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Improving Fractional Vegetation Cover Estimation
With Shadow Effects Using High Dynamic

Range Images
Wei Chen , Zhe Wang, Xuepeng Zhang, Guangchao Li, Fengjiao Zhang, Lan Yang, Haijing Tian, and Gongqi Zhou

Abstract—Measured fractional vegetation cover (FVC) on the
ground is very important for validation of the remote sensing
products and algorithms. However, because of the influence of some
factors such as the angle of illumination and vegetation density,
the existence of vegetation shadows limits the accuracy of FVC
estimation. This article proposes a deep learning method to reduce
the FVC estimation error based on high dynamic range (HDR) im-
ages with vegetation shadows (HDR REC-DL method). The HDR
REC-DL method can accurately extract FVC from HDR images
with complex texture information on vegetation shadows. This
method is based on the U-Net convolutional network structure for
semantic segmentation of images containing vegetation shadows,
and the segmentation results are less affected by vegetation types.
Results from the HDR REC-DL method were highly similar to the
vegetation segmentation results from visual interpretation. Values
of the kappa coefficient, F1 score (F1), recall, and mean intersection
over union of the HDR REC-DL method were 0.926, 0.942, 0.924,
0.916 for sunny weather and 0.903, 0.974, 0.983, and 0.895 for
cloudy weather, respectively. Compared with the vegetation seg-
mentation accuracy of the shadow-resistant algorithm, the HDR
REC-DL method increases the kappa coefficient, F1, and mIOU
by 21%, 16%, and 29% for sunny weather, and by 11.1%, 3.6%,
and 10.3% for cloudy weather, respectively. The HDR REC-DL
method provides a novel method for accurately estimating FVC
from images containing vegetation shadows.

Index Terms—Deep learning, fractional vegetation cover (FVC),
high dynamic range (HDR) image, shaded vegetation.

I. INTRODUCTION

V EGETATION is an important part of the terrestrial ecosys-
tem and plays an important role in maintaining the balance
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of ecosystems, conserving water sources, and conserving water
and soil [1]–[4]. Fractional vegetation cover (FVC) can be
defined as the percentage of the vertical projection area of the
vegetation above ground (including leaves, stems, and branches)
within a statistical scope [5]. FVC is a key parameter that reflects
the growth status of vegetation and plays a key role in carbon and
water cycles and evaluation of the ecological environment [6]–
[8]. Currently, FVC is mainly obtained by ground measurement
method and remote sensing estimation method.

The remote sensing estimation method uses satellite im-
ages to estimate FVC on a global or regional scale. There
are many remote sensing inversion methods for FVC, and
the commonly used methods include empirical model method,
physical model method, mixed pixels decomposition method,
and machine learning method [9]–[14]. Some researchers use
empirical models, regression models and relationship models
based on vegetation index to estimate FVC [9], [15]. The phys-
ical model method is to establish a model about the physical
relationship between vegetation spectral information and FVC
by studying the interaction between light and vegetation [13],
[14]. Due to the problem of mixed pixels in satellite imagery,
the dimidiate pixel model is proposed to distinguish vegeta-
tion and background information [10]. Several studies estimate
global FVC based on VIIRS surface reflectance data using
machine learning methods, such as back propagation neural
networks and general regression networks [12].Some studies
use deep learning regression models to estimate FVC in savanna
ecosystems [11].

Although the remote sensing estimation method can easily
and quickly estimate the FVC over large areas, the ground
measured FVC is very important to verify the accuracy of remote
sensing algorithms and products. At present, FVC ground mea-
surement methods mainly include visual estimation, sampling,
and photography [16]–[19]. The visual estimation method and
the sampling method have the characteristics of low efficiency
and high cost, while the photographic method can obtain vertical
observation images of vegetation more quickly, which greatly
improves the efficiency and accuracy of ground measurements.
For the method of estimating FVC based on digital images, some
studies use red-green-blue (RGB), hue saturation value, Inter-
national Commission on Illumination L∗a∗b (LAB) and other
color spaces to segment vegetation [20]–[22]. Some studies use
threshold methods based on vegetation indices to estimate FVC,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2585-9984
mailto:chenw@cumtb.edu.cn
mailto:wangzhe_cumtb@163.com
mailto:996588861@qq.com
mailto:lgc911201@163.com
mailto:jiao970924@126.com
mailto:ylannn2020@163.com
mailto:tianhaijing278@163.com
mailto:tianhaijing278@163.com
mailto:zhou@terraqt.com


1702 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

such as the color index of vegetation extraction and excessive
green index [23]–[26]. However, these methods generally have
better effects on specific types of vegetation and are affected
by the complexity of vegetation texture information. There
are also some studies that use machine learning methods to
estimate FVC, mainly via supervised and unsupervised classifi-
cation methods to perform cluster analysis on training samples
[27], [28].

With the development of deep learning algorithms, convolu-
tional networks have become the preferred method for analyzing
medical images [29]. Convolutional neural networks (CNNs)
are deep feed-forward neural networks that show great potential
in vegetation classification and segmentation in the agricultural
field [30]–[32]. When the image has complex texture infor-
mation, the segmentation effect of classic CNNs and machine
learning methods will be greatly affected and are generally
limited to small labeled datasets. However, the U-shaped neural
network (U-Net) model overcomes these problems in image
segmentation. The architecture of the U-Net model includes
a contracting path for capturing context and a symmetrical
expansive path for precise positioning [33]. Some studies use
deep learning methods based on CNNs to segment tropical
rainforest habitat images and have achieved good segmentation
results [34].

However, due to the influence of factors such as the angle
of sunlight, the density of vegetation, and the angle of the
camera relative to the sun and vegetation, specular reflections
and shadows are formed on vegetation. Due to the existence of
shadows, it can be very difficult to segment vegetation from the
background of the image [35], [36]. The presence of shadows
will increase the error of vegetation classification, which will
lead to missing and over-segmentation of the vegetation segmen-
tation results in the shadow area, which will greatly affect the
estimation accuracy of FVC [37], [38]. However, high dynamic
range (HDR) images can solve the problems of natural lighting
changes and large differences in image intensity. It is obtained
by synthesizing the best details of the low dynamic range image
corresponding to each exposure time, which can better show
the characteristics of vegetation in shadow areas. [39] and [40].
Many studies have shown that under direct sunlight, the dynamic
range of HDR image scenes is much larger than that of traditional
non-HDR images, especially when the image scene contains
shadows [41]. Some studies combine photos with different ex-
posures into HDR images. For objects that show shadow areas,
HDR images produce better results than single exposure images
[42]. Some studies have proposed a ground shadow detection and
removal algorithm based on the color space conversion of HDR
images and multilevel thresholds to improve the performance of
vegetation segmentation [41].

