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Land Surface Temperature Reconstruction Under
Long-Term Cloudy-Sky Conditions at 250 m Spatial
Resolution: Case Study of Vinschgau/Venosta
Valley in the European Alps

Paulina Bartkowiak

Damiano Zanotelli ”, Roberto Colombo

Abstract—In this article, we present a new concept for predicting
satellite-derived land surface temperature (LST) under cloudy
skies over vegetated areas in the Alps. Although many different
reconstruction methods have been developed, they require rarely
available inputs, or they restore missing pixels from clear-sky ob-
servations with low spatial resolution (1-5 km), which makes them
unreliable in heterogenous ecosystems. Given these limitations, we
propose a station-based procedure to predict cloud-covered grids
from 1-km Terra MODIS LST at 250 m spatial resolution. First,
we explored correlations between ground-measured LST and air
temperature in conjunction with other geo-biophysical variables
under cloudy-sky conditions derived from ESRA clear-sky radia-
tion model. Considering a high site dependency driven by different
landcovers, in-situ data were aggregated into three groups (forest,
permanent crops, grassland) and then, models were established.
Next, the regressions were applied to 250-m gridded predictors
to estimate cloud-covered LST pixels for six Terra MODIS LST
images in 2014. While for permanent crops and forest group lin-
ear modelling was the most efficient, neural networks achieved
the best performance for grasslands. The reconstructions showed
reasonable LST distribution considering landscape heterogeneity
of the region. The results were validated against timeseries of
ground-measured LST in 2014. The models achieved reliable per-
formance with an average R? of 0.84 and root-mean-square error of
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2.12 °C. Despite some limitations, mainly due to diversified char-
acter of cloudy-sky conditions and high heterogeneity of gridded
predictors, the method can effectively reconstruct overcast MODIS
data at subpixel level, which shows great potential for producing
cloud-free LSTs in complex ecosystems.

Index Terms—Cloudy-sky conditions, land surface temperature,
machine learning, reconstruction.

1. INTRODUCTION

ARTH’S skin temperature is a fundamental property regu-

lating the exchange of water and energy between land and
the atmosphere. Thus, it influences water and surface energy
budget that is needed to estimate the impacts of climate change
on water cycling, landcover, and to examine water anomalies in
vegetation through evapotranspiration modeling [1]-[3]. More-
over, it allows monitoring vegetation conditions and studying
climate change and impacts of extreme events on vegetation.
As a result, land surface temperature (LST) is required as a
baseline information for many environmental applications, such
as management of water resources, climate change studies, sus-
tainable agricultural production, drought predictions, and also
land degradation monitoring [4]-[6].

Since the global network of meteorological stations is sparse,
especially with regards to radiometers monitoring thermal in-
frared radiation, and LSTs vary over short distances, thermal
remote sensing has shown large potential due to its spatial
coverage and accessibility [7]-[9]. The rapid development of
spaceborne thermal infrared (TIR) instruments followed by ro-
bust LST retrieval methods has allowed monitoring spatially
and temporally continuous LSTs at different scales [10]. In
particular, MODIS instrument has been frequently used due
to its short repeat cycle (four times per day), global coverage
and long-term image collection (since 2000) [11]. MODIS LST
product has been applied in multiple research fields, including
urban heat island assessment [12]-[15], drought detection [16]—
[19], agricultural management [7], [20], [21], and energy and
water balance modelling [22]-[25].

Although MODIS LST maps have been commonly used in
many studies, TIR sensors are prone to overcast conditions. TIR
instruments cannot acquire spatial information beneath clouds
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that translates to invalid LST images with a strong impact on
high-frequency cloud-contaminated areas [26]. According to Jin
[27], cloudy skies “represent more than half of the actual day-
to-day weather conditions” resulting in minimum 50% blank
LST scenes from TIR data. If we focus on mountain regions,
cloud cover is much more common and intense, which causes
substantial gaps in LST images in space and time. Therefore,
spatially, and temporally continuous LST information is of great
importance and its complete creation is an urgent issue among
the scientific community.

Methods for reconstructing land surface temperature at cloud-
covered pixels have been well demonstrated in many research
studies. In general, they can be aggregated into empirical and
physical-based categories. The methods of the physical-driven
group rely on the assumption that cloud-covered pixels differ
from LST values under clear-sky conditions. Prediction of these
temperatures requires knowledge about physical relationship
between targets and their adjacent cloud-free pixels. Jin [27]
developed a ‘“neighboring-pixel” (NP) method that uses sur-
face energy balance (SEB) to recover invalid values from their
spatially (100-300 km) or temporally (< two days) neighbor-
ing cloud-free pixels. Due to temporal limitations of the NP
method, Lu ef al. [28] proposed an enhanced solution based on
geostationary satellite data from the MSG SEVIRI radiometer
with shorter repeat cycle with respect to polar-orbiting satellites.
Later, Yu ef al. [29] adapted the NP by exploiting the spatio-
temporal domain offered by MODIS LST product. Because
of the physical complexity of this method and scarcity of the
station-based inputs, such as wind speed and latent heat flux,
some new approaches were proposed. Using MSG satellite
data, Zhang et al. [30] predicted cloud-covered LST from a
simplified heat transfer formula with the reduced number of
station-based parameters. Next, Zeng et al. [31] developed a
multisource approach that estimates invalid pixels from cloud-
free MODIS LST in reference to normalized difference veg-
etation index (NDVI) and then applies a SEB-based factor to
obtain values under cloudy skies. After that, Yang et al. [32]
simplified the NP and showed that applying only solar radiation
as the auxiliary feature can well estimate missing MODIS LST
for areas significantly covered by clouds. Meanwhile, Martins
et al. [33] developed an operational “all-weather land surface
temperature” product based on the clear-sky 3-km MSG SEVIRI
scenes and LST data under cloudy conditions derived from the
surface energy balance model through the LSA-SAF ET v2
algorithm. In addition to the SEB-based strategies, Fu et al.
[34] proposed a novel reconstruction method for urban areas by
exploiting relationship between LSTs from the physical-based
WRF/UCM system and clear-sky MODIS data using random
forest algorithm. However, the performance of these approaches
depends on the complexity of the study area or the availability of
clear-sky LST, which makes it difficult to implement in ecosys-
tems with extremely high variability with regard to weather
conditions, altitude, soil, and landcover. Apart from the physical-
based methods, cloud-covered LSTs can be recovered by data
fusion approach by combining data from different resources.
Many studies showed that TIR-based land surface temperature
can be predicted by its integration with temporally adjacent
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images from passive microwave instruments that are capable
of penetrating clouds [35]-[39]. Furthermore, Long et al. [40]
combined clear-sky MODIS data with 7-km LST dataset from
China Land Data Assimilation System using ESTARFM algo-
rithm and obtained all-weather 1-km MODIS-like scenes with
root-mean-square error (RMSE) yielding from 2.77 K to 3.96 K.
Similarly, the performances of these methods have limitations
in terms of low spatial resolution of the cloud-free inputs.

