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Reweighted Nuclear Norm and Total Variation
Regularization With Sparse Dictionary Construction

for Hyperspectral Anomaly Detection
Xiaoyi Wang, Liguo Wang , Jiawen Wang, Kaipeng Sun, and Qunming Wang

Abstract—Hyperspectral anomaly detection is an important
technique in the field of remote sensing image processing. Over
the last few years, low rank and sparse matrix decomposition
(LRSMD) has played an increasingly significant role in hyper-
spectral anomaly detection. The detection performance of the
LRSMD-based anomaly detectors is primarily determined by prior
constraints and the background dictionary construction method.
To increase the detection accuracy, we proposed the reWeighted
Nuclear Norm and total variation regularization with Sparse
Dictionary construction for hyperspectral Anomaly Detection
(WNNSDAD), which incorporated reweighted nuclear norm and
total variation regularizations as the prior constraints into the
LRSMD model, and constructed a sparse background dictionary
without the need of clustering. Compared to the standard nuclear
norm, the reweighted nuclear norm helped to overcome the chal-
lenge of an unbalanced penalty for a singular value and ensure
a more effective low rank approximation. Simultaneously, total
variation regularization was introduced as a piecewise smoothing
constraint, which helped to maintain the spatial correlation of
the hyperspectral image. Additionally, we proposed a background
dictionary construction method, by which a relatively complete
background dictionary could be obtained without clustering, and
the background part could be represented more reliably. The ex-
periments on seven real-world hyperspectral datasets show that in
comparison to eight state-of-the-art anomaly detection methods,
the proposed WNNSDAD method demonstrated greater accuracy.

Index Terms—Hyperspectral anomaly detection, low rank and
sparse matrix decomposition (LRSMD), reweighted nuclear norm,
sparse background dictionary, total variation (TV).
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I. INTRODUCTION

AHYPERSPECTRAL image (HSI) comprises three-
dimensional cube data. Two of these dimensions repre-

sent spatial position; and the other, the reflectance of ground
objects in different bands. In comparison to multispectral im-
ages, HSIs have hundreds of continuous spectra, which could
provide abundant spectral information. Based on variations in
spectral characteristics, HSIs can be used to recognize ground
objects more reliably. Therefore, HSIs are suitable for many
remote sensing image processing applications, such as spectral
unmixing [1]–[3], classification [4]–[6], change detection [7],
[8], and target detection [9]–[11].

Target detection primarily aims to distinguish target pixels
from the background pixels according to the spectral charac-
teristics. The target pixels possess two characteristics: first, as
compared to surrounding background pixels, significant spectral
differences exist; second, the volume of targets is small, with a
lower probability of occurrence. Target detection is divisible
into supervised and unsupervised versions based on whether
there exists prior spectral information on the target pixels. The
unsupervised version is alternately known as anomaly detection.
As there is no requirement for prior spectral information on
anomalous target pixels, anomaly detection is more efficient
in applications. Therefore, hyperspectral anomaly detection has
been widely used in environmental monitoring [12], search and
rescue [13], military reconnaissance [14], and other fields.

A. Development of Hyperspectral Anomaly Detection Methods

Over the past decades, internal and external researchers
have increasingly focused on hyperspectral anomaly detection.
Presently, anomaly detection methods could be mainly di-
vided into two groups: statistics-based and representation-based
groups. The Reed-Xiaoli (RX) method [15] was first proposed in
numerous statistics-based anomaly detection methods. The RX
method assumes that the background pixels of HSIs obey Gaus-
sian distribution, and estimates a statistical model by calculating
the mean and covariance of pixel spectral vectors. The anomalies
are detected by calculating the Mahalanobis distance between
tested pixels and the statistical model. Based on the criteria
for selecting global or local pixels to characterize the statistical
model, the RX methods are divisible into two versions: the global
RX (GRX) and local RX (LRX) methods [16]. In recent years,
a number of enhanced RX-based methods have been proposed.
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To ensure that the background pixels in each class are more
likely to obey a single Gaussian distribution, the cluster-based
RX method [17] divides all pixels into several classes. The
kernel RX (KRX) method [18] transfers an inseparable HSI
into a high-dimensional feature space, to facilitate separation
of the background and anomalies. The KRX method was de-
veloped to describe a more complex data distribution through
nonlinear mapping. However, the KRX method is computation-
ally more complex, and moreover, the selection of the optimal
kernel parameters is challenging. To mitigate the influence of
anomalies and noise in statistical model estimation, the weighted
RX method [19] assigns larger weights to the background and
smaller weights to anomalies. These enhanced RX-based meth-
ods overcome the disadvantages of the original RX method to a
certain extent. However, satisfying the assumption of a Gaussian
distribution is challenging for real-world HSIs. Therefore, the
detection performance of statistics-based methods is practically
often.

Representation-based anomaly detection methods have gar-
nered increasing attention, as there is no need to make any
specific assumptions about background distribution. The basic
principle is that background could be represented linearly by a
background dictionary, whereas anomalies could not. Yuan et al.
[20] proposed a hyperspectral anomaly detection method based
on local sparsity divergence without any distribution hypothesis,
which utilizes a sliding dual-window strategy to construct local
spectral and spatial dictionaries and determines the anomalies
based on the difference in distribution of the sparse coefficients
of pixels. Similarly, Li and Du [21] proposed a collaborative
representation-based detector (CRD), which uses a background
dictionary composed of pixels between dual-windows to col-
laboratively represent the center tested pixel, and moreover,
uses �2 − norm minimization to enhance the collaborative
ability between dictionary atoms. To reduce the computational
complexity of the CRD, Ma et al. [22] proposed a collabora-
tive representation hyperspectral anomaly detection algorithm,
which was a fast recursive algorithm, wherein two elementary
transformation matrices were constructed based on the position
of pixels, and furthermore, a recursive updating method was
derived by using matrix inversion lemma, which increases the
detection speed of the CRD to a certain extent. Su et al. [14]
further proposed an anomaly detection method by combining
low rank representation (LRR) and CR theories, and meanwhile,
introduced the global low rank and local collaborative properties
to constrain the representation coefficient matrix.