Therefore, to reduce the influence of shadows on FVC esti-
mation, this research study proposes a deep learning method
based on HDR images containing vegetation shadows to
reduce FVC estimation errors (HDR REC-DL method). This
method uses a U-shaped CNN, which has a jump-connected
codec structure that can integrate features at different levels
[33]. The vegetation shadow contained in the image has a
fixed structure and contains substantial texture information.

It is more suitable for segmentation of images containing vege-
tation shadows based on the deep learning method of U-shaped
neural networks. The HDR image is created by merging three
images with different exposures. Spanning a wide range of
exposures will cause the shadows to become brighter [42]. It can
better display the texture and detailed characteristics of the veg-
etation in the shadow and can improve the segmentation effect
of the HDR REC-DL method on images containing vegetation
shadows.

The rest of this article is organized as follows. The sample
datasets and the processing flow of the HDR REC-DL method
are described in Section II. Section III introduces the relevant
experimental results of using the HDR REC-DL method and
traditional threshold method to calculate FVC. Section IV dis-
cusses the advantages and limitations of the HDR REC-DL
method. Finally, the experimental results of this article are
summarized in Section V.

II. DATA AND METHODS

A. Dataset Description

In this article, a Huawei Honor 10 smartphone was used to
take the HDR and normally exposed photos with vegetation
shadows. The vegetation images were obtained under various
light and weather conditions within a few days in May, June,
July, September, and November 2021. The shooting location was
near the Huailai Remote Sensing Comprehensive Test Station in
Donghuayuan Town, Huailai County, Hebei Province. The sur-
face around the test station is rich in types, including farmland,
waters, mountains, grasslands, and wetlands. The smartphone
was installed on a tripod approximately 1 m above the ground,
and Bluetooth was used to control the camera. HDR images and
normal exposure images can be obtained by setting the phone
camera to HDR mode and normal exposure mode, respectively.
The focal length and International Standards Organization (ISO)
of the camera were 4 mm and 50, respectively.

Labelme is an image labeling software with a graphical inter-
face. Labelme software can label images in the form of polygons,
rectangles, circles, polylines, line segments, and points [43].
It can be used for tasks such as target detection and image
segmentation. For the image dataset containing vegetation shad-
ows used in this article, Labelme software provided pixel-level
annotations for two semantic classes, including background
(soil, straw, stone, etc.) and foreground (vegetation in shaded
areas, vegetation in illuminated areas). In this article, HDR and
normally exposure vegetation images (121 groups) were taken
under sunny and cloudy weather, 46 sets of data were selected
as the test sets, and the remainder were the training (52 groups)
and validation sets (23 groups). The 26 and 20 groups of data in
the test sets were taken in sunny weather and cloudy weather,
respectively. The HDR image, the normal exposure image, and
the respective labels were cropped into square images with a
size of 512 × 512. To expand the datasets, ∗ the sample images
and labels were cropped with a step size of 256 to obtain 19965
subsample images and labels. Among them, there are 7590 test
sets of subsamples and a total of 12 375 training and validation
sets. The 12 375 subsamples were randomly divided into training
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Fig. 1. Soil and vegetation types in the subsample dataset (size 512 × 512).
(a)–(f) The types of ground objects represented are illuminated soil, shadow soil,
illuminated and shadow mixed soil, illuminated vegetation, shaded vegetation,
and illuminated and shadow mixed vegetation.

Fig. 2. Flow chart of the HDR REC-DL method segmenting HDR images
containing vegetation shadows to calculate FVC.

sets and validation sets at a ratio of 7:3. Fig. 1 shows the main
feature types selected from the 512 × 512 subsample datasets.

B. HDR REC-DL Method

According to Fig. 2, this flowchart is mainly divided into three
parts. In the first part, HDR images are synthesized and datasets
are created. First, through the HDR mode in the smartphone
camera, the HDR image with vegetation shadows is taken. The
vegetation is marked to obtain the label of the vegetation area
in the image. The HDR images and labels are cropped into
subsample datasets of 512 × 512, and the subsample datasets
are divided into training sets, validation sets, and test sets. In
the second part, the HDR-DL model is trained. The training
sets are placed into the U-Net network to train the HDR-DL
model, and the validation set data is used to determine whether
the model is overfitting. In the third part, the HDR-DL model is

Fig. 3. Schematic diagram of composite HDR images.

used to segment the vegetation in the subsample test sets. The
trained HDR-DL model is utilized to predict the HDR images
in the subsample test sets to obtain binary vegetation images
and calculate FVC. Then, the kappa coefficient, recall, F1 score
(F1), and mean intersection over union (mIOU) are calculated
to evaluate the accuracy of the HDR REC-DL method for FVC
estimation of HDR images with vegetation shadows.

HDR imaging (HDRI) is a technology used to achieve a
larger dynamic range of exposure than ordinary digital imaging
technology [44]. The purpose of HDRI is to correctly represent
the brightness in the real world from direct sunlight to the darkest
shadow. In natural scenes, the dynamic brightness range refers
to the ratio of the highest light intensity to the lowest light
intensity [39]. The dynamic range of an image can be defined as
the logarithmic ratio between the largest and smallest readable
signal in a given scene [44]

Dynamic Range (dB) = 20× log10
Max Signal

Min Signal
. (1)

At present, the commonly used method to obtain HDR images
is to synthesize images based on multiple exposures [45]. The
process of synthesizing HDR images is shown in Fig. 3. The
HDR images are images with three exposure types: low expo-
sure, normal exposure, and overexposure, and the best details of
images with different exposure times are used to synthesize the
HDR images [46]. The key to this method is exposure brack-
eting and merging. For nonlinear RGB images, the response
curve must be calibrated first, and the nonlinear RGB image is
converted into a linearized image [47]. The relationship between
them is as follows:

Inon−linear (x, y) = f [Ilinear (x, y)] (2)

where Inon−linear(x, y) is the pixel value of the nonlinear image;
Ilinear(x, y) is the pixel value of the linear image; and f is the
camera response function.
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Fig. 4. Uncropped normal exposure image and HDR image. (a) Normal
exposure image. (b) HDR image. The red circle indicates the difference in
brightness between the vegetation shadows in the normal exposure image and
the HDR image.