The second category for LST reconstruction belongs to
empirical methods and treats pixels obscured by clouds as those
under clear skies. A widely used technique of this group is
geostatistical interpolation that exploits similarities from
neighboring clear-sky pixels in spatial, temporal, and
spatiotemporal domain [41]-[45]. Furthermore, Crosson et al.
[46] implemented multisensor approach to predict Aqua MODIS
LST from clear-sky Terra MODIS LST and increased day-
time and nighttime data availability of Aqua product by
24% and 30%, respectively. In addition, Wang et al. [47]
approximated cloudy LSTs for Terra MODIS and Landsat-
8 TIRS by spatiotemporal fusion of clear-sky multitemporal
MODIS LST composites (MOD11A2) and synthetic surface
temperatures with “solar-cloud-satellite geometry” derived from
MODIS cloud and geolocation products (MOD06, MODO03) and
Landsat-8 data. The empirical approaches, similarly to physical-
based methods, rely on the availability of time-coincident cloud-
free LSTs and input accuracies, which decreases their spatial
prediction performance. To overcome this limitation, Ke et al.
[48] exploited the relationship between MODIS LST and other
environmental variables using regression kriging technique. As
shown by Fan et al. [49], incorporation of NDVI, soil moisture
and landcover information in conjunction with artificial neu-
ral networks and regression tree modeling allowed predicting
missing LST with RMSEs ranging from 1.32 K to 1.66 K.
Given the high capabilities of artificial intelligence (Al), new
machine learning-based approaches have been recently devel-
oped. For example, Wu et al. [50] combined a convolutional
neural network (CNN) with spatiotemporal information offered
by geostationary instruments and obtained a prediction error of
approximately 1 K for images with 70% cloud-contaminated
pixels. Meanwhile, Zhao and Duan [51] proposed a random for-
est approach to predict MODIS LST by combining multisource
remote sensing predictors with solar radiation to represent a
cloud cover impact on missing LST pixels. However, the ac-
curacies of these approaches are still highly influenced by the
availability of clear pixels and low spatial resolution of satellite
data that limits their application to a relatively homogenous
terrain.

To address these limitations, in this article, we concentrate on
the development of a new method to reconstruct cloud-covered
1-km MODIS LST at 250 m spatial resolution over vegetated
areas in the European Alps. Considering high spatio-temporal
dynamics of surface temperatures, we propose a new ap-
proach that integrates data-driven modeling with physical-based
assumptions to detect long-term cloudy-sky conditions at sub-
pixel level with respect to the 1-km original MODIS LST.
The proposed method exploits relationship between ground-
based LST and commonly accessible input parameters under
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Overview of the study case. (a) Location of Province of Bozen/Bolzano. (b) Positions of the stations utilized in the ground-based LST modeling. Some

stations were situated outside the official border of the Alps (in red).! Since they were located in areas with similar climatic conditions, they were included in the

modeling. (c) Satellite image of the experimental area for the LST reconstruction in Vinschgau/Venosta Valley obtained from the Express Kosmosnimki service.

cloudy-sky conditions, like air temperature (TA), downwelling
solar radiation (SWj,,), surface albedo («), and leaf area index
(LAJ), for spatial reconstructions of cloud-covered MODIS LST
data. To our best knowledge, gap-filling from station-based
models in conjunction with a physical-based approach to obtain
in situ observations under cloudy skies has never been performed
before. We analyze the prediction performance of the developed
method based on different machine learning algorithms to re-
construct missing MODIS LST values. Through the application
of different modelling scenarios, it is feasible to investigate in
which way algorithms and predictors can explain LST variabil-
ity within diversified mountain ecosystems. Due to limitations
of MODIS LST pixel size, our concept predicts invalid grids
at 250 m spatial resolution in order to minimize the impact
of topography and landscape heterogeneity of the study area.
Additionally, the reconstructed maps implemented in this article
will be combined with 250-m downscaled Terra MODIS LST
[52] for further energy balance modeling of evapotranspiration
with relevant implications on water assessment in the Alps.

II. DATA AND METHODOLOGY
A. Study Site

Our area of interest is an approximately 520-km? region
of Vinschgau/Venosta Valley in the northwestern part of the
Province of Bozen/Bolzano, located in the Eastern Italian Alps
(see Fig. 1(a)—(c)). The area is predominantly mountainous
with elevation ranging from about 700 m to 3740 m a.s.l.
Alpine orography has a significant impact on the structure of
the landscape with highly patched landcovers over the region.

1[Online]. Available: http://www.eurac.edu/
2[Online]. Available: http://kosmosnimki.ru/

2

The area is mainly dominated by forests, grasslands, and apple
orchards. Because of the insular location of the valley and
the sheltering effect of the neighboring mountain ridges, the
climate is warmer and drier than in other parts of the Alps,
which translates to higher evaporation [53]. This results in
unfavorable effects for vegetation, especially for grasslands and
agricultural crops with higher demand for water. Considering
the particular climatic conditions and agriculture-oriented land
management, this region would particularly benefit of accurate
reconstructed LST maps for monitoring vegetation conditions
and water availability.

