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Abstract—The melting of ice sheets and glaciers is one of the main
contributors to global sea-level rise. Hence, continuous monitoring
of glacier changes and in particular the mapping of positional
changes of their calving front is of significant importance. This
delineation process, in general, has been carried out manually,
which is time-consuming and not feasible for the abundance of
available data within the past decade. Automatic delineation of the
glacier fronts in synthetic aperture radar (SAR) images can be
performed using deep learning-based U-Net models. This article
aims to study and survey the components of a U-Net model and
optimize the model to get the most out of U-Net for glacier (calving
front) segmentation. We trained the U-Net to segment the SAR
images of Sjogren-Inlet and Dinsmoore–Bombardier–Edgworth
glacier systems on the Antarctica Peninsula region taken by ERS-
1/2, Envisat, RadarSAT-1, ALOS, TerraSAR-X, and TanDEM-X
missions. The U-Net model was optimized in six aspects. The first
two aspects, namely data preprocessing and data augmentation,
enhanced the representation of information in the image. The
remaining four aspects optimized the feature extraction of U-Net
by finding the best-suited loss function, bottleneck, normalization
technique, and dropouts for the glacier segmentation task. The
optimized U-Net model achieves a dice coefficient score of 0.9378
with a 20% improvement over the baseline U-Net model, which
achieved a score of 0.7377. This segmentation result is further
postprocessed to delineate the calving front. The optimized U-Net
model shows 23% improvement in the glacier front delineation
compared to the baseline model.

Index Terms—Glacier calving front segmentation, optimized
U-Net, semantic segmentation.

I. INTRODUCTION

THE ice masses of the earth cryosphere are strongly affected
by climate change. Data, such as the position of the calving

front of marine or lake terminating glaciers, the location where
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the glacier terminates, or where icebergs calve off, can serve
as an indicator for changes in the climatic setting or the ice
dynamics of a glacier system. Calving front recession can desta-
bilize the ice flow and enhance further recession, by reducing
the buttressing forces at the glacier terminus or unpinning from
so-called pinning points (bedrock undulations) of the floating
glacier tongue [1]. Glaciers, ice caps, and ice sheets are mainly
located in remote places, like high mountain or polar regions,
and extend over large regions. This makes remote sensing data
ideal for studying changes in ice masses.

Various types of remote-sensing data are used to infer calving
front positions. Commonly, multispectral or synthetic aperture
radar (SAR) imagery is used. SAR data have the advantage
of not being limited by cloud cover or polar night. However,
the acquisition geometry and topography of the monitored area
can cause effects such as SAR layover and shadowing. Most
analyses of calving front positions relied on manual mapping in
the past. These manual delineation methods are labor-intensive
and error-prone when working with rapidly growing satellite
image archives [2]. The water surface in front of the calving
front is often covered by icebergs and sea/lake ice, forming
the ice-mélange. The surface texture of glacier tongue and ice
mélange can be quite similar, making it difficult to separate both,
even for an experienced mapper. Hence, automating the glacier
(front) segmentation method is a challenge that has been actively
studied in the past decades [3]–[8]. Various (semi)automatic
routines were developed based on image classification, edge
detection, and edge enhancement. The performance of these
methods is mostly good, but a major problem arises when the
water region at the calving front is covered by ice mélange,
which is especially the case in many polar regions [2].

One of the earlier works on automatic segmentation of glaciers
was by Sohn and Jezek [3]. They used Roberts cross operator
to detect the edges of the Jakobshavn glacier in Greenland.
Seale et al. [5] proposed a method to delineate the glacier
calving fronts automatically and delineated the MODIS data
for ten years along the Greenlandic coast. They performed a
multitemporal analysis on the image and used a Sobel operator
and the brightness gradient to detect the edges. Klinger et al. [4],
on the other hand, formulated a fully automated approach for
delineating the calving fronts based on the active contours (also
referred to as “snakes”) and nearest neighbor (NN) classifier [9].
This method takes the initial coastline position and uses the
classification parameters and the NN classifier to calculate the
extent to which the new front position has been warped. All
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these methods are analytical, which have various advantages,
such as reduced computation time and easier analysis of detec-
tion errors. However, they require either prior knowledge of the
data or labor-intensive manual work for pre- or post-processing.