The pixel value in the image can be changed by changing
the exposure time. The pixel value of the linear image and the
irradiance of the scene with different exposure times can be
expressed as

Ilinear (x, y) = clip (tiL (x, y) + n) (3)

where L(x, y) is the irradiance of the scene; ti is the expo-
sure time of the ith image, i = 1, 2, 3 (t1 = 1/200 s, t2 =
1/640 s, t3 = 1/1250 s); and n is the noise.

For each pixel, the valid pixel value is found in the photo
with different exposure times. A pixel value less than 0.05 is
considered noise, and a pixel value greater than 0.95 is consid-
ered an overexposed area. The valid pixel value range is [0.05,
0.95]. The corresponding weightwi(x, y) of these pixel values is
obtained, and the final pixel value of the position in the different
exposure photos is generated by weighted fusion. The equation
is as follows:

wi (x, y) =
Ii (x, y)

ti
(4)

out (x, y) =

3∑
i=1

wi (x, y) Ii (x, y) (5)

where wi(x, y) is the weight, Ii(x, y) is the valid pixel value of
the ith image, and out(x, y) is the fused HDR image.

Fig. 4(a) and (b) shows that the shadows in the normally
exposed images are darker in color, and the texture features of
the vegetation are not obvious. However, the shadow area of the
HDR image becomes brighter and lighter in color, and the outline
and texture of the vegetation in the shadow area displayed are
clearer.

The HDR REC-DL method uses a U-Net CNN to train the
model. It combines high-resolution features and upsampling
layer output to provide pixel-level positioning. The U-Net struc-
ture has a large number of feature channels, which allows the
network to propagate contextual information to higher resolu-
tion layers. In the U-shaped structure, the expansion path and
the contraction path are symmetrical [33]. The deep learning
model is implemented in the programming environment of
PyTorch+python3.7. The U-Net network structure used in this

Fig. 5. U-Net architecture used to segment vegetation types that contain
shadows. The number of channels is displayed above the rectangle.

article is shown in Fig. 5. The network is a semantic segmen-
tation network composed of a fully convolutional network, a
residual network and a feature pyramid network structure [48].
The cross-entropy loss function used is shown in

crossentropy = −
∑
x

(pi (x) logqi (x)) (6)

wherepi(x) represents the label of the sample i, the positive class
is 1, and the negative class is 0; qi(x) represents the probability
that the sample i is predicted to be a positive class.

The multiplication operation in the commonly used cross-
entropy loss function is improved to the addition operation,
which will not change the monotonicity of the function and
can greatly improve the operation speed. The Adam optimizer is
used to backpropagate the loss function value [49]. It cannot only
automatically adjust the learning rate to adapt to large-scale data
operations but also has the advantages of high computational
efficiency and small memory requirements, as shown in

Wt+1 = Wt − η√
v̂t + ε

∗m̂t (7)

where Wt is the weight value in t iterations; η is the momentum
vector;mt andvt are the first-order and second-order momentum
terms, respectively; m̂t and v̂t are the correction values; and ε
is a very small number.

The loss value is calculated using the loss function, and the
weight value in the model is adjusted through back propagation
according to the loss value. The overfitting of the model is judged
according to the accuracy of the segmentation results of the
training set and the validation set. If the model is overfitting, then
the learning rate, number of iterations, initial value, momentum
coefficient and other parameters in the model can be modified
to retrain the network. The HDR-DL model can be obtained
after continuous parameter adjustment. This makes the accuracy
indicators of the training sets and the validation sets converge.
Through model prediction, the segmentation result of the image
containing the vegetation shadows is obtained. After parameter
modification, the final parameters of the HDR-DL model are 8
batches and 70 iterations, and the learning rate of the optimized
function is 0.001.
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C. SHAR-LABFVC Method

The threshold selection method is a simple and commonly
used image segmentation technique that can divide the image
into foreground and background [50], [51]. The classification of
images containing vegetation shadows is a difficult problem in
digital image processing. The existence of shadows will increase
the error of vegetation and background classification. Some
studies have proposed a shadow-resistant algorithm (SHAR-
LABFVC method) based on the LABFVC algorithm [52], [53].

The SHAR-LABFVC method first converts the RGB color
space into the hue saturation intensity (HSI) space and per-
forms histogram equalization on the intensity components. The
original intensity is replaced with the equalized intensity and
reconvert the image to the RGB color space. After that, the
RGB color space is converted to the LAB color space. The green
vegetation and the background are fitted with the normal distri-
bution function and the Gaussian distribution function of the a∗
component, respectively, and then the threshold is calculated to
classify the vegetation and the background. The fitting function
of the distribution of green vegetation and background on the a∗
component is shown in

F (x) =
wv

x · σv

√
2π

e
−(lnx−μv)2

2σ2
v +

wb

σb

√
2π

e

−(x−μb)
2

2σ2
b (8)

where the dependent variable F is the frequency of green vege-
tation and background on the a∗ component. μv and μb are the
mean values of green vegetation and background, respectively;
σv and σb are the standard deviations of green vegetation and
background, respectively; and wv and wb are the weights of
green vegetation and background, respectively.

The SHAR-LABFVC method can be divided into the SHAR-
LABFVC empirical method, SHAR-LABFVC T1 method,
and SHAR-LABFVC T2 method according to different selec-
tion thresholds. In the SHAR-LABFVC empirical method, the
empirical threshold T is suggested to be −4, which could be
changed according to difference conditions [52]. For the SHAR-
LABFVC T1 method, the threshold T1 is calculated according
to the principle of the minimum total commission error of
vegetation and background, as shown in

AT 2 +BT + C = 0 (9)

T1 =
−B ±√

B2 − 4AC

2A
. (10)

In the SHAR-LABFVC T2 method, the T2 threshold is cal-
culated based on the idea that the misclassification probabilities
of vegetation and background are equal. A complementary error
function is combined to determine the T2 threshold

erfc (x) = 1− erf (x) =
2√
π
∫∞x e−t2dt. (11)

When the classification error of vegetation is equal to the
classification error of the background, the optimal threshold T2
is as shown in

wv · erfc
(
T2 − μv√

2σv

)
= wb · erfc

(
T2 − μb√

2σb

)
(12)

TABLE I
CONFUSION MATRIX

N+i is the sum of the number of pixels in the i-th column. Ni+ is the sum of the number
of pixels in the ith row. N is the total number of pixels.

where erfc is the Gaussian error function.
In this article, the best vegetation segmentation results of the

three thresholds of the SHAR-LABFVC method are used as the
final results of the SHAR-LABFVC method.