Land surface temperature reconstruction was performed
based on year-round station records from the Fluxnet network
and other stations located over different vegetated ecosystems
in the Alps [see Fig. 1(a) and (b)] [54]. Eddy covariance data
outside the Fluxnet network were processed in the framework
of the project CYCLAMEN (https://www.eurac.edu/).

B. Input Data

1) Ground Measurements: Since this article is intended for
vegetation analyses over the Alps, in situ measurements were
collected at 17 meteorological sites distributed over different
ecosystems, during the phenological cycle, between April and
October (see Table I). The station loggers had unique time-series
measurements recorded between 2002 and 2019 with 15- and
30-min intervals. As Table I shows, 10 sites are located above
1000 m and covered by grassland or forest, while the remain-
ing seven stations lie in agricultural areas at altitudes below
1000 m.

In this article, we exploited ground-based upwelling and
downwelling longwave radiation (LW;y,, LW, ) to retrieve land
surface temperature for each station record (see Table II) [55],
[56]. In order to keep time consistency with MODIS LST data,
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TABLE I
METEOROLOGICAL STATIONS UTILIZED IN THE LST MODELING

Fluxnet Altitude

Model LULC Group Station X Time span
site [m a.s.L]
Rotholz (1) AT-Rtz 523 2008 2012
Chamau (2) CH-Cha 393 2006 2012
Friiebiiel (4) CH-Fru 982 2006 2012
Neustift (17) AT-Neu 970 2002 2012
Oensingen (5) CH-Oel 452 2003 2008
@) Grassland Grassland Monte Bondone (10) IT-MBo 1553 2003 2013
Mazia 1 (11) - 1450 2014 2017
Mazia 2 (12) - 1550 2014 2017
Mazia 3 (8) - 1909 2019 2019
Mazia 4 (9) - 2688 2016 2019
Torgnon 1 (14) (IT-Tor) 2160 2008 2017
?) Apple Orchard Permanent Caldaro (6) - 240 2014 2015
Vineyard crops Valle dell’ Adige (16) IT-VdA 206 2008 2010
Evergreen needleleaf Lavarone (7) IT-Lav 1349 2003 2014
3) forest Forest Davos (3) CH-Dav 1639 2006 2011
Deciduous needleleaf Renon (13) IT-Ren 1730 2004 2013
forest Torgnon 2 (15) IT-TrF 2091 2010 2016

“Numbers in parentheses in the forth column refer to station locations presented in Fig. 1(b).

TABLE II
STATION-BASED PARAMETERS FROM YEAR-ROUND OBSERVATIONS AND THEIR CORRESPONDING VARIABLES USED FOR LST MODELING

Source data Variable

Short description

Land Surface Temperature [°C]

Outgoing and incoming 1 N\ 1/4
longwave radiation <M)

o€

LST formula based on Stefan-Boltzmann law [55],
where o is the Stefan—Boltzmann constant, € is the
surface emissivity from M*D21A1D [57], and
LW,/LWi, is the outgoing/incoming longwave
radiation retrieved from ground observations

Air temperature

Mean air temperature (T Apean) [°C]
Maximum air temperature (TAp,x) [°C]

daily mean and maximum air temperature derived
from in-situ data

Solar radiation (SWin) [MJ mday']

Daily incoming shortwave radiation

daily cumulative SWi,
observations

retrieved from ground

Vegetation parameter [-]
log (2)
a

Surface albedo

aerodynamic roughness length (zy) and albedo (o) to
describe canopy structure

longwave radiation was extracted that corresponded to the local
MODIS observing time. To compute surface temperature, we
calculated broadband surface emissivity from daily MODIS land
surface emissivity (LSE) product (M*D21A1D Collection 6)
[57], as described by Wang et al. [58]. M*D21A1D was se-
lected rather than daily M*DI11Al, as it was created using
physical-based temperature emissivity separation algorithm in-
stead of simplified landcover-derived emissivity retrieval [59].
Even though 90-m ASTER LSE product offers finer spatial
resolution, its small spatial extent, and 16-day repeat cycle
in conjunction with frequent cloudiness over the study area
hampered its practical applicability.

Due to strong correlation of LST with air temperature (TA)
and availability of daily TA maps (see Section 1I-B2), observa-
tions of daily mean and maximum air temperature (TA,can,
TAax) were computed from the in situ measurements and
considered as the baseline input for modeling [60], [61]. In
mountain regions with heterogenous landscape, such as the
Alps, LST is influenced by complex interactions between land
and atmosphere, solar energy, topography, soil moisture, and
landcover. In this context, we exploited auxiliary ground-based
biophysical parameters that may explain spatial variation in LST

over the study area (see Table II). In addition to TA,ean and
TAmax, We incorporated diurnal incoming shortwave radiation
(SWjy,) that regulates ground heating process with an important
impact on land-atmosphere energetics [53]. Owing to the energy
fluxes between atmosphere and various vegetated landcovers,
we combined surface albedo (o) with aerodynamic surface
roughness (zg, as in Table II) assigned for each landcover group
separately as a complementary biophysical predictor for LST
modeling [61]-[63].

All collected measurements were averaged to hourly resolu-
tion corresponding to MODIS acquisition time and they were
inspected for the presence of outliers, including detection of
inconsistent minimum and maximum station records and un-
usual temporal variations. Additionally, we performed a specific
quality control procedure for solar radiation data by applying
physical thresholds and step tests, specially adapted to Alpine
conditions [64]. After these checks, the ground-based predictors
for the LST modelling were computed (see Table II).