Deep learning-based algorithms, mainly based on convolu-
tional neural networks (CNN) have shown better performance
than the analytical methods for image processing, object de-
tection, and segmentation tasks [10]. Deep learning has also
been explored in fields where remote sensing imagery is used
and high accuracies have been achieved for applications like
hyperspectral image analysis, interpretation of SAR images, in-
terpretation of high-resolution satellite images, multimodal data
fusion, and 3-D reconstruction [11]. These algorithms learn the
information from a given input by transforming it to higher levels
of abstract representation using a gradient-based optimization
scheme [12]. Pixel-level classification of semantic regions is
known as semantic segmentation. Various authors have proposed
numerous CNN-based deep learning architectures for image
semantic segmentation tasks [13]. Among those, fully convo-
lutional neural network (FCNN) proposed by Long et al. [14]
and FCNN-based U-Net introduced by Ronneberger et al. [15]
has gained lots of attention due to their high performance even
with low contrast medical images.

U-Nets have also been explored for glacier calving front
segmentation. One of the first studies regarding glacier calving
front segmentation using U-Net was conducted by Mohajerani
et al. [7] on Greenland glaciers. They trained a U-Net to segment
the input image into the glacier calving front region and nonfront
region. They demonstrated a significant performance increase
in calving front delineation compared to the analytical method
like the Sobel operator. Here, however, the authors resize the
large images to a smaller size and feed them into the network,
which will lead to potential information loss. Furthermore, all
the input images have to be rotated such that the glacier flow
is in the same direction. Zhang et al. [6] segmented the glacier
by tiling the large input image into smaller tiles and trained the
U-Net with these patches. In the next step, they postprocessed
the results to extract the glacier calving front. Here the authors
showcased a small test error suggesting that the accuracy of a
well-trained network can be close to the human level [6]. But,
tiling the image into smaller tiles leads to a class imbalance in the
patches and makes the training process challenging. To tackle
the class imbalance problem, the authors [6] have dropped 80%
of the tiles with only one class in them. This class imbalance
issue is handled via reformulating the segmentation problem
into a pixel-wise regression task by Davari et al. [16] in their
study on Antarctic Peninsula glaciers. The authors construct
a distance map representing each pixel’s distance from the
calving front and train a U-Net to approximate this distance
map given a SAR image. The calving front is further extracted
from this distance map during postprocessing. The same class
imbalance issue is tackled by tuning the learning hyperparameter
in another study [17]. This is done in two steps; first, the Mathews
correlation coefficient metric is used as a metric for the validation
set to decide early stopping and to avoid overfitting; second, they
proposed a distance map-based BCE loss function for optimizing
the U-Net. In both studies, the authors demonstrate the impact

of fine-tuning the individual aspects of a deep learning model
for calving front delineation and its overall performance gain.
Another study, which uses U-Nets for glacier calving front
segmentation, has been conducted by Baumhoer et al. [18]. The
authors explore the performance of U-Net trained on different
glaciers. Finally, a comprehensive study on glacier front detec-
tion for 66 Greenland glaciers using over 1500 optical images
with manual delineations and a convolutional neural network
was conducted by Cheng et al. [8]. They constructed their
architecture by adapting the DeepLabV3+ Xception model with
modifications. This modified model provides a probability mask
output from which the calving front is extracted via substantial
postprocessing. Though Cheng et al. performed their study on
large glacier ensembles, the entirety of the data is too large to
train in a reasonable time. To accommodate the large dataset,
the authors have greatly down-scaled large images so that the
training can be performed with limited resources and time. This
resizing may lead to potential information loss.

While the U-Net architecture in its original form shows a high
affinity to detect glacier calving fronts in SAR images compared
to the analytical methods, various issues and imperfections
negatively impact its performance. Some of the major issues
in training a U-Net on SAR image are explained below.

A clear and separable representation of information in the
data plays a vital role in the performance of a deep learn-
ing model [19]. However, SAR images are prone to speckle
noises [20], [21] and exhibit low contrast between the glacier
and nonglacier regions [18]. As the nature of the noise and
low contrast issues are well known, preprocessing steps with
various filters were suggested [22], [23]. Besides noisy data,
the lack of sufficiently well-annotated glacier image data is a
major obstacle to successfully training a U-Net. Lack of data
becomes a problem because deep learning models rely on a
diverse training dataset, which represents the problem domain
completely to avoid over-fitting and learn better features [24].
Data augmentation increases the amount of annotated training
data, which in a way serves as regularization to prevent the model
from over-fitting [25], [26].