D. Performance Evaluation

The segmentation results of the vegetation are compared with
the results of visual interpretation to evaluate the segmentation
effect. The confusion matrix (see Table I) is used to quanti-
tatively evaluate the effect of vegetation segmentation on im-
ages containing vegetation shadows. This article uses the kappa
coefficient, F1 score (F1), recall and mIOU to quantitatively
analyze the results of the segmentation of images with vegetation
shadows. Recall is a measure of coverage, which measures how
many positive cases are classified as positive cases. F1 is the
harmonic average of precision and recall. The mIOU value is
an important indicator that measures the accuracy of image
segmentation. This indicator can be interpreted as the average
intersection ratio, and the intersection over union (IOU) value
is calculated for each category. By combining these indicators,
it is helpful to better evaluate the performance of vegetation
segmentation. The calculation formulas for these indicators are
as follows:

κ =

∑
i Xii −

∑
i Ni+N+i

N2 −∑
i Ni+N+i

(13)

Recall =
TP

TP + FN
(14)

F1 =
2× Precision× Recall

Precision + Recall
(15)

IOU =
TP

TP + FP + FN
(16)

where κ is the kappa coefficient; Xii is the value of the diag-
onal of the confusion matrix; F1 is the F1 score; IOU is the
intersection over union; true positive (TP): the ground truth is
vegetation, and the prediction result is vegetation; false negative
(FN): the ground truth is vegetation, and the prediction result is
background; false positive (FP): the ground truth is background,
and the prediction result is vegetation; true negative (TN): the
ground truth is background, and the prediction result is back-
ground.
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Fig. 6. Model evaluation of the HDR REC-DL method and NOR REC-DL
method.

Fig. 7. Scatter plots of the FVC and true FVC estimated by the HDR REC-DL
method and NOR REC-DL method (the subsample image type include purely
illuminated soil and purely shaded soil).

III. RESULTS

A. Evaluation of Segmentation Results of Subsamples by the
REC-DL Method

A deep learning method based on normal exposure images
(NOR) with vegetation shadows is proposed to reduce FVC
estimation errors (NOR REC-DL method). The NOR REC-DL
method and HDR REC-DL method are deep learning methods
based on normal exposure images and HDR images, respec-
tively. The difference between the two methods is mainly the
different types of images processed. After 70 iterations, the
accuracy of the model trained by the HDR REC-DL method
on the validation sets is 0.987, and the loss on the validation
sets and training sets is 0.053 and 0.041, respectively. Similarly,
after 70 iterations, the accuracy of the model trained by the NOR
REC-DL method on the validation sets is 0.976, the validation set
loss is 0.083, and the training set loss is 0.120. Fig. 6 shows that
as the number of iterations continues to increase, the validation
set loss of the HDR REC-DL method and NOR REC-DL method
gradually stabilizes.

For all types of test set subsample images in sunny weather, the
FVC estimated by the HDR REC-DL method and the NOR REC-
DL method are compared with the visually interpreted FVC true
value, and the scatter plot is shown in Fig. 7. Fig. 7 shows that the
correlation between the FVC calculated by the HDR REC-DL
method and the visually interpreted FVC true value is stronger

Fig. 8. Scatter plots of the FVC and true FVC estimated by the HDR REC-DL
method and NOR REC-DL method (the subsample image type does not include
purely illuminated soil and purely shaded soil).

than that of the NOR REC-DL method. The BIAS and RMSE of
the HDR REC-DL method are 0.0076 and 0.026, respectively,
which are lower than the NOR REC-DL method. In addition, the
NOR REC-DL method misclassifies pure soil as vegetation in
more images than the HDR REC-DL method. This means that
when the soil pixels in a normally exposed image are dark, they
will be classified as vegetation. For the 3093 test set subsample
images that do not include purely illuminated soil and purely
shaded soil, the scatter plots between the HDR REC-DL method,
NOR REC-DL method and the visually interpreted FVC true
value are shown in Fig. 8. For the subsample dataset that does
not include purely light and purely shaded soil, the R2, BIAS,
and RMSE of the HDR REC-DL method are 0.991, 0.01, and
0.029, respectively. On the whole, the HDR REC-DL method is
better than the NOR REC-DL method with regard to the FVC
estimation results of the subsamples, and the results are closer
to the visually interpreted true value.

The results of 5 sets of subsample experiments (A to E)
are selected for display. According to Fig. 9, compared with
the visual interpretation, the vegetation segmentation results in
the shaded area using the NOR REC-DL method are partially
missing. The NOR REC-DL method demonstrates inadequate
vegetation segmentation results in the C and D experiments but
is slightly more effective in the A and B experiments. This
is because the vegetation shadows in images C2 and D2 are
very dark, and the veins and textures of the vegetation leaves
in images A2 and B2 are not obvious in the shadows. These
factors will cause a lack of vegetation segmentation results in
the NOR REC-DL method. In the E group experiment, the NOR
REC-DL method exhibits a small amount of oversegmentation,
which misclassifies the straw as vegetation. However, the HDR
REC-DL method demonstrates the best effect on the segmenta-
tion of vegetation in the shadow area, and its segmentation results
have high similarities with the results of visual interpretation. To
better measure the classification accuracy of vegetation in sub-
sample images containing vegetation shadows, four indicators,
namely, the kappa coefficient, F1, recall and mIOU, are used
to evaluate the classification accuracy. The four classification
indices of the 4290 subsamples of the statistical test sets are
given in Table II.
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Fig. 9. Vegetation segmentation results of the HDR REC-DL method and the
NOR REC-DL method on the subsample images with vegetation shadows. The
images in columns (1) and (2) are the HDR image and normal exposure image,
respectively. The images in columns (3)–(5) are the classification results from
the HDR REC-DL method, NOR REC-DL method and visual interpretation,
respectively. A to E represent the image and vegetation classification results of
different experiments.