2) Gridded Data: Gridded variables were generated for re-
constructing cloud-contaminated 1-km MODIS LST pixels at
subpixel (250 m) spatial resolution from the fitted models (see
Table III) .
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TABLE III
GRIDDED DATASETS USED IN THIS ARTICLE

Source data Variable

Pixel size

Short description

Prediction of missing MODIS LST pixels

In-situ weather station Daily grids of:

Maps derived from daily station observations through a

record Mean air temperature (TApean) [°C] 250 m atial int lation schem
ecords Maximum air temperature (TA ) [°C] sP ctpolation scheme
Downscaled daily incoming shortwave Downscaled MSG downwelling surface shortwave flux
MSG/SEVIREDSSE radiation maps [MJ m~day'] 230m (DSSF) through RK interpolation
Vegetation parameter [-] . . .
Relationship between aerodynamic roughness length (z)
1
MCDA3A3 M 300 m and albedo (o) from MCD43A3 composites
a
Vegetation structure parametrization (f), f>) with roughness
length (z)) and leaf area index (LAI) obtained from
f1(zo, LAI): o (h)" cmss [-] MCDI15A3H. Parameter h refers to vegetation height, and
1 1(Zo 0
MCDISA3H £3(zo, LAI): o (h) ' spoo [-] 500 m CMS88 and SDOO0 subscripts indicate adopted formulas of
Choudhury & Monteith [68] and Schaudt & Dickinson [69],
respectively
MOD21A1D? S . Daily emissivity maps from M*D21A1D composites for
MYD21A1D? Emissivity bands: 29,31,32 [-] 1000 m station-based LST retrieval (see Table II for more details )
Determination of spatial applicability of the reconstructed LST maps
MODI1A] Cloud cover [-] 1000 m Clouq cover from daily Terra MODIS LST product to
identify cloudy pixels
Snow Cover Area Snow cover [-] 250 m Daily snow maps based on Terra and Aqua MODIS
(SCA) Reflectance for masking areas covered by snow
LISS 2013 - Land Vegetation mask for identification of homogeneous
Information System Vegetation mask [-] - landcovers within 250-m pixels (80% threshold of
South Tyrol homogeneity)
MODI3QI Enhanced Vegetation Index (EVI) [-] 250 m EVI grids from Terra MODIS Vegetation Indices product to

delineate pixel-wise areas of applicability for the models

! Data used for both the station-based modelling and the reconstruction of missing MODIS LST pixels; 2Data used for station-based LST retrieval.

STEP 1

(a)

Reconstructed 250-m
MODIS LST maps

(b)

Ground data ESRA modelli Ground data under Station-based LST Established LST
collection modeliing cloudy skies modelling models
MODIS LST gap-filling
(e)
STEP 2

: t

250-m gridded
predictors

Masking clear-sky
pixels

(©)

Predictors under
cloudy skies

Spatial-based LST
modelling

(d)

Areas of model
applicability

Fig. 2.
processing steps.

The 250-m air temperature maps for Trentino-South Tyrol
region were obtained by interpolating the daily meteorological
observations provided by the regional weather station networks
of Meteotrentino for the Province of Trento and the Hydrological
Department of the Province of Bozen/Bolzano. All observations
were checked for quality and homogeneity and harmonized in a
dense archive of more than 200 station series covering the region.
The daily grids of TAean and TA . Were then derived for the
period 1980-2018 by applying an interpolation method com-
bining the reference mean climate, i.e., the climatology, and the
daily temperature anomalies. Due to the mountainous terrain of
the area, the interpolation applied a regression-based procedure

Workflow for LST gap-filling procedure under cloudy-sky conditions for MODIS data. While rectangular boxes refer to data used, ellipse shapes represent

modelling the local relationships between temperature spatial
gradients and orographic features, including elevation and slope
characteristics, which were derived from the Digital Elevation
Model (DEM) Copernicus EU-DEM v1.1? and then aggregated
to the target 250 m resolution [65], [66]. Cross-validated average
RMSE values in a spatial cross-validation approach for TA,can
and TA .« outputs were around 1.9 °C and 2.4 °C, respectively.

Daily solar radiation grids at 250 m resolution were derived
by applying a geostatistical downscaling to the 2004-2018 daily

3[Online]. Available: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-
dem-vl.1
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downwelling surface shortwave flux (DSSF) product derived
from MSG/SEVIRI, available on the LSA-SAF system.4 In
particular, the sharpening of daily solar radiation (SW;,) was
performed by means of a regression kriging (RK) in conjunction
with the main topographic drivers, e.g., elevation, slope steep-
ness and its orientation. In this scheme, the linear regression
model was first estimated, the resulting residuals were interpo-
lated onto the target grid through Ordinary Kriging with auto-
matic fit of the variogram, and the final daily fields were obtained
as sum of the spatialized residuals and regression predictions at
each target grid cell. The average RMSE (bias) error was 2.64
MJ m—2day~' (0.11 MJ m~2day~") translating into the mean
absolute percentage difference of 0.15 when compared to the
ground-derived datasets.

In this article, we exploited remotely sensed surface albedo
from a 16-day Terra/Aqua MODIS Albedo product (MCD43A3
Version 6) with 500-m pixel size [67]. The time-coincident
MCD43A3 with good quality assurance (QA) flags were used
for gap-filling of invalid MODIS LST. Additionally, an impact
of landcover on LST was examined by parametrization of veg-
etation properties using aerodynamic roughness (zo) and LAI
(see Table III for details) [68], [69]. Spatially continuous LAI
maps were obtained from 4-day Terra/Aqua MODIS LAI com-
posites (MCD15A3H Version 6) at 500 m spatial resolution
[70]. To increase spatial availability of LAI pixels, the 4-day
MODIS LAI was upscaled to 14-day composite considering the
highest quality of the QA flags as well as the closest acquisition
time between station records and MODIS time overpass. While
gridded albedo was only applied to the fitted models, LAI was
used for both LST modeling and reconstruction of missing
MODIS LSTs under cloudy-sky conditions. To keep spatial
consistency with the reconstruction outputs, both MCD43A3
and MCD15A3H were disaggregated to 250-m pixel size using
nearest neighbor resampling approach.