Low rank and sparse matrix decomposition (LRSMD) [23] is
also an important branch of representation-based anomaly detec-
tion methods. The primary concept behind the LRSMD-based
methods is that the background of HSIs could be represented
with few pixels, which is also known as low rank property.
Conversely, the anomaly portion is simultaneously constrained
by column sparsity, due to the global sparsity of anomaly targets
in HSIs. Therefore, the original HSIs could be decomposed
into background and anomaly components by low rank property
and sparsity. The robust PCA (RPCA) hypothesis [24] was also
applied to hyperspectral anomaly detection. RPCA is a special

case of LRSMD. It does not need to construct background
dictionary, but directly imposes low rank constraints on the
original HSI. Zhang et al. [25] proposed an LRSMD-based
method, which explored prior low rank information on the back-
ground to compute the background statistic model and utilized
the Mahalanobis distance to detect anomalies. The low rank
and sparse representation (LRASR) [26] method combines the
LRR and SR theories for hyperspectral anomaly detection. To
maintain the local geometric structure and spatial relationship of
HSIs, Cheng and Wang [27] introduced graph and total variation
(TV) regularizations into the LRSMD model and proposed the
graph and total variation regularized low rank representation
(GTVLRR) model. Subsequently, Cheng and Wang [28] pro-
posed an anomaly detection method based on a union-dictionary
model, wherein a union-dictionary was used to represent back-
ground and anomalies, which not only helped to better separate
the background and anomalies but also achieved the purpose
of noise reduction. Fu et al. [29] proposed a hyperspectral
anomaly detection method via deep plug-and-play denoising
convolutional neural network (CNN) regularization. Instead of
exerting a handcrafted regularization, a CNN-based denoiser
network was used to constrain the background representation
coefficient matrix. Additionally, deep learning and tensor theory
have recently emerged as research hotspots in hyperspectral
anomaly detection. Li et al. [30] presented a prior-based tensor
approximation method that divides HSI into background ten-
sor and anomaly tensor. To identify hyperspectral anomalies,
Zhang and Cheng [31] employ a tensor-based transferred CNN.
Xie et al. [32] initially integrated autoencoder and adversarial
network learning potential background distribution, and then uti-
lized Mahalanobis distance as detection method, which is named
SBEM in brief. Subsequently, Li et al. [33] proposed a sparse
coding-inspired generative adversarial network for hyperspec-
tral anomaly detection, which utilizes a cascaded autoencoder
as the generator.

B. Motivation of the Proposed Reweighted Nuclear Norm and
Total Variation Regularization With Sparse Dictionary
Construction for Hyperspectral Anomaly Detection
(WNNSDAD)

The effectiveness of LRSMD-based methods mainly depends
on the design of prior constraints and the background dictionary
construction methods. As mentioned above, the backgrounds of
HSIs have high spatial correlation (i.e., low rank). Low rank
constraints help to effectively maintain the low-dimensional
structure of a background. A low rank is an NP-hard problem;
hence, a nuclear norm is generally used as a convex relaxation
optimization objective considering the low rank. The nuclear
norm expresses the sum of matrix singular values, which has
been used widely in many fields, such as matrix completion
[34] and background modeling [35]. In LRSMD-based hy-
perspectral anomaly detection methods, the nuclear norm is
used as the regularization for the representation coefficient
matrix of a background dictionary. Normally, the main proper-
ties of a matrix are determined by the larger singular values.
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However, the standard nuclear norm exhibits an unbalanced
penalty for various singular values, that is, it has the same penalty
for all singular values. Using the standard nuclear norm as a low
rank constraint, the background matrix finds it challenging to
approximate the original background in an iterative updation
process, which indirectly affects the separation efficiency be-
tween the background and anomalies.

Additionally, the dictionary construction method directly af-
fects the ability of dictionary representation. Most of the existing
background dictionary construction methods are based on an
unsupervised clustering scheme. For example, in [27], an HSI
is first clustered by k-means. Thereafter, the RX detector is
used for each class, and some pixels with smaller detection
values in each class are selected as the background dictionary
atoms. This is a mainstream method of dictionary construction,
and its derivative methods are presently widely used. However,
k-means has several limitations. In particular, the number of
clusters needs to be given or estimated in advance, but it is
practically quite challenging. Additionally, k-means is highly
sensitive to the data type. If the distribution of each class in an
HSI is unbalanced, it could negatively impact the cluster result,
introducing include noise and anomalies into background clus-
ters. In [28], the density peak-based (DPC) clustering method
was used to construct a background dictionary. In comparison
to k-means, the DPC clustering method could deal with clusters
of various shapes and sizes; hence, it is more robust to noise and
anomalies. However, the DPC clustering method faces the issue
of the curse of dimensionality for HSIs. Moreover, similar to
that for k-means, the clustering result is affected by the setting
of cluster centers. Additionally, when the number of a certain
background material is small, it could be limited as noise or
anomaly, which could lead to incomplete background dictionary
(i.e., some background pixels cannot be expressed), resulting in
a decrease in detection accuracy.

Considering the above challenges, in this article, we pro-
posed a novel hyperspectral anomaly detection method, which
incorporates reweighted nuclear norm and TV regularizations
as the prior constraints into an LRSMD model. TV regular-
ization and reweighted nuclear norm could characterize the
spatial smoothness and low rank property, which have been con-
firmed in the remote sensing community [36], [37]. Moreover,
a sparse background dictionary is constructed without any clus-
tering techniques. The proposed method is herein abbreviated
as WNNSDAD. The proposed method has the following main
contributions.