TABLE II
STATISTICS OF FOUR VEGETATION CLASSIFICATION INDICATORS FOR THE HDR

REC-DL METHOD AND NOR REC-DL METHOD (4290 SUBSAMPLES)

For the subsample image data, overall, the vegetation seg-
mentation effect of the HDR REC-DL method is better than
that of the NOR REC-DL method. Compared with the NOR
REC-DL method, the HDR REC-DL method exhibits the largest
improvement with regard to the kappa coefficient, which are
increased by approximately 13.3%. F1 value, recall, mIOU
increased by 8.9%, 9%, and 8.7%, respectively.

B. Evaluation of FVC Estimation Results of the Entire Images

The HDR REC-DL method and the NOR REC-DL method
can obtain the overall binary image of 26 groups (in sunny
weather) and 20 groups (in cloudy weather) test sets by stitching
the predicted subsample binarized images. We compare the FVC
estimated by the HDR REC-DL method, NOR REC-DL method,
SHAR-LABFVC method with the visually interpreted true value
of FVC. Fig. 10(a) shows that the FVC estimation result of the
HDR REC-DL method is closer to the true value than the NOR
REC-DL method in sunny weather, and the FVC estimation
deviation of the former is smaller than that of the latter. The
correlation between the FVC estimation result of the HDR
REC-DL method and the visually interpreted FVC is greater than
that of the NOR REC-DL method in sunny weather. Fig. 10(c)
illustrates that the difference between the FVC estimation results

Fig. 10. Scatter plot of the FVC estimated by the HDR REC-DL method, NOR
REC-DL method, SHAR-LABFVC method (NOR, HDR) (in sunny and cloudy
weather). NOR represents that the processed image is normal exposure images,
and HDR represents that the processed image is HDR images.

Fig. 11. Vegetation segmentation results from different methods in sunny
weather. (a) HDR image. (b) Normal exposure image, (c) Classification result of
the HDR REC-DL method. (d) NOR REC-DL method. (e) Visual interpretation.
(f) SHAR-LABFVC method (HDR). (g) SHAR-LABFVC method (NOR).

of the HDR REC-DL method and the NOR REC-DL method is
small in cloudy weather. According to Fig. 10(b) and (d), The
BIAS and RMSE of the SHAR-LABFVC method (HDR) are
lower than the SHAR-LABFVC method (NOR) in sunny and
cloudy weather. In sunny and cloudy weather, the coefficient of
determination of the four methods from high to low is the HDR
REC-DL method, the NOR REC-DL method, SHAR-LABFVC
method (HDR), SHAR-LABFVC method (NOR). On the whole,
the HDR REC-DL method produces the most accurate FVC
estimation than the other three methods.

Five sets of results are selected to show the visual effects
of different methods on vegetation segmentation under sunny
weather conditions. In the sequence numbers C to G, white
represents the vegetation, and black represents the background.
According to Fig. 11, the HDR REC-DL method has the best
visual effect of vegetation segmentation in sunny weather, and
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Fig. 12. Vegetation segmentation results of different methods in cloudy
weather. (a) HDR image. (b) Normal exposure image. (c) Classification result of
the HDR REC-DL method. (d) NOR REC-DL method. (e) Visual interpretation.
(f) SHAR-LABFVC method (HDR). (g) SHAR-LABFVC method (NOR).

the SHAR-LABFVC method (NOR) is the worst. For the clus-
tered vegetation in Fig. 11 (the fifth row), the SHAR-LABFVC
method incorrectly divides the dry yellow and dead leaves
into vegetation, and there is noise in the background of the
segmentation result. For short canopy vegetation images with
deep shadows, the SHAR-LABFVC method (NOR) and NOR
REC-DL method will distinguish the part of the vegetation in
the shadow area as the background. The wrong segmentation of
the former is more serious than the latter. The SHAR-LABFVC
method (NOR) has a poor segmentation effect for vegetation
with obvious leaf veins in shallow shadow areas, and the seg-
mentation results have more noise. In Fig. 11 (the third and
fourth rows of images), the soil moisture types are moist soil
and dry soil, respectively. Comprehensive analysis of the vi-
sual results of the vegetation segmentation of 26 sets of test
images, the HDR REC-DL method, and the NOR REC-DL
method is less affected by the type of soil moisture, and there
is less noise in the vegetation segmentation results. However,
the SHAR-LABFVC method is seriously affected by the type
of soil moisture, and some vegetation segmentation results have
more noise. For photos with vegetation shadows taken in sunny
weather, the visual effects of vegetation segmentation from
satisfactory to unsatisfactory are the HDR REC-DL method,
NOR REC-DL method, SHAR-LABFVC method (HDR), and
SHAR-LABFVC method (NOR).

According to the segmentation results of the clustered plants
in cloudy weather in Fig. 12 (the first and second rows of im-
ages), it can be found that the vegetation segmentation results of
the four methods have very little difference. This may be related
to the absence of shadows in the image of clustered plants under
cloudy conditions. For the short canopy vegetation in Fig. 12
(the third and fourth rows of images), the visual results of the
four methods of vegetation segmentation have small differences.
The soil moisture type in Fig. 12 (the third row of the image)
is moist soil. The results of the SHAR-LABFVC method show
that there are a small number of small noise points classified as
vegetation, especially in the moist soil area on the right half of
the image. However, the results of the HDR REC-DL method
and the NOR REC-DL method have fewer noise points than the
SHAR-LABFVC method. This means that the HDR REC-DL

Fig. 13. Vegetation segmentation accuracy index of the SHAR-LABFVC
method, the HDR REC-DL method, and the NOR REC-DL method. (a) Sunny
weather. (b) Cloudy weather.

method and the NOR REC-DL method are less affected by the
type of soil moisture in cloudy weather.

The average values of the four indicators of the vegetation
segmentation results in the 26 groups (photographed in sunny
weather) and 20 groups of photos (photographed in cloudy
weather) are shown in Fig. 13. According to Fig. 13(a), the
four indicators of the HDR REC-DL method are the highest
in sunny weather, and those of the SHAR-LABFVC method
(NOR) are the lowest. The kappa coefficient, F1, recall, and
mIOU of the HDR REC-DL method are 0.926, 0.942, 0.924, and
0.916, respectively. For the HDR REC-DL method, these four
indicators are increased by 7.6%, 6%, 5.6%, and 8.4% compared
with the NOR REC-DL method. For the HDR REC-DL method,
the kappa coefficient, F1, recall, and mIOU are increased by
21%, 16%, 12%, and 29%, respectively, compared with the
SHAR-LABFVC method (NOR). As illustrated in Fig. 13(b),
the average values of the kappa coefficient, F1, recall, and mIOU
of the HDR REC-DL method in cloudy weather are 0.903,
0.974, 0.983, and 0.895, respectively. For these four indicators
under cloudy conditions, the HDR REC-DL method is 6.1%,
1%, 1.9%, 5.2%, and 11.1%, 3.6%, 4.9%, 10.3% higher than
the NOR REC-DL method and the SHAR-LABFVC method
(NOR), respectively.