Another challenging factor, while training a U-Net for glacier
calving front segmentation, is the class imbalance between
glacier calving front and nonfront regions in the SAR image.
The class imbalance in the training dataset causes the U-Net to
misclassify most of the regions in the glacier image as a non-
glacier calving front region because of its higher prior probabil-
ity [27]. The negative effects of class imbalance while training
a model can be reduced via appropriate data-level manipula-
tion or algorithm-level constraints [27]. Data-level manipulation
such as data augmentation and dynamic sampling [28]–[32]
are effective in handling class imbalance issue, but increases
the computational cost. Simultaneously, the algorithm-level
constraints such as loss functions are case-specific and not a
generic method [27]. Further, the U-Net also suffers in extracting
features that capture non-local information at the lower layers
of the encoder part [33]. This happens due to the small receptive
fields at the bottleneck layers. The final issue in training a U-Net
for glacier (front) segmentation is its slow convergence rate.
Activation functions such as rectified linear unit (ReLU), which
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Fig. 1. Overview of study area at the northern Antarctic Peninsula. Subsets show analyses glacier systems. Pink polygons indicate areas of interest used in the
analysis. Background: ESRI Satellite © ESRI; Map of Antarctic and Antarctic Peninsula: Landsat LIMA Mosaic © USGS, NASA, BAS, NFS.

are not zero-centered, cause internal covariate shift, thereby
leading to slower convergence [34]. The U-Net architecture
uses the ReLU activation function after every convolution layer.
Hence, it is prone to internal covariate shift, which can be
addressed using normalization and regularization techniques.

This study addresses all the abovementioned issues, both on
data-level and algorithm-level that could hinder the performance
of a U-Net for glacier calving front segmentation, by comparing,
analyzing, and optimizing the U-Net components in the follow-
ing six stages:

1) data preprocessing;
2) data augmentation;
3) optimal loss function;
4) optimal bottleneck;
5) optimal normalization; and
6) optimal dropout ratios.
The rest of this article is structured as follows. In Section II,

we explain the data used in this study. Afterward, the base
segmentation model is introduced in Section III. In Section IV,
we propose the modifications and evaluate their effects. We
evaluate our optimized model against two strong state-of-the-art
models in Section VI and show its superiority. In Section V,
we conduct an ablation study to evaluate the effect of different
transfer learning strategies. Finally, we compute the delineation
of the calving front in Section VII. Section IX concludes this
article.

II. DATA

A. Study Sites

Along the Antarctic Peninsula and Greenland’s margins,
marine-terminating outlet glaciers are draining the respective
ice sheets. These outlet glaciers are typically located in narrow
fjords. A pronounced retreat of the glacier calving fronts was
reported along the coastline of the Antarctic Peninsula for the last
decades [35], [36]. In particular, the retreat and disintegration of

ice shelves along the Antarctic Peninsula has strongly affected
the ice dynamics of the tributary glaciers, leading to glacier thin-
ning, further recession, and high ice losses [37] and [38]. In this
study, we selected outlet glaciers on the Antarctic Peninsula and
Greenland to test and analyze the capabilities of CNN for calving
front detection on SAR intensity images. The Sjögren-Inlet (SI)
and Dinsmoore–Bombardier–Edgworth (DBE) glacier systems,
which are major tributaries to the Prince–Gustav-Channel and
Larsen-A ice shelves, respectively, were selected as study sites
on the Antarctic Peninsula. At both sites, a comprehensive
analysis of the reaction of the glaciers to the break-up of the
ice shelves in 1995 was carried out by [38] and [39]. Strong
acceleration of the ice flow and a subsequent long-term slow
down was observed at both glacier systems. Additionally, a
pronounced and rapid recession of the calving front shortly after
the ice shelf disintegration, followed by variations in the calving
front positions, was mapped at both sites. In Greenland, we
selected Jakobshavn Isbræ for our investigations. It is one of the
major outlet glaciers of the Greenland ice sheet and drains into
the ocean on the central west coast of Greenland. Within the last
decades, the strong retreat of the calving front and pronounced
variations in the ice flow speed were observed [40]–[42].

B. SAR Imagery Processing

We used satellite SAR imagery from the ERS-1/2, En-
visat, RadarSAT-1, ALOS, TerraSAR-X (TSX), and TanDEM-X
(TDX) missions at both study sites at the Antarctic Peninsula,
acquired between 1995 and 2014. SAR speckle was reduced by
multilooking the acquisitions. The multilooked intensity images
were geo-referenced and ortho-rectified by means of the ASTER
digital elevation model from [43]. The processing of the SAR
imagery was done using the GAMMA RS Software. At our study
site in Greenland, and Jakobshavn Isbrea, we used the same
acquisitions as [6]. The authors kindly provided us with the
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TABLE I
OVERVIEW OF THE SAR SENSORS AND SPECIFICATIONS USED TO ACQUIRE THE SAR IMAGES OF THE ANTARCTIC PENINSULA AND JAKOBSHAVN ISBREA DATASETS

routines to carry out the same processing on the TSX enhanced-
ellipsoid-corrected (EEC) imagery. A detailed description of
the processing can be found in [6]. The specifications and
parameters of the SAR sensors and imagery are provided in
Table I.