1) The reweighted nuclear norm regularization is used as
a low rank constraint for the representation coefficient
matrix of a background dictionary, which helps to ensure
that the reconstructed background part is closer to the
real background. Furthermore, the TV regularization is
introduced as the piecewise smoothness constraint of the
background dictionary representation coefficient matrix to
take advantage of the spatial correlation between adjacent
pixels.

2) A nonclustering method is proposed to construct a sparse
background dictionary. By combining anomaly detec-
tion with sparse representation theories, an over-complete
background dictionary is constructed without clustering

techniques. It is not only unaffected by the cluster param-
eters but also effectively retains the characteristic spec-
trum of a background, especially for small background
materials.

The rest of this article is organized as follows. The proposed
WNNSDAD and sparse dictionary construction strategy are
presented in Section II. Section III provides experimental results
based on seven real-world HSI datasets. In Section IV, the
proposed method and experimental results are further discussed.
Finally, Section V concludes this article.

II. METHODS

We defined a three-dimensional HSI as Y ∈ RH×W×D, where
H represents a row, W a column, and D a spectral band.
Here, the LRSMD-based method was primarily introduced. We
transformed the original three-dimensional HSI into a two-
dimensional matrix. Let Y = [y1,y2, . . . ,yl] ∈ RD×L be a
transformed two-dimensional HSI, where L = H ×W repre-
sents the total number of pixels, and yl is the lth pixel with D
dimensions. A two-dimensional HSI can be decomposed into
two components: background B = [b1,b2, . . . ,bl] ∈ RD×L

and anomalies S = [s1, s2, . . . , sl] ∈ RD×L, i.e., Y = B+ S.

A. Theoretical Basis of LRSMD

LRSMD is used to consider the product of background dic-
tionary A and representation coefficient matrix X to replace
the background component B. It is considered that the repre-
sentation coefficient matrix and the anomalies have low rank
and sparse properties, respectively. The optimization objective
function of LRSMD is expressed as follows:

min
X,S

‖X‖∗ + λ‖S‖2,1, s.t. Y = AX+ S (1)

where A = [a1,a2, . . . ,ak] ∈ RD×K is the background dic-
tionary and ak is the kth dictionary atom; ‖ · ‖∗ expresses the
nuclear norm of the matrix; ‖ · ‖2,1 is �2,1 − norm and repre-
sents the sum of �2 − norm in each row of matrix X; and λ

is a tradeoff parameter. By optimizing (1) to obtain X and S,
S can be used to detect anomalies. In particular, the anomaly
probability Q(yi) = ‖si‖2 of each pixel could be obtained by
calculating �2 − norm for each column of S. Given a threshold
η, if Q(yi) > η, the pixel is considered to be an anomaly;
otherwise, it is a background.

B. Reweighted Nuclear Norm and TV Regularization

1) Reweighted Nuclear Norm: The low rank constraint of a
reweighted nuclear norm on X could be realized by the singular
value decomposition (SVD) method. In particular, X could be
decomposed into X = UΣVT , where U and V are identity
orthogonal matrices, i.e., UUT = I and VVT = I, where I is
an identity matrix. U and V are called left and right singular
matrices, respectively. Σ is a diagonal matrix, and we defined
Σii as the ith diagonal element. Varying from the standard
nuclear norm, a weighting factor is introduced into the iterative
optimization, giving a larger weight to a smaller singular value
and a smaller weight to a larger singular value. In particular,
the weight factor was set to wi = ( 1

Σii
+ ε), where ε is a small
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positive parameter. The reweighted soft-threshold shrinkage was
expressed as

Gw(Σii) = max(Σii − ρ× wi, 0) (2)

where ρ is a tradeoff parameter. It could be seen that a smaller
singular value corresponds to a smaller weight and tends to be
zero after the subsequent iteration. The solution of the objective
function is as follows:

X = UGw(Σii)V. (3)

2) TV Regularization: The adjacent pixels yi and yj were
considered to have similar spectral characteristics; hence, the
corresponding representation coefficients xi and xj were also
similar. TV regularization is often regarded as the piecewise
smoothness constraint, which is defined as an �1,1 − norm of
difference considering the neighbor pixels by

‖HX‖1,1 =

∥∥∥∥
[
HhX
HvX

]∥∥∥∥
1,1

(4)

where Hh denotes the linear operator, by calculating the dif-
ference of representation coefficients between each pixel and
its horizontal neighboring pixel, and Hv denotes the difference
between each pixel and its vertical neighboring pixel. The
�1,1 − norm is defined as the sum of the �1 − norm of each
column in a matrix.

C. Proposed WNNSDAD Method

The optimization objective function of the proposed WNNS-
DAD could be expressed as

min
X,S

1

2
‖Y −AX− S‖2F + ‖X‖w∗ + λ‖HX‖1,1 + β‖S‖2,1
s.t. Y = AX+ S (5)

where ‖ · ‖w∗ expresses the reweighted nuclear norm regular-
ization, and is used to constrain X, �2,1 − norm is the sparse
regularization term of anomalies, and λ and β are tradeoff
parameters.