In order to identify cloud-covered areas for the LST recon-
struction, we used invalid values that were assigned to the
QA flags in the 1-km MODIS product. Since the focus of the
article was on the LST reconstruction for vegetation analyses,
daytime Terra MODIS LST (MOD11A1 Version 6) was utilized
[71]. To examine the performance of the proposed method, we
reconstructed missing pixels for six MOD11A1 images acquired
in different seasons in 2014 (May 2nd, June 29th, July 8th,
September 19th, October 11th, and 26th).

Areas of applicability for the reconstructed LST maps were
determined by exploiting relationship between 250-m pixels
within model vegetation groups (see Table I) and EVI from
Terra MODIS Vegetation Indices (MOD13Q1 Version 6) gran-
ules [72]. In this article, we used the detailed land use land-
cover (LULC) data with minimum mapping area equal to 1600
m?, as shown in Appendix [73]. The pixelwise selection pro-
cedure will be explained in Section II-CD. In addition, we
applied daily 250-m MODIS snow cover mask to gridded
predictors in order to exclude nonvegetated pixels from LST
reconstructions [74].

4[Online]. Available: https://landsaf.ipma.pt
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C. Methodology

1) Model Concept: The Alpine region benefits from dense
network of ground stations, which translates to time-series of
climate data and generation of spatially continuous meteorolog-
ical grids.> To take the full advantage of these 250-m inputs, we
propose station-based modelling to reconstruct daytime Terra
MODIS LST (MOD11AT1) under cloudy-sky conditions at 250
m pixel size, that is a sufficient scale for capturing spatial details
at regional level [75]—[78]. Subpixel mapping is considered as a
reasonable solution in mountain regions characterized by com-
plex structure of the landscape, where 1-km MODIS LST images
cannot fully represent spatial heterogeneities of the terrain. The
land surface temperature reconstruction was performed with two
steps as follows:

1) Year-round LST modelling from station-based environ-

mental variables under long-term cloudy skies; and

2) Applying the fitted models to cloud-contaminated MODIS

LST pixels.

The conceptual scheme of the proposed method is summa-
rized in Fig. 2.

The diurnal cycle of LST is highly affected by the surface
energy balance and the surface thermal inertia that depend on
ground characteristics, such as landcover, soil type, and its mois-
ture [79]. Since clouds affect the energy budget of the ground,
the LST modeling was defined under the assumption that LSTs
beneath clouds are different than those under clear skies. In this
context, we used the European Solar Radiation Atlas (ESRA) to
define sky conditions for each hourly observation from station
records [see Fig. 2(a)] [64], [80]-[82]. Determination of cloudy-
and clear-sky observations was based on the hourly incident
solar radiation (SWj,) from the meteorological stations and
its corresponding maximum theoretical value computed from
the ESRA model [60]. A ground-derived SWj,, record was
considered as a clear-sky observation provided that it exceeded
90% of maximum theoretical ESRA-based estimation, while the
measured solar radiation with less than 50% of the maximum
theoretical value was assigned to the cloudy-sky group. Addi-
tionally, the measurements registered two hours before and two
hours after a respective observation had to meet the cloudy-sky
criteria in order to extract long-term overcast observations.

Given a strong relationship between instantaneous air TA and
ground-derived LST, daily mean air temperature (TA,ean) Was
considered as a baseline predictor in the LST modeling [7], [8],
[60], [83], [84]. Fig. 3 presents the daytime and yearly cycle
of the mean difference between hourly LST and daily TAean
considering cloud-free and overcast conditions for all available
observations (see Table I).

In general, the hourly [see Fig. 3(a)] and daily [see Fig. 3(b)]
differences between LST and TA .., under clear skies were
noticeably bigger when compared to cloudy-sky variations.
Overcast conditions alter the energy budget of land, resulting in
smaller variations between LST and TA,can [see Fig. 3(a) and
(b)]. As shown in Fig. 3(a), cloud-free LST-TA,can values var-
ied with hours, with the biggest deviation reaching 9.2 °C close to
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Mean differences between hourly LST and daily TAp,ean for all stations used in the study grouped by: (a) hour corresponding to approximate daytime

Terra MODIS acquisition time and (b) day of year (DOY) between April and October.

TABLE IV
MEAN DIFFERENCE BETWEEN HOURLY LST AND DAILY TA,;zn UNDER
CLEAR AND LONG-TERM CLOUDY SKIES FOR EACH STATION

LST-TAmean [°C]

Station
Cloudy-sky Clear-sky

Rotholz 2.60 7.66
Chamau 1.29 6.45
Friebiiel 1.06 6.69
Neustift 2.76 8.51
Oensingen 3.70 10.16
Monte Bondone 4.07 12.86
Mazia 1 2.76 9.63
Mazia 2 3.84 13.31
Mazia 3 4.08 13.04
Mazia 4 3.74 15.23
Torgnon 1 4.17 13.18
Caldaro 1.43 4.13
Valle dell‘Adige 1.53 7.83
Lavarone 0.07 2.82
Davos -1.04 2.07
Renon 0.97 5.01
Torgnon 2 1.20 5.60

solar noon. For overcast conditions, however, the discrepancies
between LST and TAcan Were smaller (< 2.7 °C), and they
were more consistent within a day. This resulted in hourly-based
standard deviation equal to 0.71 °C that was approximately
1.5 °C smaller than under clear-sky conditions [see Fig. 3(a)].
Similarly, as for the hourly observations, the day-of-year (DOY)
based differences under cloudy-sky conditions were fairly stable
throughout the year when compared to clear-sky observations
[see Fig. 3(b)].

An additional analysis performed for the individual stations
showed that LST tends to be greater than TA ¢, With increased
values for clear-sky observations (see Table IV). While there
was one station (Davos) with TA ea, greater than LST under
cloudy skies, for the rest of the sites the mean differences were
positive and ranged from 0.07 °C (Lavarone) to 4.17 °C in
Torgnon 1. The mean variations between LST and TA,can for
cloud-free conditions were larger than for overcast conditions
for all stations yielding values from 2.07 °C in Davos to nearly
15.2 °C in grass-covered Mazia 4 (see Table IV). The paired
t-test verified that the clear-sky LST-TA .y, Observations for the
individual stations were significantly greater (p < 0.001) than
the corresponding differences under cloudy-sky conditions.