C. Labeled Image Generation

The manually mapped calving front locations at DBE and SI
glacier from [38] and [39], and at Jakobshavn Isbrea from [6]
were used to generate the training labels. The preprocessed SAR
acquisitions were cropped to the areas of interest as shown in
Fig. 1 and converted to 16-b single-channel images. Classified 8-
b single-channel images showing the defined classes (glacier and
nonglacier regions) were generated using the respective glacier
calving front position (spatial lines) in combination with the
coastline and rock-outcrop polygons (Antarctic Peninsula: from
the Antarctic Digital Database, Jakobshavn Isbrea: manually
defined).

D. Data Statistics

The Antarctic Peninsula dataset consists of 244 images with
various image sizes ranging from 458× 377 to 4581× 3370
pixels. Apart from varying image sizes, the images in the dataset
also have different spatial resolutions, ranging from 6.7 to 20 m
per pixel. From these 244 images, 50 were chosen at random
for the test set. From the remaining images, 50 were chosen for
the validation set, and the rest were used as the training set. The
Jakobshavn Isbræ dataset consists of 149 images with a constant
spatial resolution of 6m per pixel and image size being either
3644× 1642 or 3563× 1650. From these 149 images, 30 were
chosen at random for the test set. From the remaining images,
30 were chosen for the validation set, and the rest became the
training set.

III. BASE SEGMENTATION MODEL

The base segmentation model is derived from the U-Net
architecture for glacier calving front segmentation proposed by
Zhang et al. [6]. Our work focuses on optimizing the U-Net
architecture from a deep learning point of view. Zhang et al. [6]
adapt a common U-Net architecture for glacier calving front
segmentation in SAR imagery. Hence, it has been chosen as the
baseline method in this work.

A. U-Net

U-Net is a deep learning-based image segmentation model
introduced by Ronneberger et al. [15] for medical images. U-Net
is intended to address one of the significant issues in the field
of medical image segmentation: the lack of large datasets. In
general, the U-Net architecture consists of two parts: an encoder
and a decoder. The encoder extracts the features from the input
image via multiple consecutive convolution operations. A pool-
ing operation follows each convolution operation to reduce the
overall computation cost without losing vital information. The
decoder decodes the data from the encoder via multiple upsam-
pling operations and convolution operations. A series of skip
connections between the encoder and decoder are implemented
to provide the spatial information of the input to the decoder. The
decoder, with the decoded information, provides a pixel-wise
classification result for the input image. The last layer of the
encoder that transmits the encoded features and the first layer
of the decoder that receives the encoder’s information surround
the bottleneck of the U-Net architecture. These layers decide
the amount of information and the quality of the information
transmitted from the encoder to the decoder.

B. Hyperparameters

Zhang et al. [6] trained this model with input images of
size 960× 720 as all the images in his study were larger than
this. In contrast, the dataset used for this study consists of
images with varying image sizes. Thus, the input size for the
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Fig. 2. Base segmentation model used in this study.

Fig. 3. Various bottlenecks of U-Net. (a) Bottleneck in the baseline segmenta-
tion model, (b) U-Net with dilated bottleneck, (c) U-Net with residual bottleneck,
and (d) U-Net with dilated bottleneck and residual connection.

TABLE II
COMMON HYPER-PARAMETERS USED IN THIS STUDY

base segmentation model of this study is set to 256× 256. The
architecture of the base segmentation model with the number of
feature-maps extracted after every block is shown in Fig. 2. The
parameters given in Table II are constant for all the experiments
conducted in this study. The batch size is fixed to 16 due to
hardware limitations. The maximum number of epochs was fixed
to 256 with a high patience of 30 epochs on validation loss as
stopping criteria in the early stopping regime for finding the

Fig. 4. Qualitative results of different bottleneck architectures. The SAR
image is acquired using RADARSAT 1 (SAR), on March 12, 2007. (a) Original
SAR image. (b) Ground truth. (c) Residual connection. (d) Dilated convolution.
(e) Residual + Dilated.

optimal convergence. The optimizer and weight initializers were
chosen based on the reference work [6]. The train and validation
losses were used to validate the optimal convergence to a solution
without the model getting under- or overfitted.