As the objective optimization function was inseparable, aux-
iliary variables were introduced to represent the optimization
problem as follows:

min
X,V1,V2,S

1

2
‖Y −AX− S‖2F + ‖V1‖w,∗ + λ‖V3‖1,1

+ β‖S‖2,1
s.t. V1 = X,V2 = X,V3 = HV2. (6)

Equation (6) is separable, and the optimization problem could
be efficiently solved by the alternating direction method of
multipliers (ADMM) [38]. The augmented Lagrange function
is expressed as follows:

L {X,S,V1,V2,V3,D1,D2,D3, μ}
=

1

2
‖Y −AX− S‖2F + ‖V1‖w,∗ + λ‖V3‖1,1

+ β‖S‖2,1 +
μ

2
‖V1 −X−D1‖2F

+
μ

2
‖V2 −X−D2‖2F +

μ

2
‖V3 −HV2 −D3‖2F (7)

where μ is a penalty parameter, and D1, D2, and D3 are
Lagrange multipliers. The minimization of (7) could be achieved
by iteratively optimizing the objective function for one variable
and simultaneously fixing other variables. As the augmented
Lagrangian function is convex, the global optimality of the
solution can be guaranteed. This problem could be divided into
the following subproblems.

1) Update X: By fixing other variables, the optimization
problem of X could be expressed as

Xt+1 = argmin
Xt

1

2

∥∥Y −AXt − St
∥∥2
F

+
μ

2

∥∥V1
t −Xt −D1

t
∥∥2
F

+
μ

2

∥∥V2
t −Xt −D2

t
∥∥2
F

(8)

where t is the iteration index. A closed-form solution could
be obtained by deriving (8) forXt and setting the equation
to equal zero

Xt+1 = (ATA+ 2μI)−1

[
AT (Y − St) + μ(V1

t −D1
t) + μ(V2

t −D2
t)
]
.
(9)

2) Update V1: The objective function is written as follows:

V1
t+1=argmin

V1
t

∥∥V1
t
∥∥
w,∗+

μ

2

∥∥V1
t−Xt+1−D1

t
∥∥2
F
.

(10)
Equation (10) could be updated by the SVD method

V1
t+1 = Θ

w,1/μ
t(Xt+1 +D1

t). (11)

3) Update V2: The optimization problem of V2 could be
expressed as follows:

V2
t+1 = argmin

V2
t

μ

2

∥∥V2
t −Xt+1 −D2

t
∥∥2
F

+
μ

2

∥∥V3
t −HV2

t −D3
t
∥∥2
F
. (12)

The closed-form solution could be written as follows:

V2
t+1=(HTH+I)−1(Xt+1+D2

t +HT (V3
t−D3

t)).
(13)

4) Update V3: V3 could be updated through the following
objective function:

V3
t+1 = argmin

V3
t

λ
∥∥V3

t
∥∥
1,1

+
μ

2

∥∥V3
t−HV2

t+1−D3
t
∥∥2
F
. (14)

Furthermore, the soft threshold method was used to solve
the problem

V3
t+1 = soft(HV2

t+1 +D3
t,
μt

λ
). (15)

5) Update S: The optimization problem was as follows:

St+1 = argmin
S

∥∥St
∥∥
2,1

+
1

2

∥∥Y −AXt+1 − St
∥∥2
F
.

(16)



WANG et al.: REWEIGHTED NUCLEAR NORM AND TOTAL VARIATION REGULARIZATION WITH SPARSE DICTIONARY CONSTRUCTION 1779

Algorithm 1: Optimization of the Proposed WNNSDAD.
1. Input: Two-dimensional HSI Y; background

dictionary A; parameters λ, β, μ, μmax, and ρ; the
maximum iteration index tmax; and residual threshold
ε.

2. Output: Background representation coefficient X∗

and abnormal part S∗.
3. Initialization: Set X, S, V1, V2, V3, D1, D2 and D3

to zero matrices.
4. while converge = false, do
5. Update X by (9).
6. Update V1 by (11).
7. Update V2 by (13).
8. Update V3 by (15).
9. Update S by (17).

10. Update D1, D2 and D3 by (18).
12. Update μ by (19).
13. if (20) is satisfied or t = tmax, converge = true.
14. end if
15. end while

Equation (16) could be solved by the �2,1 − norm minimiza-
tion operator Ω [33]. Therefore, we have

St+1 = Ωβ/μt(Y −AXt+1). (17)

6) Update Lagrange multipliers D1, D2, and D3⎧⎪⎨
⎪⎩

D1
t+1 = D1

t − (Vt+1
1 −Xt+1)

D2
t+1 = D2

t − (Vt+1
2 −Xt+1)

D3
t+1 = D3

t − (Vt+1
3 −HV2

t+1)

. (18)

7) Update penalty parameter μ

μt+1=min(ρμt, μmax) (19)

where ρ is the growth index of the penalty parameter and μmax

is the maximum penalty parameter.
The iteration process stops until the maximum iteration index

is reached or if it meets the following requirements:⎧⎨
⎩

‖Y −AX− S‖F ≤ ε
‖X−V1‖F ≤ ε
‖X−V2‖F ≤ ε

(20)

where ε is a residual threshold. The process for solving the
objective function (5) is summarized in Algorithm 1.

D. Proposed Sparse Background Dictionary
Construction Method

Here, we proposed a sparse background dictionary construc-
tion method, which combined anomaly detection with sparse
representation theory. Varying from the previous cluster-based
dictionary construction methods, we could obtain a relatively
complete background dictionary without unsupervised cluster-
ing. The construction of a sparse background dictionary could
be regarded as a three-stage strategy.

1) First, the RX method was used to detect the original HSI.
By calculating the Mahalanobis distance between each

tested pixel and the corresponding background mean vec-
tor, we obtained an initial detection map, which reflected
the anomaly intensity of each pixel.

2) Then, we used an adaptive threshold method inspired
from [39] to screen out potential background pixels. The
threshold δ was set as follows:

δ = ϕ(E + (M − E)

√
E

M
) (21)

where E and M are the mean and maximum values of the
preliminary detection map, respectively. To select more
pure background pixels, we add an adjustment parameter
ϕ less than 1. We considered the pixels with detection
values lower than the threshold to be closer to the back-
ground; hence, the pixels with a value greater than the
threshold were removed, the remaining pixels constituted
the background sample set. We define the background
sample set as P.