According to the comprehensive results of these four indica-
tors, the accuracy of these methods for image segmentation with
vegetation shadows ranges from satisfactory to unsatisfactory
as follows.

the HDR REC-DL method, NOR REC-DL method, SHAR-
LABFVC method (HDR), SHAR-LABFVC method (NOR).

IV. DISCUSSION

A. Advantages of the HDR REC-DL Method

The novelty of this article is mainly to combine HDR im-
ages with U-Net CNN and propose an FVC inversion method
combined with deep learning. HDR images can weaken the
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strong light, highlight the information in the low-light area, and
better display the vegetation information in the shadow area [42].
The U-Net CNN combines low-resolution information that pro-
vides the basis for vegetation identification and high-resolution
information that provides the basis for accurate segmentation
and positioning [33]. This method can effectively reduce the
influence of shadows due to strong changes in natural light
and direct sunlight. It can significantly improve the estimation
accuracy of FVC.

The angle of sunlight, natural light changes and the occlusion
of vegetation leaves will cause shadows in the captured vege-
tation images. These shadows present a tremendous challenge
for accurately estimating FVC. The presence of shadows can
lead to incorrect classification of vegetation in shadow areas
[35]. The SHAR-LABFVC method is better for certain types
of shaded vegetation. However, for images with complex scenes
and different types of shaded vegetation, especially for elaborate
texture information, the vegetation in the shaded area will be
over segmented or missing [52]. However, the HDR REC-DL
method does not use thresholds to segment shadow vegetation
and is less affected by vegetation types. The U-Net CNN used
can effectively analyze the texture information of vegetation
leaves. Texture information can not only reveal the characteris-
tics of vegetation, but also help segment vegetation with complex
texture information [54]. By analyzing the context signals of
multiple adjacent pixels, it is possible to better segment the
vegetation in the shadow area with complex texture information
[48].

In this article, the HDR REC-DL method improves the es-
timation accuracy of FVC compared with the NOR REC-DL
method and SHAR-LABFVC method. In the verification of the
FVC of different images, this method has demonstrated a lower
RMSE and bias, and the estimated FVC is closest to the true
value. The vegetation segmentation results of the HDR REC-DL
method are very similar to visually interpreted images, which
improves the performance of images segmentation of vegetation
with shadows under natural lighting conditions in the wild.

B. Limitations and Future Perspectives

The HDR REC-DL method studied clustered and short
canopy vegetation, but did not study the segmentation effect of
coniferous vegetation. This article is based on ground images
and did not test the segmentation effect of this method on
the unmanned aerial vehicle (UAV) scale. This article did not
consider the influence of the change of the solar angle on the
segmentation accuracy of the HDR REC-DL method.

In the future, the effect of this method in estimating FVC in
coniferous vegetation and UAV images can be further evaluated.
The changes of the solar angle will affect the area, position, and
depth of shadows in the vegetation image. We will further study
the impact of changes in the solar angle on the HDR REC-DL
method in future research. Besides, the canopy cover can be
further used to estimate leaf area index (LAI). However, the
presence of shadows in digital images with a sky background can
affect the accuracy of canopy cover estimation. The HDR images
can better suppress strong light and highlight weak light. Thus,

the HDR REC-DL method may be of great use for improving
the accuracy of calculating LAI.

V. CONCLUSION

The HDR REC-DL method proposed in this article combines
the advantages of HDR images and U-shaped CNNs, which
can efficiently and accurately estimate the FVC of images
with vegetation shadows. The HDR REC-DL method improves
the segmentation performance of vegetation in shadow areas
under natural light conditions. The FVC results of subsample
images (including shadow vegetation) estimated by the HDR
REC-DL method and NOR REC-DL method are compared.
The HDR REC-DL method is better than the NOR REC-DL
method with respect to the vegetation segmentation effect of
subsamples containing vegetation shadows. This shows that the
deep learning method based on HDR images improves the FVC
estimation accuracy of the images with vegetation shadows in
the subsamples. For the spliced subsample images, the four
indicators of the kappa coefficient, F1, recall, and mIOU are
comprehensively analyzed. The order of segmentation effect of
the vegetation from satisfactory to unsatisfactory is the HDR
REC-DL method, NOR REC-DL method, SHAR-LABFVC
method (HDR), and SHAR-LABFVC method (NOR). The HDR
REC-DL method is suitable for segmenting images of vegetation
shadows with complex scenes and texture information. The
vegetation segmentation effect is less affected by vegetation
types. The HDR REC-DL method provides a novel method for
measuring FVC as ground verification data.

REFERENCES

[1] D. D. Kong et al., “Seasonal vegetation response to climate change in
the northern hemisphere (1982-2013),” Glob. Planet. Change, vol. 148,
pp. 1–8, Jan. 2017.

[2] A. A. Gitelson et al., “Novel algorithms for remote estimation of vegetation
fraction,” Remote Sens. Environ., vol. 80, no. 1, pp. 76–87, Apr. 2002.

[3] X. Wen, X. Deng, and F. Zhang, “Scale effects of vegetation restoration on
soil and water conservation in a semi-arid region in China: Resources con-
servation and sustainable for management,” Resour. Conserv. Recycling,
vol. 151, Dec. 2019, Art. no. 104474.

[4] C. J. Kucharik et al., “Testing the performance of a dynamic global ecosys-
tem model: Water balance, carbon balance, and vegetation structure,” Glob.
Biogeochem. Cycles, vol. 14, no. 3, pp. 795–825, Sep. 2000.

[5] K. Wittich and O. Hansing, “Area-averaged vegetative cover fraction esti-
mated from satellite data,” Int. J. Biometeorol., vol. 38, no. 4, pp. 209–215,
1995.

[6] H. H. Feng, B. Zou, and J. H. Luo, “Coverage-dependent amplifiers of
vegetation change on global water cycle dynamics,” J. Hydrol., vol. 550,
pp. 220–229, Jul. 2017.