Based on the abovementioned analyses (see Fig. 3, Table IV),
daily mean air temperature was examined as a principal variable
to explain LST deviations as described in further sections of the
article.

2) Algorithms: LST observations under long-term cloudy-
sky conditions were modeled by three different regression algo-
rithms [see Fig. 2(b)]. A multivariate linear regression (MLM)
model was used as a baseline estimator to explain the relation-
ship between ground-based LST and independent variables. The
MLM is considered as an intuitive tool with lower complexity for
data interpretation, which makes it commonly used in modeling
and preprocessing tasks [7], [9], [49]. As an alternative to the
standard MLM, we exploited artificial neural network (ANN)
and random forest (RF) [85]-[87]. Selection of these approaches
was dictated by two main reasons. First, they belong to two
algorithm families with different assumptions, which make them
useful for comparison analysis [88]. Second, the ANN and RF
have ability to account for both linear problems and nonlineari-
ties between predictors and dependent variable. The algorithms
have been successfully used in many studies, including spatial
mapping and remote sensing enhancement tasks [9], [52], [89].
More detailed information about the algorithms is provided by
Kuhn et al. [86].

3) Model Calibration and Evaluation: Spatio-temporal pre-
dictive tasks entail an appropriate data management and mod-
elling strategies to retrieve reliable estimations for new lo-
cations. One of the most common problems regarding mod-
elling from geographical features is the existence of dependence
between predictors and time-neighboring observations result-
ing in model overfit that is revealed by well-fitted regression
for training data and poor predictions beyond known points
[91, [90].

Prior model training process, dependencies between predic-
tors were investigated by exploiting variance inflation factor
(VIF) to solve multicollinearity issue among features [91]. The
VIF is defined as follows:

VI, = s (1)
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TABLE V
RESULTS FROM THE HYPERPARAMETER OPTIMIZATION FOR THE MODELS WITH THEIR FINAL VALUES

Hyperparameter search

Algorithm Short description

Final value

grid
L alpha®: 1.0 lambda®™**": 0.05
alpha: elastic mixing parameter alpha: 0.0-1.0 ) )
eNet o alpha®": 0.8, 1.0 lambda®": 0.0, 0.05, 0.7
lambda: regularization parameter lambda: 0.001-0.6
alpha®**: 1.0 lambda®™: 0.0
) ) ) ) size®t 1, 9 decay™e: 0.0, 0.4
size: units per hidden layer size: 1-10 L )
ANN . size®": 1,2,3 decay®": 0.0
decay: weight penalty parameter decay: 0.0-0.5 . - -
size™*: 1,2,3 decay®™*: 0.0, 0.1, 0.2, 0.5
mtry: number of prediction variables mtry©est: 2,3
RF randomly sampled as candidates at mtry: 1-4 mtry®*®: 2, 3, 4
each split mtry®**: 2

ANN = feed forward network with one hidden layer, RF = random forest based on 1000 trees, eNet = elastic net model used as an alternative to the MLM. The

abbreviation agri refers to permanent crops.

where the R} indicates the unadjusted coefficient of determina-
tion calculated by regressing the kth independent variable on the
remaining predictors.

For regression tasks in spatio-temporal domain the overfitting
problem is not only related to the redundant features but also
to an incorrect model calibration or inappropriate predictor
selection [9]. In this context, a model regularization needs to
include these two aspects. Spatial cross validation (SCV) with a
“leave-one-station-out” approach that excludes all observations
of one station iteratively using station-fold splits (as k-fold
subsets), and then compares all fold-driven simulations, could
allow evaluating prediction power beyond training data, while
simultaneously reducing autocorrelation between observations.
On the other hand, forward feature selection (FFS) estimates
the significance of predictors by inspecting possible model
combinations and selects only those features, which improve
model performance in terms of accuracy metrics [92]. In this
article, we combined the FFS and SCV to determine the final
features considering the highest model prediction performance
in terms of its accuracy [9], [93], [94]. Average RMSE and R?
together with their corresponding standard deviations (SDruysE
and SDy?) were calculated as evaluation metrics to choose the
best modeling approach.

As mentioned previously, the regularization was performed
by applying forward feature selection to all predictor variables
in conjunction with the leave-one-station-out SCV [9]. The
tuning was additionally conducted to obtain optimal algorithm
hyperparameters for the models [95]. In the case of the ANN
and RF, parameters for each model were evaluated within the
iterative SCV process using tuning search grids (see Table V)
[96], [97]. In addition, we applied elastic net (eNet) model to
test regularization impact on the MLM. We performed multiple
modeling for each vegetation group (see Table I) considering dif-
ferent combinations of hyperparameters in the search grids. The
optimal values were chosen according to SCV accuracy scores.

Since the main aim of the calibrated models was to apply them
to unseen gridded data, the test subsets were created during the
spatial cross-validation approach to estimate model robustness

beyond training points. The spatial predictive performance of all
models (MLM, eNet, ANN, RF) was compared by conducting
multiple paired t-tests.

In this article, for model creation we used Caret and CAST
packages available in the R statistical software that contains the
MLM, eNet, ANN, and RF model implementations from other
R libraries [96]-[99].

4) Extension to Gridded Data: After the definition of the
models, based on ground station data, they were applied to grid-
ded predictors to reconstruct cloudy LSTs from MODIS LST
at 250 m spatial resolution [see Fig. 2(c)—(e)]. Since year-round
modeling was split into separate LULC-driven estimators, we
defined potential areas for each model by considering similari-
ties in predictor variable space.

In order to estimate model transferability, we made a quan-
titative comparison between data used for model training and
gridded features representing new locations for the LST recon-
struction. Similarity measure between a target pixel (i.e., a new
point to predict) and training data was assessed by minimum
Euclidean distance in the multidimensional predictor space with
respect to an average distance between points used during train-
ing process [90]

déargct = min [d (Za j)] (2)
where min /-] represents minimum function, d(i, j) indicates
distance between a new point i and jth observation from training
data, and & target 15 @ minimum distance between a new location
ith and a point used in the modeling [96].