3) Lastly, to avoid the of nonconvergence or over fitting in the
process of the training dictionary, we randomly sorted the
samples in P. Subsequently, the K-SVD algorithm [40]
and sparse coding technique orthogonal matching pursuit
(OMP) [41] was applied to train the sparse background
dictionary. Here, we needed to set a dictionary size. Note
that to construct an over-complete dictionary, the dictio-
nary size must be larger than the dimension of the HSI.
Empirically, this parameter is usually set with an integer
power of 2, such as 128, 256, and 512, among others.
Further details on K-SVD and OMP could be found in
[40] and [41].

As the benchmark method of anomaly detection, the RX
method is advantageous considering its simple form and fast
operation speed; also, it requires no parameter adjustment. Al-
though limited by the Gaussian distribution hypothesis, it could
achieve the purpose of preliminary detection. Using the RX
method as an initial anomaly detection method is a common
process for constructing a background dictionary, such as in
[27] and [29]. Varying from the cluster-based background dictio-
nary construction methods, we utilized a sparse representation
scheme to train a background dictionary. Through the sparse
representation technique, we could obtain a complete dictionary
containing a characteristic background spectrum, especially for
small background materials. The proposed sparse dictionary
construction method is summarized in Algorithm 2; moreover,
Fig. 1 shows the flowchart of the whole algorithm.

III. EXPERIMENTS

A. HSI Datasets and Experimental Setup

Seven real-world HSI datasets were used in the experiments.
Table I lists some important image characteristics of the seven
HSI datasets. Note that AVIRIS and ROSIS-03 are abbrevia-
tions of the airborne visible/infrared imaging spectrometer and
reflective optics spectrographic imaging system, respectively.
False-color images and corresponding ground reference maps
of the seven datasets are shown in Fig. 2.
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Fig. 1. Flowchart of the proposed method for hyperspectral anomaly detection.

Algorithm 2: Sparse Background Dictionary Construction.
1. Input: Two-dimensional HSI Y, dictionary size K, the

maximum iteration index tmax, maximal sparsity α
(set to 4 in this article), and termination threshold ξ.

2. Output: Background dictionary A= [a1,a2, . . . ,ak].
3. Compute the mean vector and covariance matrix of Y.
4. Compute Mahalanobis distance to the mean vector

between each tested pixel.
6. Equation (21) is used to calculate the threshold δ;

furthermore, the pixel with intensity values smaller
than the threshold are regarded as pure background
pixels to form the background sample P.

7. Initialize the background dictionary Â, and randomly
select K pixels from to P form dictionary atoms.

8. Utilizing K-SVD and OMP algorithms to update
background dictionary while tmax is reached or the
difference between two consecutive realizations is less
than ξ.

To demonstrate the effectiveness of the proposed WNNS-
DAD, seven state-of-the-art anomaly detection methods, includ-
ing GRX, LRX, RPCA, CRD, LRASR, LSMAD, GTVLRR, and
SBEM, were selected for comparison. The rest of this section
comprises four parts. Section III-B provides the experimental
results of WNNSDAD and the seven comparative methods for
seven real-world HSI datasets. Section III-C describes the pa-
rameter analysis of WNNSDAD. Section III-D demonstrates the
effectiveness of the sparse background dictionary construction
method.

B. Detection Performance

Here, two-dimensional and three-dimensional receiver oper-
ating characteristic (ROC) curves [42], [43] and the area under
the curve (AUC) [44] were used as the evaluation indexes for
the anomaly detection. Table II lists the parameter setting of
different methods for the seven datasets. The notations in the
table are represented as: win and wout are the window sizes of
the dual-window in LRX and CRD, and λ, β, and γ are the
predefined tradeoff parameters. Additionally, the learning rate

TABLE I
SOME IMAGE CHARACTERISTICS OF THE SEVEN HSIS

of autoencoder and adversarial network in SBEM were set to
10e–3 and 10e–4 based on the suggestion in [32].

Fig. 3 shows the detection maps of the nine methods for
the seven HSI datasets. Through visual inspection, it could be
evidently seen that the detection maps of WNNSDAD were more
satisfactory than those of the other methods. For example, for
dataset I, GRX, LRX, and RPCA basically failed to separate
the background and anomalies; consequently, it was challenging
difficult to locate the anomaly aircraft from the detection maps.
Although CRD, LRASR, LRSMD, GTVLRR, and SBEM could
help detect the position of anomaly aircraft, they could not com-
pletely retain the shape and edge contours of anomaly aircraft.
However, the detection map for WNNSDAD clearly separates
the background and anomalies; this was visible from the bright-
ness: the brightness of the background approaches 0, whereas
that of the anomaly approached 1. Additionally, WNNSDAD
effectively retains the shape of the anomaly aircraft. As another
example, considering dataset IV, although each method could
detect anomalies, the detection map of the proposed method was
more accurate. In particular, the complete shape of the anomaly
vehicles could not be detected by GRX, LRX, RPCA, LRASR,
LRSMD, and SBEM. For CRD and GTVLRR, although the
shape of the anomaly vehicles was detected, the background be-
low the image could not be suppressed effectively. The detection
maps of the remaining datasets were similar to the former two,
i.e., WNNSDAD facilitated more satisfactory visual inspection
as compared to the other seven methods.