C. Evaluation Metrics

To evaluate and quantize the performance of the models, we
use three commonly used metrics in the image segmentation
community [44], namely, intersection over union (IOU), pixel-
wise accuracy, and Dice coefficient. These metrics are mathe-
matically expressed in (1)–(3), respectively. In these equations,
TP denotes the number of true positive predictions, TN is the
number of true negative predictions, FP is the number of false
positive predictions, and FN is the number of false negative
predictions. Out of the three, pixel-wise accuracy is the most
relaxed performance metric. Pixel-wise accuracy metric is the
ratio between correct predictions over the total number of predic-
tions and does not take the wrong predictions into consideration.
However, IOU and Dice coefficient on the other hand penalizes
the false positives and false negatives more stringently

IOU =
TP

TP + FP + FN
(1)

Pixel-wise accuracy =
TP + TN

TP + TN + FP + FN
(2)

Dice coefficient =
2 · TP

2 · TP + FP + FN
. (3)
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Fig. 5. Qualitative results on segmenting (a) SAR image for each experiment in comparison with the (b) ground truth: (c) results from baseline segmentation
model, (d) after data preprocessing, (e) data augmentation, (f) optimal loss, and (g) optimal bottleneck. The SAR image in the first row is acquired using TerraSAR-X
(SAR) on June 10, 2012 and the SAR image in the second row is acquired using ERS-1/2 (SAR) on August 28, 1993.

D. Baseline Segmentation Results

The baseline segmentation model was trained and tested with
the Antarctic Peninsula dataset. This model took 142 epochs to
converge using the Adam optimization method with a learning
rate of 1× 10−3 and binary cross-entropy (BCE) loss. The
model results in an IOU score of 0.6224, pixel-wise accu-
racy of 0.9219, and a dice coefficient of 0.7377. These results
are the baseline against which our proposed modifications are
compared.

IV. OPTIMIZING U-NET MODEL FOR GLACIER SEGMENTATION

The performance of a U-Net depends on the following five
aspects:

1) how clear and separable the key pieces of information in
the data are [19];

2) how good the constraints for the optimization are [45];
3) how generalizable the model is [46];
4) the prior knowledge of the model [47]; and
5) how good the model can extract features from the in-

put [48].
All these five aspects of a U-Net model are analyzed and

optimized in the following seven aspects:
1) data preprocessing;
2) data augmentation;
3) optimal loss function;
4) normalization layer;
5) dropout;
6) optimal bottleneck of U-Net; and
7) transfer learning.
All suggested improvements are evaluated directly and se-

quentially processed. Changes to the baseline segmentation
model or the data that yields the highest performance upgrade in
the current experiment are used in the subsequent experiments.
The order of the experiments is chosen randomly as the indi-
vidual experiments are independent of each other and can be
re-ordered or removed if needed.

A. Data Preprocessing

Low contrast regions and speckle noise present in SAR images
make the detection of edges and boundaries between glacier and

ocean very hard. A bilateral filter with a 10-pixel neighborhood,
color sigma 95, coordinate sigma 75, and a contrast limited
adaptive histogram equalization (CLAHE) filter with a clip limit
of 5.0 and tile grid size of5× 5were applied to further reduce the
noise and increase the contrast within the different image regions
in the Antarctic Peninsula glacier images. Baseline segmentation
model, trained and tested on the preprocessed dataset, obtained
an IOU score of 0.6805, pixel-wise accuracy of 0.9293, and dice
coefficient of 0.7787, which represents an 4.1% improvement
compared to the initial results. Fig. 5(d) presents the qualitative
results of the data preprocessing experiment.

B. Data Augmentation

Next, we studied the effect of data augmentation on the
baseline segmentation model for glacier image segmentation.
The geometric transformations to be applied to the preprocessed
Antarctic Peninsula dataset for augmenting the train set are 0◦,
90◦, 180◦, 270◦ rotations and a vertical flip. This data augmenta-
tion resulted in an eightfold increase in the amount of data, from
144 images to 1152 images for training. Though this eight-fold
increase might bring better generalization to the model, this also
drastically increases the training time. Hence, we also trained,
tested, and evaluated twofold data augmentation performance by
applying only the vertical flip transformation to the dataset. Both
the results of eight-fold and twofold data augmentation for all the
metrics are given in Table III. Data augmentation has improved
the dice coefficient drastically to 0.9026. The qualitative results
in Fig. 5(e) show that the data augmentation has increased the
true-positive predictions by the model.