[7] M. Jung et al., “Exploiting synergies of global land cover products for car-
bon cycle modeling,” Remote Sens. Environ., vol. 101, no. 4, pp. 534–553,
Apr. 2006.

[8] Y. Wang and M. Li, “Annually urban fractional vegetation cover dynamic
mapping in Hefei, China (1999-2018),” Remote Sens., vol. 13, no. 11, Jun,
2021, Art. no. 2126.

[9] J. F. Xiao and A. Moody, “A comparison of methods for estimating
fractional green vegetation cover within a desert-to-upland transition zone
in Central New Mexico, USA,” Remote Sens. Environ., vol. 98, no. 2-3,
pp. 237–250, Oct. 2005.

[10] J. L. Case, F. J. LaFontaine, J. R. Bell, G. J. Jedlovec, S. V. Kumar, and C.
D. Peters-Lidard, “A real-time MODIS vegetation product for land surface
and numerical weather prediction models,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 3, pp. 1772–1786, Mar. 2014.



1710 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[11] W. Li et al., “Deep-learning based high-resolution mapping shows woody
vegetation densification in Greater Maasai Mara ecosystem,” Remote Sens.
Environ., vol. 247, Sep. 2020, Art. no. 111953.

[12] D. Y. Liu et al., “Global fractional vegetation cover estimation algorithm
for VIIRS reflectance data based on machine learning methods,” Remote
Sens., vol. 10, no. 10, Oct. 2018, Art. no. 1648.

[13] W. Verhoef, “Light scattering by leaf layers with application to canopy
reflectance modeling: The SAIL model,” Remote Sens. Environ., vol. 16,
no. 2, pp. 125–141, Jan. 1984.

[14] P. Scarth and S. Phinn, “Determining forest structural attributes using
an inverted geometric-optical model in mixed eucalypt forests, South-
east Queensland, Australia,” Remote Sens. Environ., vol. 71, no. 2,
pp. 141–157, Feb. 2000.

[15] J. P. Guerschman et al., “Estimating fractional cover of photosynthetic
vegetation, non-photosynthetic vegetation and bare soil in the Australian
tropical Savanna region upscaling the EO-1 hyperion and MODIS sensors,”
Remote Sens. Environ., vol. 113, no. 5, pp. 928–945, May 2009.

[16] X. B. Li et al., “Improvement, comparison, and application of field
measurement methods for grassland vegetation fractional coverage,” J.
Integrative Plant Biol., vol. 47, no. 9, pp. 1074–1083, Sep. 2005.

[17] M. O. Smith et al., “Vegetation in deserts: I. A regional measure of
abundance from multispectral images,” Remote Sens. Environ., vol. 31,
no. 1, pp. 1–26, 1990.

[18] B. C. Rundquist, “The influence of canopy green vegetation fraction
on spectral measurements over native tallgrass prairie,” Remote Sens.
Environ., vol. 81, no. 1, pp. 129–135, Jul. 2002.

[19] D. T. Booth et al., “The accuracy of ground-cover measurements,” Range-
land Ecol. Manage., vol. 59, no. 2, pp. 179–188, Mar. 2006.

[20] Y. Liu et al., “A novel method for extracting green fractional vegetation
cover from digital images,” J. Vegetation Sci., vol. 23, no. 3, pp. 406–418,
Jun. 2012.

[21] B. Panneton and M. Brouillard, “Colour representation methods for seg-
mentation of vegetation in photographs,” Biosyst. Eng., vol. 102, no. 4,
pp. 365–378, Apr. 2009.

[22] I. Philipp and T. Rath, “Improving plant discrimination in image processing
by use of different colour space transformations,” Comput. Electron.
Agriculture, vol. 35, no. 1, pp. 1–15, Jul. 2002.

[23] T. Kataoka, T. Kaneko, H. Okamoto, and S. Hata, “Crop growth estimation
system using machine vision,” in Proc. IEEE/ASME Int. Conf. Adv. Intell.
Mechatronics, 2003, pp. 1079–1083.

[24] C. Gee et al., “Crop/weed discrimination in perspective agronomic im-
ages,” Comput. Electron. Agriculture, vol. 60, no. 1, pp. 49–59, Jan. 2008.

[25] X. P. Burgos-Artizzu et al., “Real-time image processing for crop/weed
discrimination in maize fields,” Comput. Electron. Agriculture, vol. 75,
no. 2, pp. 337–346, Feb. 2011.

[26] G. E. Meyer and J. C. Neto, “Verification of color vegetation indices
for automated crop imaging applications,” Comput. Electron. Agriculture,
vol. 63, no. 2, pp. 282–293, Oct. 2008.

[27] L. F. Tian and D. C. Slaughter, “Environmentally adaptive segmentation al-
gorithm for outdoor image segmentation,” Comput. Electron. Agriculture,
vol. 21, no. 3, pp. 153–168, 1998.

[28] J. I. Corcoles et al., “Estimation of leaf area index in onion (Allium
cepa L.) using an unmanned aerial vehicle,” Biosyst. Eng., vol. 115, no. 1,
pp. 31–42, May 2013.

[29] G. Litjens et al., “A survey on deep learning in medical image analysis,”
Med. Image Anal., vol. 42, pp. 60–88, Dec. 2017.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, Jun. 2017.

[31] A. Kamilaris and F. X. Prenafeta-Boldu, “Deep learning in agriculture:
A survey,” Comput. Electron. Agriculture, vol. 147, pp. 70–90, Apr.
2018.

[32] U. Kalin et al., “Defoliation estimation of forest trees from ground-
level images,” Remote Sens. Environ., vol. 223, pp. 143–153, Mar.
2019.

[33] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Med. Image Comput.
Comput.-Assist. Interv., 2015, pp. 234–241.

[34] J. F. Abrams et al., “Habitat-Net: Segmentation of habitat images using
deep learning,” Ecol. Informat, vol. 51, pp. 121–128, May 2019.

[35] G. D. Finlayson et al., “On the removal of shadows from images,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 28, no. 1, pp. 59–68, Jan. 2006.

[36] H. Y. Jeon, L. F. Tian, and H. Zhu, “Robust crop and weed segmenta-
tion under uncontrolled outdoor illumination,” Sensors, vol. 11, no. 6,
pp. 6270–6283, Jun. 2011.

