithm began, on the basis of an orthophotomap,
with the creation of 2-D vector data about objects that are
aviation obstacles. Then, the vector data in the X, Y horizontal
planes was implemented in MATLAB. The work began with
withdrawing a predetermined number T, of minimal sets sy,
which were modified online. Then, for the collection of points,
the parameters of the plane surface passing through the three
points were calculated. The model detected in this way became
the hypothesis that was then tested in the next step, i.e., the test.
The algorithm started with determining the maximum distance
from the tested point to the hypothetical model. If a specific
point met the distance criterion, it was added to the so-called set
consisting of data that belonged to the considered plane M;. After
the test was performed, the next minimal set was selected. From
this set of points, the hypothesis and test steps were repeated.
When the algorithm found a set of points with more points than
the previous one, the existing set was replaced with the larger
set. After the detection of the first plane, the whole process was
repeated, but without the participation of points belonging to the
first plane. The plane detection was performed until the number
of points not added to any of the planes was lower than the
assumed threshold value of 7.t .

The presented algorithm was applied to all four data sets,
which enabled the detection, segmentation and classification of
the point cloud. The input data for all examined objects was
the point cloud of individual objects. The first photogrammetric
treatment was an industrial chimney. In this case, the algorithm
detected the object automatically and quickly. As a result of
the application of the RANSAC algorithm, data on an obstacle
with known coordinates X, ¥, H were obtained (see Fig. 19).
The height of the obstacle was determined with an accuracy
of 0.03 m. The second tested object was the water tower. Both
the tower and the chimney have a common feature—despite
the different architectural styles, both buildings have circular
cross-sections. The water tower data set was characterized by
the lowest number of points among all the tested objects. In this
case, the input data set consisted of 20 thousand points. Here,
the segmentation of the point cloud allowed the detection of
the water tower, which was an aviation obstacle. The following
data sets were much more numerous, and the number of their
elements was in the range of 115 000 points up to 150 thousand.
The clouds of points corresponding to the power line pole and
wind turbine were also subjected to segmentation. In these two
cases, the obtained results were ambiguous, so obstacles with an
irregular cross-section were excluded from the subsequent part
of the research. The last segmented objects were two industrial
chimneys located in the vicinity of the airport.

E. Comparison of Segmentation Results

The preliminary analysis of UAV point cloud segmentation
results was carried out based on a comparison with the
segmentation results for the point cloud obtained from airborne
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Fig. 19. Detected aviation obstacles. (a) Chimney. (b) Water tower. (c) Build-

ing. (d) Building. (e) Chimney. (f) Chimney. (g) Building. (h) Building.

laser scanning. All correctly detected aviation obstacles were
analyzed. It was noticed that in the case of both groups of data,
the RANSAC algorithm, in most cases, correctly qualified the
points belonging to objects that were aviation obstacles. The
LiDAR point cloud was characterized by a more significant,
evenly distributed number of points on the ground and base.
The algorithm incorrectly qualified the ground points to the set
belonging to the obstacle. The analysis of segmentation results
for both data sets has been extended to include a summary of the
algorithm execution time, processing data sets of various sizes
(see Table VI). Based on the outline of the results, one may notice
that the number of points does not increase the number of surface
planes and thus the time needed to perform the segmentation.

F. Analysis of the Accuracy of the Point Cloud Fit

The analysis of the accuracy of the point cloud fit was carried
out based on the reference data contained in the eTOD database
(electronic Terrain and Obstacle Data). The aerodrome obstacle
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TABLE VI
SUMMARY OF THE ALGORITHM EXECUTION TIME FOR THE UAV POINT CLOUD
AND LIDAR POINT CLOUD

Num
e point  points planes of planes UAV  LiDAR
s LDAR UAy  HDAR ] [s]
UAV
1
(chimne 841 952 5 5 10 11
y)
2
(chimne 798 818 4 4 9 11
y)
3
(chimne 803 812 4 4 9 10
y)
4
(buildin 1404 1558 3 3 12 14
g)
5
(buildin 1656 1688 5 5 18 19
g)
6
(buildin 1894 1902 7 7 21 22
2
7
(buildin 1528 1533 6 6 19 21
2)
8
(water 702 731 3 3 9 10
tower)
TABLE VII