C. Optimal Loss Function

In a deep neural network (DNN), the loss function is the
objective function that has to be minimized. For an accurate
and faster convergence to the optimal solution, the loss func-
tion should cover all possible input distribution. The author of
the article [49] has categorized and defined the loss function
into four types. They are, distribution-based such as BCE loss,
region-based such as Dice loss [50], boundary-based loss, and
compound loss. Equations (4) and (5) define the BCE loss and
Dice loss, respectively, where �y is the ground truth, i.e., the
manual annotations generated by experts, �̂y is the prediction, M
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TABLE III
QUANTITATIVE RESULTS OF THE BASELINE SEGMENTATION MODEL AND THE SUGGESTED IMPROVEMENTS

The improvements are calculated using the dice-coefficient of the best-performing model highlighted in bold.

is the number of inputs, and K is the number of classes

LBCE( �W ) = −
M∑

m=1

K∑

k=0

yk,m ln(ŷk,m) (4)

LDice( �W ) = 1− 2
∑M

m=1

∑K
k=0 yk,mŷk,m∑M

m=1

∑K
k=0 y

2
k,m +

∑M
m=1

∑K
k=0 ŷ

2
k,m

.

(5)

Different loss functions can tackle different issues such as
class imbalance, label noise robustness, etc. [51]. For segmenta-
tion problems with an issue in a dataset like class imbalance and
regions with no information, a weighted combination of BCE
and DICE loss have shown high-performance [52]. In this stage
of the experiment, we test different combinations of BCE and
DICE loss, i.e.,

LTotal = α · LBCE + β · LDice (6)

where α, β are weights for the losses LBCE and LDice, respec-
tively. LBCE and LDice are given in (4) and (5). The model gave
the best performance for an equally weighted compound loss
combining LBCE and LDice, with the weight α and β being 0.5.
Fig. 5(f) shows the qualitative results of the baseline segmenta-
tion model with the optimal loss function. The use of this optimal
loss function increased the dice coefficient of the model from
0.9026 to 0.9117 and has reduced the false positives cases while
increasing the true positives along the boundary. The metric
results for various combinations of loss functions tested during
this experiment are given in Table III.

Fig. 6. Effect of adding dropout layer to the optimal model. The SAR image
is acquired using RADARSAT 1 (SAR), on March 12, 2007. (a) Original SAR
image. (b) Ground truth. (c) Without dropout. (d) With drouput.

D. Optimal U-Net Bottleneck

The bottleneck acts as the lowest layer of the encoder block,
which extracts the last set of features with which the decoder
decodes and reconstructs the pixel-wise classification output.
Due to the nature of U-Net’s architecture, the lower layers have
a small receptive field that prevents the network from extracting
features that capture nonlocal information [33]. Using dilated
convolutions with a residual connection as a bottleneck has been
shown to increase the receptive field and to enhance the gradient
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flow during the backward pass [33]. This experiment is divided
into two parts. The first part of the experiment is conducted
to find the optimal dilation rate for convolution layers in the
bottleneck. Here, we replaced all the convolution layers in the
bottleneck with dilated convolution layers, and the dilation rates
of (2, 2), (4, 4), (8, 8), (2, 2) + (4, 4), and (2, 2) + (4, 4) +
(8, 8) were tested to find the optimal dilation rate. The baseline
segmentation model’s architecture with dilated bottleneck is
shown in Fig. 3(b). The dilation rate of (4, 4) produced the
highest dice coefficient of 0.9381. Hence, this model was further
compared with other models in the second part of this experiment
to find the optimal bottleneck.

The second part compares the model with dilated bottleneck
against the model with the residual connected bottleneck [see
Fig. 3(c)] and the residual connected dilated bottleneck [see
Fig. 3(d)]. The numeric results are given in Table III.

The dice coefficient results of these three models were very
close to each other; therefore, the qualitative results were
compared. From the qualitative results, as shown in Fig. 4,
we observe that the U-Net with combined dilated bottleneck
and residual connection has near-perfect predictions along the
boundary with very few false positives and false negatives.
Hence, dilated bottleneck with residual connection is chosen as
the optimal bottleneck for the U-Net for glacier segmentation.
The prediction results of the baseline segmentation model with
optimal bottleneck and all optimizations from previous exper-
iments (from now on referred to as the optimized model) are
depicted in Fig. 5.

E. Normalization Layer

Normalization layers play a key role in DNNs, such as
achieving generalization and faster convergence [34]. In this
experiment, we intend to analyze the effect of different nor-
malization techniques on the U-Net for glacier segmentation.
Note that in the optimized model, batch normalization is ap-
plied after every convolution operation. We replaced the batch
normalization with layer normalization, instance normalization,
group normalization, and weight normalization one after the
other. The quantitative results of various normalization layers
are shown in Table III. We can conclude that batch normalization
as proposed in the baseline segmentation model performed the
best for glacier segmentation.