The two-dimensional and three-dimensional ROC curves for
the nine methods are shown in Figs. 4 and 5, respectively.
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TABLE II
PARAMETER SETTING OF DIFFERENT METHODS FOR THE SEVEN DATASETS

TABLE III
AUC VALUES OF THE NINE METHODS FOR THE SEVEN DATASETS

From Fig. 4, it can be seen that the two-dimensional ROC
curves of WNNSDAD are located in the upper-left corner for
all seven datasets, suggesting that the proposed method had a
more accurate detection performance and lower false alarm rate.
Additionally, based on the two-dimensional ROC curves, CRD,
GTVLRR, and SBEM exhibited a relatively stable performance.
As shown in Fig. 4(c), when the false alarm rate was lower
than 0.1, the detection rate of CRD, GTVLRR, and SBEM
approached that of the proposed method. However, when the
detection rate approached 1, CRD, GTVLRR, and SBEM ex-
hibited a larger false alarm rate. Using Mahalanobis distance to
create detection map, SBEM enhances the difference between
anomalies and background by autoencoder, and the results of
most datasets produced by SBEM are more satisfactory than
GRX and LRX. Fig. 5 also demonstrates that the performance
of WNNSDAD was relatively more satisfactory than the other
methods. The AUC values of the eight methods are listed in
Table III, where the most accurate result for each dataset is
highlighted in bold. Being consistent with the ROC curves, the
AUC values of the proposed method were the largest, for all
seven datasets. Considering the detection results for dataset I as
an example, the AUC value for WNNSDAD was 0.9949; those
for GRX, LRX, RPCA, CRD, LRASR, LSMAD, GTVLRR, and
SBEM were 0.8885, 0.7590, 0.9165, 0.9865, 0.9891, 0.9905,
0.9800, and 0.9845, respectively. Similarly, for datasets II–IV,
which showed both aircraft as anomalies, the proposed method
still demonstrated reliable scores. For datasets V–VII, the
AUC values for WNNSDAD were 0.9955, 0.9804, and 0.9993,

respectively, and the AUC values for the other methods were
obviously smaller.

We utilized a box-whisker plot to further demonstrate the
separation ability between the background and anomalies. As
shown in Fig. 6, we utilized purple and blue boxes to represent
the distributions of the background and anomalies, respectively.
In general, if there existed a larger distance and smaller overlap
between a background box and an anomaly box, this method
was considered to demonstrate good separation ability for the
background and anomalies. A similar conclusion could be drawn
that WNNSDAD could achieve the most satisfactory separation
ability between the background and anomalies. Based on the
proposed method, it could be seen from Fig. 6 that a background
box and an anomaly box had the smallest overlap and the
largest distance for all datasets. This indicated that WNNSDAD
could be suitably applied across various datasets. Additionally,
GTVLRR demonstrated a separation ability more stable, but still
inferior to that of WNNSDAD.

C. Parameter Analysis

In the proposed method, three parameters needed to be tuned:
the tradeoff parameters λ and β, and the background dictionary
size K. λ and β control piecewise smoothness and sparse prop-
erty, respectively. To validate the robustness of the proposed
method considering variations in the tradeoff parameters, λ and
β were set in the candidate pool {0.002, 0.005, 0.02, 0.05,
0.08, 0.2, 0.4, 0.6, 0.8, and 1}, and the dictionary size for
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Fig. 2. Seven real-world HSI datasets used in the experiments. (a1)–(g1) are
false-color images [bands 37, 18, and 8 as RGB for (a1)–(f1), and bands 70, 22,
and 17 as RGB for (g1)] and (a2)–(g2) are the corresponding ground-reference
maps of the seven datasets. (a) Dataset I. (b) Dataset II. (c) Dataset III. (d) Dataset
IV. (e) Dataset V. (f) Dataset VI. (g) Dataset VII.

the seven datasets was generally 256. Fig. 7 shows the AUC
values with a change in λ and β for the seven datasets. With
a change of parameters, the AUC values of each dataset were
evidently relatively stable, and the fluctuation was not apparent.
For example, for datasets II, V, and VII, with a change in tradeoff
parameters, the fluctuation of the AUC values was less than
0.05. For dataset I, if λ or β approached 1, the AUC values
were all above 0.99. However, when the two parameters lay

between 0.002 and 0.2, the AUC values decreased up to even
0.94. For datasets III and VI, when the tradeoff parameters in
range lay between 0.005 and 0.05, the detection performance
was satisfactory; however, the AUC values decreased noticeably
under other parameters.

As a parameter of the proposed method, dictionary size also
played a crucial role in the experimental results. In [45], it was
pointed out that larger dictionaries possessed more expressive
power. Here, by fixing the other two parameters λ and β in
the optimal values, we empirically trained three dictionaries
with sizes of 256, 512, and 1024 for the seven datasets. Fig. 8
shows the AUC values of the three dictionary sizes for the seven
datasets, and Table IV lists the corresponding running-time. We
found that a larger dictionary size does not necessarily produce
more accurate experimental results; also, the process would
take longer. For example, for dataset III, when the dictionary
sizes were 256, 512, and 1024, the corresponding AUC values
were 0.9752, 0.9691, and 0.9718, respectively. Although the
difference in the three AUC values was small, the running-time
of the larger dictionary size was obviously longer. The possible
reason behind this is that the spectral bands of HSIs are highly
correlated, i.e., severe information redundancy exists between
spectral bands. Using a larger dictionary size could affect the
subsequent iterative update process and reduce the efficiency in
obtaining an optimal solution. In particular, for dataset VII, for
a dictionary size of 1024, the corresponding operation time was
up to 1111 s.