STATISTICAL VALUES CHARACTERIZING THE ACCURACY OF THE POINT
CLoUD FITTING

Mean_ X Mean Y M;an Stan
e O o g e dord
. difference .
differenc [m] nce H [m] tion
e [m] [m] [m]
Chimney 1 0.02 0.03 0.03 0.05 0.04
Chimney 2 0.03 0.01 0.04 0.07 0.06
Chimney 3 0.02 0.02 0.02 0.04 0.06
Building 1 0.04 0.03 0.03 0.06 0.07
Building 2 0.05 0.04 0.02 0.07 0.07
Building 3 0.03 0.02 0.04 0.06 0.05
Building 4 0.02 0.05 0.04 0.06 0.05
Water 0.02 0.03 0.03 004 0.5
tower

database includes information on objects penetrating the aero-
drome boundary surfaces. The database contains information on
the longitude and latitude of the obstacle, its absolute height,
height above the ground surface, location—Ilocality, type of
obstacle, etc. The analysis of the accuracy of fitting the cloud
of points took into account whether it fit into the horizontal
plane (X, Y coordinates) and fitting into the vertical plane (H
coordinate) (see Table VII).

The accuracy analysis was carried out for eight aviation
obstacles—three industrial chimneys, four buildings, and one
water tower located in the vicinity of the airport.

Based on the above table, it can be seen that the average
difference in horizontal coordinates (X, ¥) was in the range from
0.01 to 0.05 m. The average difference in height (H) fell in the
range from 0.02 to 0.04 m. Mean error of the point cloud fitting
to the obstacle data set was from + 0.04 to &= 0.08 m, and the
standard deviation ranged from 0.04 to 0.07 m.
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Based on the accuracy results, it can be concluded that the
developed method of aviation obstacle detection and classifica-
tion guarantees horizontal and vertical accuracy at the level of
several centimeters.

V. DISCUSSION OF RESULTS

This section covers the results of detection, low altitude
point cloud segmentation, and elongated aviation obstacle
classification.

The research on the algorithm of aviation obstacle detection
was preceded by an analysis of the altitude accuracy of dense
point clouds based on the measured terrain profiles. For this
purpose, the accuracy parameters were calculated based on the
differences in height between the dense point clouds and the
measured terrain profiles. The standard deviation ranged from
0.07 to 0.15 m. The accuracy assessment was supplemented
with the measurement of field profiles on point clouds obtained
from airborne laser scanning. Based on the height determined
from ALS point cloud and field profiles, the standard deviation
ranged from 0.04 to 0.08 m. The mean error for the dense point
clouds was lower by 0.03 m. The standard deviation for the dense
point clouds was more significant by 0.04 m than the standard
deviation of the LiDAR point cloud. In his research, Wallace
et al. [67] presented a similar vertical accuracy obtained with
the use of ALS and UAYV, pointing to the advantage of UAVs due
to the relative ease and speed of data acquisition.

The initial detection of objects resulting from automatic
filtration of points located above the designated surface allowed
for the identification objects that may be aviation obstacles. The
processing time of this method and the complete automation
of the process demonstrate the high efficiency of the presented
approach.

This article presents a modified RANSAC algorithm to per-
form point cloud segmentation. The algorithm was enriched by
adding the parameter of vector data that define the attributes and
shapes of the analyzed objects.

The culmination of the aviation obstacle detection process
was the automatic classification of the aviation obstacle point
cloud based on the width and height of the obstacle as well as on
the centroid and the cross-section of the object. Thanks to this
method, it was possible to determine to which group the tested
point cloud belongs more accurately.

The article focuses on detecting the exact position of an
obstacle (X, Y) and its height (H). The obtained accuracy re-
sults proved that the RANSAC algorithm is a sufficient method
for examining geometrically uncomplicated objects [50]. The
authors took an attempt to use the developed method to detect
such obstacles as masts, turbines, poles, etc., i.e., objects of
irregular shapes. However, the obtained results were ambiguous,
so that, at this stage, it remained impossible to detect obstacles
other than those of geometrically uncomplicated shapes. In spite
of these limitations, the presented method still ensures, among
others, the required accuracy for detecting obstacles [56], the
automation of the procedure, and shortening the duration of the
whole detection process.