F. Dropout

In this experiment, we analyze the effect of dropout on the
U-Net for glacier segmentation. All the normalization layers
are replaced with a dropout layer. Dropout rates in the range
of [0.1, 0.5] with an incremental step size of 0.1 were tested.
The optimal model did not converge with dropout replacing the
normalization layers. On the other hand, it has been observed that
adding a dropout layer after every normalization layer increased
the overall performance of the model [53]. Hence, the case where
a dropout layer is added after every normalization layer was also
tested. Unlike replacing the normalization layers with dropout,
adding a dropout after every normalization layer lets the network
converge. Table III shows that the model with a dropout of 0.1

Fig. 7. Qualitative results of benchmarked segmentation models. The SAR
image is acquired using ERS-1/2 (SAR) on January 12, 2005. (a) Original SAR
image. (b) Ground truth. (c) Optimized U-Net. (d) Nested U-Net with SGD.
(e) Nested U-Net with Adam. (f) FCNN with Adam. (g) FCNN with SGD.

performed similarly to the optimized model from the previous
stage. Nevertheless, as shown in Fig. 6, the qualitative results
depict that the dropout layer increases the false-negative cases
in the prediction. Hence, we conclude that the use of dropout
layers does not improve the model performance.

V. TRANSFER LEARNING

The knowledge gained by training our optimal model from the
previous experiment on DBE and SI glaciers is transferred and
used for training the model to segment Jakobshavn Isbræ glacier.
To analyze the extent of further training required after knowledge
transfer, we tested the following three different protocols.

1) Full transfer learning and full training, where the knowl-
edge from both encoder and decoder blocks of the U-Net
is transferred, and both the blocks are trained further.

2) Full transfer learning and encoder training: The knowl-
edge from both encoder and decoder blocks of the U-Net
are transferred, but only the encoder block is trained
further while the decoder block is not trained any further
and is kept frozen.
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TABLE IV
PERFORMANCE OF THE MODEL TRAINED FROM SCRATCH AND MODELS

TRAINED USING TRANSFER LEARNING

3) Full transfer learning and decoder training: The knowl-
edge from both encoder and decoder blocks of the U-Net
are transferred, but only the decoder block is trained
further while the encoder block is not trained any further
and kept frozen.

4) All these transfer learning methods were tested and com-
pared against a model trained from scratch on the Jakob-
shavn Isbrae glacier.

The quantitative results given in Table IV show that the
model trained from scratch (protocol 4) and the model with the
full transfer learning and decoder training (protocol 1) exhibit
a comparable numerical performance. However note that the
transfer learning model (protocol 3) converged already after
5 epochs, whereas the model trained from scratch needed 64
epochs. This shows that transfer learning is computationally very
efficient with a minimal loss in accuracy compared to training
from scratch.

VI. COMPARISON WITH STATE OF THE ART

Finally, we intend to compare the performance of the opti-
mized model from this study against the state-of-the-art tech-
nologies for image segmentation. Two of the most widely used
image segmentation architectures next to U-Nets are FCNN [14]
and a variation of the U-Net denoted as Nested U-Net [54].

A. Fully Convolutional Neural Network

The FCNN architecture is called a fully convoluted neural
network as the fully connected layers, which were traditionally
used as the final set of layers in the model, are replaced with1× 1
convolution layers. The multichannel 1× 1 outputs from the last
layer will be upsampled to produce the pixel-wise classification
results. One major drawback with this upsampling procedure
is that the multichannel 1× 1 outputs from the network will
contain the class information of the pixel, whereas its spatial
information is lost. Hence, the authors used skip connections to
the network’s final prediction and previous layers to provide the
spatial information during the upsampling process. FCNN is one
of the first high-impact CNN-based segmentation models [55].

B. Nested U-Net

Nested U-Net is an advancement of the U-Net architecture. It
was introduced by Zhou et al. [54] for medical image segmen-
tation. This deeply supervised architecture resembles the U-Net
architecture but with more layers and a series of nested skip
connections. Nested U-Net implements multiple convolutions in
the encoder and transposed convolutions (aka. deconvolutions)

TABLE V
EVALUATION RESULTS OF BENCHMARKED SEGMENTATION MODELS

in the decoder, which are interconnected and let the optimizer
choose the most optimal path for the segmentation task. Due
to the higher number of convolution and deconvolution layers,
the number of trainable parameters in the network is much
higher compared to the standard U-Net architecture. Thus, the
computational cost for the training of a Nested U-Net also
increases compared to the U-Net model.