D. Performance of Sparse Dictionary

To validate the effectiveness of our proposed sparse dictionary
construction method, we compared it with the other two cluster-
based dictionary construction methods mentioned in [27] and
[28]; for convenience, we called them as the k-means-based and
DPC-based dictionary construction methods, respectively. We
used the three dictionary construction methods combined with
the proposed algorithm, taking the seven datasets as examples;
furthermore, Table V lists the AUC values. In the k-means-based
method, the k value and the number for each cluster were set to
15 and 20 for the seven datasets, and the clusters with less than
20 pixels were not considered. In the DPC-based methods, the
predefined distance threshold η and k value were 0.1 and 6,
respectively. As in Table V, the largest value was highlighted
in bold. In comparison to the other two methods, the proposed
dictionary construction method demonstrated more reliable per-
formance. In particular, for dataset III, the AUC values for
the k-means-based, DPC-based, and the proposed dictionary
construction methods were 0.9105, 0.7946, and 0.9752, respec-
tively. This primarily occurred as the clustering-based methods
are often affected by parameter setting, which is generally
subjective. Additionally, some small background materials are
easily excluded as noise or anomalies, and they lose their spectral
characteristics. This could negatively impact the background
dictionary representation ability. The proposed sparse dictionary
construction method was affected by the clustering parameter
setting; moreover, the characteristic spectrum was effectively
preserved by the sparse coding technique. Small background
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Fig. 3. Detection maps based on nine methods for the seven real-world HSI datasets. (a)–(i) are detection maps (from the left to the right) for GRX, LRX,
RPCA, CRD, LRASR, LSMAD, GTVLRR, SBEM, and WNNSDAD, respectively, and (j) is the corresponding ground-reference map. Lines 1–7 represent
dataset I, dataset II, dataset III, dataset IV, dataset V, dataset VI, and dataset VII, respectively.

TABLE IV
RUNNING-TIME OF DIFFERENT BACKGROUND DICTIONARY SIZES FOR THE SEVEN DATASETS (IN SECONDS)

TABLE V
AUC VALUES OF DIFFERENT BACKGROUND DICTIONARY CONSTRUCTION METHODS
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Fig. 4. Two-dimensional ROC curves of the nine anomaly detectors for the seven real-world HSI datasets. (a) Dataset I. (b) Dataset II. (c) Dataset III.
(d) Dataset IV. (e) Dataset V. (f) Dataset VI. (g) Dataset VII.

Fig. 5. Three-dimensional ROC curves of the nine anomaly detectors for the seven real-world HSI datasets. (a) Dataset I. (b) Dataset II. (c) Dataset III.
(d) Dataset IV. (e) Dataset V. (f) Dataset VI. (g) Dataset VII.

materials could also be well-represented; therefore, the back-
ground and anomalies could be separated effectively. Fig. 9
shows the false-images of the separated background part through
different background dictionary construction methods. Ideally,
we expected the separated background part to be consistent
with the background part in the original HSI; also, the lower
the brightness of the anomaly targets, the better. From Fig. 9,
we can see that the background false-color images based on
the proposed background construction method were closer to
the real background part. For dataset III considering the

k-means-based and DPC-based dictionaries, the background
false-color images exhibited more noise and color distortion.
However, the sparse dictionary provided a smooth and clear
background. For datasets IV and VI, the brightness of the
anomaly targets was close to black based on the sparse dic-
tionary, but was almost the same as the original HSI considering
the k-means-based and DPC-based dictionaries. This is because
the k-means-based and DPC-based dictionaries were incom-
plete, which affected the expression ability of the background
part.
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Fig. 6. Box-whisker plots for the nine anomaly detection methods for the seven HSI datasets. (a) Dataset I. (b) Dataset II. (c) Dataset III. (d) Dataset IV.
(e) Dataset V. (f) Dataset VI. (g) Dataset VII.
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Fig. 7. AUC values of the WNNSDAD with different values of λ and β. (a) Dataset I. (b) Dataset II. (c) Dataset III. (d) Dataset IV. (e) Dataset V. (f) Dataset VI.
(g) Dataset VII.

Fig. 8. AUC values of various background dictionary sizes for the seven
datasets.

E. Performance of Reweighted Nuclear Norm
and TV Regularization

In this section, we first examined the influence of the
reweighted nuclear norm and the standard nuclear norm. Taking
dataset IV as an example, under the same parameter settings,
the reweighted nuclear norm and the standard nuclear norm
produce different results. As shown in Fig. 10, the contour of
abnormal aircraft in Fig. 10(a1) is clearer, whereas the contour
in Fig. 10(b1) is blurred, especially for the first and second
aircraft, see the parts marked with white oval. In addition,
it can be seen from the detection maps that the reweighted
nuclear norm leads to smaller false alarm rate, as shown in
the white oval in Fig. 10(a2) and (b2). The main reason is that
the reweighted nuclear norm introduces a weight factor into the

iterative optimization, which imposes a smaller penalty on the
larger singular value and a larger penalty on the smaller singular
value. It can effectively approach the original background part
and more reliably separate the background and anomalies.

To check the benefit of the TV regularization, we removed
the constraint of TV regularization on the representation coeffi-
cient of the background dictionary. The optimization objective
function without TV regularization is

min
X,V1

‖Y −AX− S‖2F + ‖V1‖w,∗ + β‖S‖2,1
s.t. V1 = X. (22)

With the number of the background dictionary atoms and
the tradeoff parameter β remain unchanged, we took datasets
I and II as examples. The false-color images of the separated
background parts are shown in Fig. 11. It can be seen that
compared with Fig. 11(a2) and (b2), Fig. 11(a1) and (b1) shows
more satisfactory performance in separating the background
part.

IV. DISCUSSION

From Fig. 9 and Table IV, we saw how the proposed dictionary
construction method overcame the influence of cluster parameter
settings, subjectively to a certain extent. Important characteristic
spectral information was effectively retained through the sparse
coding technique; moreover, the background representation abil-
ity was enhanced noticeably. The sparse dictionary construction
method could be applied for hyperspectral target detection.
As there are some known target spectra, we could design a
union-dictionary model similar to [28]. Additionally, the sparse
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Fig. 9. False-color images [bands 37, 18, and 8 as RGB for (a)–(f), and bands 70, 22, and 17 as RGB for (g)] of the separated background part based on different
background dictionary construction methods. (a) Dataset I. (b) Dataset II. (c) Dataset III. (d) Dataset IV. (e) Dataset V. (f) Dataset VI. (g) Dataset VII. Lines 1, 2,
and 3 express the k-means-based, DPC-based, and sparse dictionaries, respectively. As a reference, Line 4 represents the false-color images of the original HSI.

dictionary construction method could also be applied in other
HSI processing fields, which have a similar working principle
with LRSMD, such as HSI noise reduction and HSI unmixing,
among others.