The accuracy analysis of aviation obstacles detection and
classification has been enriched with creating a synthetic model
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to determine the accuracy of plane identification. The analysis
results made it possible to conclude that the algorithm allows for
the determination of the exact location of the planes; however,
a slight flaw was noticed, which was the incorrect inclusion of
points located in the same plane, but not belonging to the aerial
obstacle. However, this did not affect the vertical accuracy of
the determined obstacles.

The developed methodology enabled the detection of obsta-
cles of regular cross-sections, with a uniform structure of the
point clouds. The positioning accuracy was checked with the
obstacle database. The mean error of fitting the point cloud in
eTOD was from £ 0.04 to £ 0.07 m. The standard deviation
ranged from 0.04 to 0.07 m. The mean difference in the X
coordinate was from 0.02 to 0.05 m, in the Y coordinate from 0.01
t0 0.05 m, and in the H coordinate from 0.02 to 0.04 m. Mitsevich
[12] obtained lower accuracy of determining aviation obstacles
in this article, achieving accuracy on the level of 0.3 to 0.5 m.

The experiment presented here demonstrates the advantages
of using imagery from UAV to detect aviation obstacles. Data
from UAV are obtained depending on the needs and the only
limitation are the meteorological conditions, while data from
airborne laser scanning are obtained usually only once a year.
Although the ALS enables to cover a larger area, the necessity
to ensure a high frequency of obtaining data, considering the
emerging needs, forces us to use a more cost-effective method,
which is the UAV.

However, despite the satisfactory results, the presented
method has some limitations. The first limitation of the proposed
method and other similar algorithms based on statistical image
values is that they may not be suitable for specific examples
of images, e.g., those obtained in poor weather conditions. An
example may be intense fog that obscures only a part of the
object captured in the photograph. In that case, the use of the
algorithm will negatively affect the color reproduction in the im-
age and, consequently, degrade the spectral quality of the image.
Another limitation resulted from narrowing down the research
to aviation obstacles that were elongated objects. The developed
methodology is used to study objects, which may include towers,
chimneys, skyscrapers, or buildings i.e., those that have a regular
cross-section and uniform shape. The detection of obstacles of an
irregular shape (heterogeneous distribution of the point cloud),
such as a power line pole or wind turbine, brought ambiguous
results, which suggests that the method still requires further de-
velopment. The authors are planning to conduct further research
to detect all types of aviation obstacles in the vicinity of airports.

VI. CONCLUSION

The article attempts to describe the automatic detection and
classification of elongated aviation obstacles based on dense
point clouds. The authors used a modified RANSAC algorithm,
presented a new approach to aviation obstacle detection and
classification and to point cloud filtration. The main objective
of the methodology is to detect elongated aviation obstacles in
the close vicinity of the airport.

As aresult of the conducted research, eight aviation obstacles
were detected, and the obtained accuracy seems to be promis-
ing. Based on the data contained in eTOD, the accuracy of
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the point cloud fit was calculated. The mean error of fitting
the point cloud was + 0.05 m. The mean difference in the X
coordinate was from + 0.03 m, the mean difference in the Y
coordinate was from + 0.02 m, the mean difference in the H
coordinate was from + 0.03 m—precision limits imposed by
ICAO rules [56]-[59]. The authors of this article presented a
methodology that enables detecting obstacles of an elongated
shape. Tests were conducted on a dense point cloud generated
based onimagery obtained from UAV and dense image matching
algorithms. So far, research on the detection of aviation obstacles
was conducted on point clouds obtained from airborne laser
scanning [5]. However, the correct detection of elongated obsta-
cles was difficult and required additional control by means of
traditional ground measurements, which significantly increased
the duration of the detection process [5]. The method presented
here offers higher spatial accuracy, lower data acquisition costs,
higher time resolution, i.e., up-to-dateness of data, the possibility
to analyze large areas, automation of the process, detecting
elongated obstacles, and, finally, shortening the total duration of
the detection procedure. The developed methodology may sig-
nificantly improve the process of analyzing aircraft operational
limitations, designing procedures, creating aeronautical charts,
and improving safety in the airspace by reducing the risk of an
aircraft collision with an obstacle to a minimum. The presented
approach can be used for airports of various categories, with
differing constraints imposed by obstacle limiting surfaces.

Future research will improve the presented methodology and
extend the study to other types of aviation obstacles. The authors
plan to expand the classification algorithm to cover all kinds of
aviation obstacles.
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