Based on this, a standardized distance (d” ;arget ) for each new
location was derived, as shown in

7
dg' _ dtarget 3
target — d ( )
mean

where d;ean indicates an average Euclidean distance from a
target i to all training points.

Areas of applicability (AOA) for the considered models were
defined based on the concept developed by Meyer and Pebesma
[90]. We selected this approach because it deals with a problem



BARTKOWIAK et al.: LST RECONSTRUCTION UNDER LONG-TERM CLOUDY-SKY CONDITIONS AT 250 M SPATIAL RESOLUTION

2045

TABLE VI
SUMMARY OF THE MODEL EVALUATION MEASURES FROM MULTIVARIATE LINEAR REGRESSION, ELASTIC NET, NEURAL NETWORKS, AND RANDOM FOREST

Group Algorithm RMSE [°C] SDguse [°C] R? SDg? Final predictors
M M ﬁ w m TAH’]EHHQ TA“]EIX
Permanent crops eNet 2.61 1.74 0.76 0.16 TAmas - TAmean
ANN 2.74 1.51 0.72 0.13 SWi,
RF 3.05 1.49 0.69 0.11 log(zo)or!
M & w m M TAH’]EHHQ TA“]EIX
Forest eNet 1.84 0.45 0.88 0.04 SWi,
ANN 1.84 0.42 0.88 0.04 TAmax - TAmean
RF 1.91 0.41 0.86 0.04
MLM 2.07 0.32 0.77 0.07 TAmens TAmax
Grassland eNet 2.08 0.32 0.77 0.07 TAmas - TAmean
ANN 2.05 0.33 0.78 0.07 SWi,
RF 2.12 0.32 0.77 0.07 2o"(h)'spoo

Underlined records represent final algorithms for reconstructing cloud-covered MODIS LST and their corresponding predictors (seventh column) selected in
the forward feature selection approach (see Sections III-B and III-C for more details).

of model transfer into unknown environments that have never
been seen by fitted regressions. This approach is relevant to re-
duce uncertainties in spatial predictions beyond the training data,
especially in mountainous regions with fragmented landscape
for which cross-validation provides only global accuracy metrics
limited to feature variability covered by training observations
[100], [101]. Therefore, AOA were determined considering the
range of the predictor values used for establishing the models.
Specifically, the AOA was derived from standardized distances
based on training data records (d” ¢raining) With respect to the
spatial cross-validation folds as follows:

J

training

g —

training ~ training (4)
mean

where d{raining represents minimum Euclidean distance between
ajth training observation and a point from remaining station-fold
subsets, and d'T2ining jndicates a mean distance between a jth
location and other points included in other CV splits.

It means that d7;,,;,,, Was derived based on training points
that did not appear in the same station-fold subset in the CV
(see Section II-C3) as we assumed that the model performance

estimates (see Table VI) apply to d, which is comparable

target>
10 df, pining Values.
Model transfer to new geographic locations was realized by
applying the 0.95 quantile of the df, ;... as a threshold for
the target standardized distances (df,,4.) [90]. Gridded data

beyond that range were flagged as outliers (outside AOA), and
thus, those areas were excluded from further LST reconstruction.
Estimation of the AOA was performed in the CAST package
implemented in the R software [98].

In addition to AOA, we determined potential locations for
LST prediction by investigating spectral similarities between
pure pixels represented by LULC-driven groups (see Section
III-A) and mixed grid cells. Previous studies showed that land
surface temperature is highly correlated with vegetation indices
that capture spectral differences between plant species [31],
[102], [103]. Thus, MODIS EVI (MOD13Q1 Version 6) was
used for similar pixel extraction for vegetation groups defined
in Table I. First, we extracted homogenous EVI with a minimum

threshold of 80% within 250-m mask obtained from the LISS-
2013 landcover (Appendix, Fig. 9). We exploited time-series of
EVI images acquired from 2014 to 2017 within months with
phenological vegetation cycle. Target pixels were classified to
the closest vegetation group using the following condition:

ZZ: (57?_ rrlrﬂlean)2
|ﬁlT - Btj;.rget’ < \/ 171(71 — 1) 5)

where 37 indicates the closest homogenous pixel i to a target
pixel 87 ¢arget, T is a DOY corresponding to MODIS acquisition
time, A7 mean represents an average EVI value of available pure
pixels 57, for a given DOY, n is number of homogenous pixels
for each model group.

Pixels were assigned to a biome group if the majority of
the individual ﬁrtarget from the multiyear classification fulfilled
the above constraint. Considering high landcover heterogeneity
over the study area, some EVI pixels may contain fractional
landcover, which hampers delineation of areas of applicability
for the models. Many authors showed that LST of a nonpure
pixel can be a linear mixture of subpixel components [104],
[105]. In this context, when target pixels were classified to more
than one group, fractional vegetation mask from the LULC map
was generated, and weighted average values of surface tem-
perature from respective biome-based models were computed
(Appendix, Fig. 10).

III. RESULTS

A. LSTean — TAmean Comparison Under Cloudy Skies

Considering the complex character of the surface—atmosphere
processes in the Alps, we first examined the overall relationships
between ground-based LST , can and TA ¢ayn under-cloudy-sky
conditions for each station independently. Fig. 4 illustrates the
LSTean — TAmean scatterplots for sites located in forests and
grasslands.

The regressions show a site-dependency driven by landcover
of the stations (see Table I). The scatterplots represented by
forest, however, approximated a 1:1 relationship more closely
than sites covered by grasslands (see Fig. 4). For forest sites [see
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Fig. 4. Scatterplots between LSTean and TApean under cloudy skies for six example weather stations covered by forest (in dark green) and grassland (in

light green). LSTmean Was calculated as an average from hourly LSTs recorded between 9 A.M. and 1 PM. as an approximate range for daytime Terra MODIS
acquisition time over the study area. Dashed lines in the scatterplots depict divergence between LSTmean and TApean-
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(c) grassland during the FFS procedure. RMSE ,can Was computed considering hour-round LST models corresponding to MODIS acquisition time.