Note, the original FCNN has very few trainable parameters
compared to our optimized model. Hence, to make a fair com-
parison, we implemented a larger version of the FCNN with the
number of parameters being comparable to the Nested U-Net.
Both architectures were trained from scratch on the preprocessed
and augmented DBE and SI glacier dataset using Adam and
stochastic gradient descent (SGD) optimizers. Hence, the op-
timized model from this study was benchmarked against four
different models, namely, Nested U-Net with Adam optimizer,
Nested U-Net with SGD optimizer, FCNN with Adam optimizer,
and FCNN with SGD optimizer.

C. Comparison

The evaluation metric results and the number of trainable
parameters in each model are given in Table V. FCNN with
Adam converged within 25 epochs, whereas Nested U-Net with
Adam and FCNN with SGD took 40 epochs and 53 epochs,
respectively. Nested U-Net with SGD completed the maximum
number of epochs without converging to a solution. Fig. 7 shows
qualitative results of all the benchmarked models.

From the evaluation metrics, qualitative results, and the num-
ber of epochs needed for convergence, we can conclude that all
the other state-of-the-art models have either obtained a bad local
optimal solution or did not obtain a solution at all. Our optimized
U-Net with fewer trainable parameters is thus preferable to the
other two state-of-the-art models.

VII. DELINEATION OF CALVING FRONT

The delineation of the calving front from the predicted glacier
region is performed in two steps. First, the false positives are
removed by dropping all the contours except for the contour
with the largest connected component. Then, the edge of this
area is delineated using a canny edge detector. This detected
edge is evaluated using dice coefficient. The dice coefficient
was chosen as the metric over others to evaluate the performance
of the model on delineating the calving front as it penalizes the
false positives and false negatives more stringently. However, the
dice coefficient metric on the calving front is tough to evaluate as
the metric will consider the prediction a miss even if it shifted
by one pixel. Hence, to make the metric more compendious,
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TABLE VI
DICE COEFFICIENT SCORE ON CALVING FRONT DELINEATION WITH

VARIOUS TOLERANCES

Fig. 8. Calving front delineation by (a) baseline segmentation model, and (b)
optimized U-Net model on Antarctic Peninsula glacier. The SAR image in the
first row is acquired using ERS-1/2 (SAR) on 15.10.2004 and the SAR image
in the second row is acquired using TerraSAR-X (SAR) on 10.6.2012.

we dilate the prediction and ground truth such that it has a
tolerance on the nearby predictions. The dice coefficient scores
for calving front predictions with a tolerance of 50m, 100m,
150m are given in Table VI. The tolerance of 50 m, 100 m,
150m is translated to the number of pixels using the ground
range resolution of the corresponding satellite mission given in
Table I. Figs. 8, and 9 depict the calving front delineation via
the U-Net model optimized in this study.

VIII. OPTIMIZATION RESULTS

To obtain the best results using a U-Net as base architecture
for glacier segmentation, we studied five main aspects of the
U-Net model in seven different experiments. Our baseline model
started with a dice coefficient of 0.7377. We first optimized
the data aspect of the model by analyzing the effects of data
preprocessing and data augmentation on the Antarctic Peninsula
dataset. Optimizing the data via data preprocessing and data
augmentation resulted in an 4.1% and 7.3% increase in perfor-
mance from the baseline segmentation model, respectively. We
then enhanced the feature extraction capability of the model by
finding the optimal loss constraint resulting in a 0.9% increase in
performance, finding the optimal bottleneck resulting in a 2.1%
increase in performance, and finding the optimal normalization
for the glacier segmentation task. The optimized U-Net attained
a dice coefficient score of 0.9378, which is a 20% increase

Fig. 9. Calving front delineation by (a) baseline segmentation model and (b)
optimized U-Net model on Greenland glacier. The SAR image is acquired using
TerraSAR-X (SAR) on 6.10.2014.

compared to the dice coefficient score of 0.7377 obtained by
the baseline segmentation model [6].

IX. CONCLUSION

This article optimizes the U-Net architecture for glacier seg-
mentation and postprocess the segmentation results to delin-
eate the calving front. Postprocessing the resulting segmented
glaciers from optimized U-Net model to delineate the calving
front led to a dice coefficient of 0.5718 with a tolerance of 150m.
This is a 23% improvement compared to the baseline segmen-
tation model, which obtained a dice coefficient of 0.3239. The
optimized U-Net model attained similar performance improve-
ment on the Greenland glacier when trained from scratch. Hence,
it can be concluded that the presented optimization scheme
is highly effective for glacier calving segmentation in SAR
imagery and future works can benefit from it in their segmenta-
tion pipelines. Additionally, complementary works aiming to
improve the loss function and hyper-parameter optimization
could be explored to improve the accuracy further [16], [17].
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