[37] W. Guo, U. K. Rage, and S. Ninomiya, “Illumination invariant segmen-
tation of vegetation for time series wheat images based on decision tree
model,” Comput. Electron. Agriculture, vol. 96, pp. 58–66, Aug, 2013.

[38] A. T. Nieuwenhuizen et al., “Colour based detection of volunteer potatoes
as weeds in sugar beet fields using machine vision,” Precis. Agriculture,
vol. 8, no. 6, pp. 267–278, Dec. 2007.

[39] D. J. Graham, “Visual perception: Lightness in a high-dynamic-range
world,” Curr. Biol., vol. 21, no. 22, pp. R914–R916, Nov. 2011.

[40] S. Mann et al., “Realtime HDR (high dynamic range) video for eyetap
wearable computers, FPGA-based seeing AIDS, and glasseyes (eyeTaps),”
in Proc. 25th IEEE Can. Conf. Elect. Comput. Eng., 2012, pp. 1–6.

[41] H. K. Suh, J. W. Hofstee, and E. J. van Henten, “Improved vegetation
segmentation with ground shadow removal using an HDR camera,” Precis.
Agriculture, vol. 19, no. 2, pp. 218–237, Apr. 2018.

[42] S. E. Cox and D. T. Booth, “Shadow attenuation with high dynamic range
images,” Environ. Monit. Assessment, vol. 158, no. 1-4, pp. 231–241,
Nov. 2009.

[43] A. Torralba, B. C. Russell, and J. Yuen, “LabelMe: Online image an-
notation and applications,” Proc. IEEE, vol. 98, no. 8, pp. 1467–1484,
Aug. 2010.

[44] C. Bloch, The HDRI Handbook 2.0: High Dynamic Range Imaging For
Photographers and CG Artists. San Rafael, CA, USA: Rocky Nook, 2013.

[45] M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic
approach to dynamic range enhancement using multiple exposures,” J.
Electron. Imag., vol. 12, no. 2, pp. 219–228, 2003.

[46] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance
maps from photographs,” in Proc. 24th Annu. Conf. Comput. Graph.
Interactive Techn., 1997, pp. 369–378.

[47] S. Mann and R. Picard, “On being ‘undigital’ with digital cameras:
Extending dynamic range by combining differently exposed pictures,” in
Proc. IS&T 48th Annu. Conf. Soc. Imag. Sci. Technol. Annu. Conf., 1995,
pp. 442–448.

[48] T. Kattenborn, J. Eichel, and F. E. Fassnacht, “Convolutional neural
networks enable efficient, accurate and fine-grained segmentation of plant
species and communities from high-resolution UAV imagery,” Sci. Rep.,
vol. 10, no. 1, 2019, Art. no. 17656.

[49] D. Kingma, and J. Ba, “Adam: A Method for Stochastic Optimization,”
Int. Conf. Learn. Representat., Dec. 2014.

[50] Z. Wang, J. Xiong, Y. Yang, and H. Li, “A flexible and robust threshold
selection method,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 9,
pp. 2220–2232, Sep. 2018.

[51] B. Karasulu and S. Korukoglu, “A simulated annealing-based optimal
threshold determining method in edge-based segmentation of grayscale
images,” Appl. Soft Comput., vol. 11, no. 2, pp. 2246–2259, Mar. 2011.

[52] W. Song et al., “Extracting the green fractional vegetation cover from
digital images using a shadow-resistant algorithm (SHAR-LABFVC),”
Remote Sens., vol. 7, no. 8, pp. 10425–10443, 2015.

[53] X. Mu, Y. Liu, H. Wang, and G. Yan, “A novel method for extracting green
fractional vegetation cover fromdigital images,” J. Vegetation Sci., vol. 23,
no. 3, pp. 406–418, 2012.

[54] F. H. Wagner et al., “Using the U-net convolutional network to map forest
types and disturbance in the atlantic rainforest with very high resolution im-
ages,” Remote Sens. Ecol. Conserv., vol. 5, no. 4, pp. 360–375, Dec. 2019.

Wei Chen received the B.S. degree in geographical
information system from Beijing Normal University,
Beijing, China, in 2008 and Ph.D. degree in pho-
togrammetry and remote sensing from Peking Uni-
versity, Beijing, China, in 2013.

He is currently an Associate Professor with the
College of Geoscience and Surveying Engineering,
China University of Mining & Technology, Beijing,
China. His major research interests include remote
sensing retrieval and remote sensing applications.

Zhe Wang is currently working toward the master’s
degree with the College of Geoscience and Surveying
Engineering, China University of Mining and Tech-
nology, Beijing, China.

His major research interests include remote sensing
of the ecological environment, computer vision, and
deep learning.



CHEN et al.: IMPROVING FVC ESTIMATION WITH SHADOW EFFECTS USING HIGH DYNAMIC RANGE IMAGES 1711

Xuepeng Zhang is currently working toward the
master’s degree with the College of Geoscience and
Surveying Engineering, China University of Mining
and Technology, Beijing, China.

His current research interests include ecological
value assessment and surface temperature inversion.

Guangchao Li is currently working toward the Ph.D.
degree with the College of Geoscience and Surveying
Engineering, China University of Mining and Tech-
nology, Beijing, China.

His current research interests include atmospheric
aerosols, and ecological environment monitoring and
evaluation.

Fengjiao Zhang is currently working toward the
master’s degree with the College of Geoscience and
Surveying Engineering, China University of Mining
and Technology, Beijing, China.

Her current research interests include satellite re-
mote sensing radiometric calibration, land surface
processes, and urban climate, and air quality.

Lan Yang is currently working toward the master’s
degree with the College of Geoscience and Surveying
Engineering, China University of Mining and Tech-
nology, Beijing, China.

Her current research interests include polariza-
tion remote sensing, extraction of vegetables under
shadow conditions, and application of deep learning
in remote sensing.

Haijing Tian received the Ph.D. degree in cartog-
raphy and geographic information systems from the
Institute of Remote Sensing and Digital Earth, Chi-
nese Academy of Sciences, Beijing, China, in 2017.

She is currently a Senior Engineer working with
National Forestry Administration, Beijing, China.

Gongqi Zhou received the Ph.D degree in cartogra-
phy and geographic information systems from Bei-
jing Normal University, Beijing, China, in 2016.

He is the Lead basic Tech Scientist with Ter-
raQuanta, Beijing, China. His research interests in-
clude remote sensing information extraction, com-
puter vision, and machine learning.

Beijing


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