The effectiveness of WNNSDAD in detecting anomalies and
in separating background and anomalies was illustrated by a
number of experiments considering real-world datasets. How-
ever, from Figs. 3 and 5, WNNSDAD was seen to be inadequate
in suppressing false alarms, especially for the San Diego and
Los Angeles Airport datasets. This primarily occurred because
in comparison to the backgrounds of other datasets, the back-
grounds of datasets I and III were more complex; moreover,
the shape of the anomaly targets was irregular, which could
have contributed to challenges in detection. However, in the
final analysis, we needed to essentially address the problem
of a large false alarm rate for complex hyperspectral datasets,
which generally exists in most hyperspectral target and anomaly
detection methods.

Recently, deep learning methods have garnered significant
attention, and a considerable volume of algorithms based on
deep learning for HSI processing have been proposed [46]–[48].
Xie et al. [32] and Li et al. [33] utilized autoencoders and
cascaded autoencoders, respectively, to increase the difference
between background and anomalies. To a certain extent, SBEM
helped overcome the difficulty in network training without any
prior abnormal information. However, it also faced limitations

in learning-based methods, for example, the cumbersome hy-
perparameter tuning process and the network structure were
more dependent on data types. Additionally, training an adver-
sarial network is more challenging, which limits the practical
application of this type of method. Going ahead, we aim to
design a semisupervised/unsupervised network structure for hy-
perspectral anomaly detection while researching learning-based
methods. Furthermore, we will mainly research the impact of
data type in tuning hyperparameters, to reduce the operation
time utilized by parameter tuning in learning-based methods.

Through numerous comparative experiments, both
representation-based and LRSMD-based models needed
their tradeoff parameters to be tuned multiple times, or needed
to be based on empiricism. Although WNNSDAD was very
robust, considering the change in tradeoff parameters (see
Fig. 7), it still faced challenges in parameter adjustment in
practical application. As shown in Fig. 7, for most datasets,
λ tends to play a more important role. Moreover, for the datasets
with more complex background distribution, the change of
β also affects the AUC value, as shown in the results for
datasets I and VI. If a strategy could be designed to adaptively
estimate the parameter range based on various data types, the
efficiency of the algorithm could be greatly improved. We
will focus on this issue in future research. Additionally, by
analyzing the tradeoff parameters, λ was easily found to play
a greater role in detection performance than β. This indicated
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Fig. 10. Results of different nuclear norm solutions. Lines 1 and 2 express the
false-color images (bands 37, 18, and 8 as RGB) of the separated background
part and final detection maps. (a) Reweighted nuclear norm. (b) Standard nuclear
norm.

Fig. 11. False-color images (bands 37, 18, and 8 as RGB) of the separated
background part based on TV regularization and without TV regularization.
Lines 1 and 2 are results for Datasets I and II, respectively. (a) With TV
regularization. (b) Without TV regularization.

the importance of spatial correlation in HSIs. Therefore, fully
exploring the spatial information in HSIs is also important
toward improving detection performance. Additionally, we
found that the background dictionary size has a small influence
on the AUC value, but a larger background dictionary will
cost more optimization time. Hence, in practical applications,
a smaller dictionary size tends to be a preferable choice.

In general, for most datasets, the anomalies have the property
of global sparsity and low probability of occurrence. We found

that the accuracies of WNNSDAD for datasets III and VI are
not as great as that for the other datasets. It is seen that the
anomalies in dataset VI are densely distributed and with a larger
probability of occurrence. Therefore, we believe that WNNS-
DAD is more suitable for the datasets with less anomalies and
sparse distribution, such as datasets IV and VII in this article.
This is because we only consider the sparsity of anomalies, an
assumption similar to other LRSMD-based methods.

The RX method was utilized to choose training samples for
background in our proposed background dictionary construction
method since it is simple and fast to implement. Nevertheless,
there is still uncertainty in the training samples extracted by RX.
If the abnormal pixel is incorrectly selected as the background
dictionary atom, it will not only pollute the background dictio-
nary but will also have a negative impact on the separation be-
tween background and anomaly. To construct a pure background
dictionary, we still need to investigate how to extract training
samples for background more accurately in future research. For
example, deep-learning-based methods may be used to explore
the characteristics of data distribution, and the extracted features
may be used as training samples instead of original ones.

V. CONCLUSION

The WNNSDAD method was developed for hyperspectral
anomaly detection in this article, which integrated reweighted
nuclear norm and TV regularizations as prior constraints into
the well-known LRSMD model. The reweighted nuclear norm
precludes an unbalanced penalty for a singular value of a matrix.
Therefore, the low rank property of the background was effec-
tively preserved in an iterative process, so that the background
could be better represented. To retain the spatial correlation of
the HSIs, TV regularization was applied to construct a piecewise
smoothing constraint. Additionally, we integrated anomaly de-
tection with the sparse representation technique and proposed a
sparse dictionary construction method. It helped to overcome the
problem that the cluster-based background dictionary construc-
tion methods depended on the subjectivity setting of clustering
parameters. Moreover, the sparse representation technique could
help to effectively preserve the characteristic background spec-
trum, especially for small background materials. A complete
background dictionary is an important condition for representing
the background part, so as to better separate the background and
anomalies. In future research, we will concentrate on schemes
for more reliable dictionary construction and extension of the
method for more complex distributions of the background and
anomalies.
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