Fig. 4(a)—(c)] LSTyean and TAean under cloudy skies ranged
roughly the same values regardless their elevation, while TA ,ean
for grass-covered areas may underestimate surface tempera-
tures [see Fig. 4(d)—(f)]. In particular, LST},ea, Over grasslands
tends to be higher than TA,,c., and the difference grows with
temperature, especially at higher altitudes [see Fig. 4(e)—(f)].
Considering different LSTcan — TAmean behavior among the
landcover types, the LST models were built based on aggre-
gated stations that represent similar environmental conditions

(see Table I). Forest, grasslands, and permanent crops were
considered as three separate model groups for the final LST
reconstruction.

B. Selected Predictors

Although LST can be explained from TA ;.1 , the biophysical
impact of landcover on LST, as shown in Fig. 4, suggested
incorporation of additional variables that can describe complex
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MODIS-like time splits.

interplay between ground and atmosphere. The final features for
each model group, as explained in Section II-C3, were selected
using FFS procedure in the SCV approach. Fig. 5 displays
selected explanatory variables for each model group based on
all algorithms applied. Their relevance was evaluated by RMSE,
averaged with respect to MODIS-like time splits (RMSE ,,can)-

As can be observed in Fig. 5, LSTs over grassland and forest
ecosystems, regardless of the algorithm used, were explained
by one and three unique sets of predictors, respectively. During
the FFS procedure for forest group, parameters were mainly
reduced to air temperature (TA,ax, TAmean) and daily incoming
solar radiation yielding RMSE, ¢, ranging from 1.82 °Cto 1.92
°C, while for grass-covered areas vegetation structure parameter
(zo-h'spoo) was additionally selected as significant predictor
in all MODIS-like time models [see Fig. 5(b) and (c)]. Due to
complex structure of the permanent crops, which influences tem-
poral variability in LST, eight different combinations of features
were chosen, and they varied between algorithms [see Fig. 5(a)].
Considering all predictor sets of permanent crops, albedo-based
product —log(z)-(cv)~! and air temperature reported the highest
frequencies yielding 69% and 100% of times they occurred in
the models, respectively.

C. Model Comparison and Assessment

Along with the predictor selection procedure, performance
of the proposed LST reconstruction method was compared for
each vegetation group separately (see Table I). As mentioned
previously in Section II-C3, we checked regression overfit on
test data in the SCV approach to evaluate predictive strength
of the fitted models. Table VI shows averaged accuracy scores
obtained from each algorithm with combined MODIS-like time
splits.

As can be observed in Table VI, the proposed LST recon-
struction concept gave quite similar accuracy statistics for each
vegetation classes with small differences between the tested al-
gorithms. Considerably uniform RMSE (R?) metrics, regardless

(©)

Comparison between observed and predicted LSTs from the final models for: (a) permanent crops, (b) forest, and (c) grassland, considering combined

of the algorithm used, were present for forest and grassland
ranging from 1.84 °C to 1.91 °C (0.86 to 0.88) and 2.05 °C
to 2.12 °C (0.77 to 0.78), respectively (see Table VI). The
greatest errors appeared over permanent crops yielding overall
cross-validated RMSEs from 2.61 °C (MLM) to 3.05 °C using
RF algorithm. Similar situation applied to standard deviation
of RMSE (SDgrusk) and R? scores (SDg?), resulting in higher
values for all tested algorithms when compared to forest and
grass-covered model groups (see Table VI).

The multivariate linear regression was found as the best LST
estimator with SCV RMSEs (SDrusg) 0of 2.67 °C (1.62 °C) and
1.84 °C (0.42 °C) for permanent crops and forest, respectively.
Although slightly lower RMSE over permanent crops was iden-
tified for the eNet, we selected MLM due to its smaller SDrvisg
score (see Table VI). For forest group eNet and ANN gave the
same results (RMSE = 1.84 °C) when compared to the linear
model, however, we excluded these algorithms because of their
longer computation time to tune hyperparameters (see Tables
V and VI). On average, for the grassland models, we obtained
the highest predictive performance from ANN yielding 0.78 and
2.05 °C for R? and RMSE, respectively. Slightly lower accuracy
statistics were noted for MLM and eNet with a 1.5% increase in
RMSE. Random forest depicted the poorest predictive perfor-
mance among all LULC model groups (see Table VI).

The performance of the regressions differed at the level of
landcover classes. For forest we found smaller errors, while
larger deviations in LSTs appeared over grasslands and per-
manent crops with 12% and 48% increases in RMSE when
compared to forest accuracy metrics (see Table VI). Due to the
unique atmospheric coupling of forest, this class maintained the
strongest LST-TA relationship (R?> ~ 90%) among all model
groups (see Fig. 5, Table VI) [61], [106]. LSTs over grassland
and permanent crops with a relatively smaller impact of turbulent
mixing were additionally explained by other biophysical pa-
rameters, e.g., surface albedo, leaf area index, and aerodynamic
roughness. Instability of crops model group revealed by higher
SDrMse and SDg? values documented in Table VI, can be
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Image Reconstruction rate [%]

Forest | Grassland | Permanent crops | Mixed
(a) 99.80 87.85 58.24 99.87
(b) 77.21 99.91 100.00 99.78
(c) 83.23 99.91 100.00 99.87
(d) 95.17 99.95 100.00 99.97
(e) 100.00 99.95 84.71 100.00
(f) 99.31 92.16 100.00 99.90

Fig. 7.
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Results of the proposed subpixel LST reconstruction of 1-km daytime Terra MODIS LST for long-term cloudy skies acquired on (a) May 2, 2014,

(b) June 29, 2014, (c) July 8, 2014, (d) September 19, 2014, (e) October 11, 2014, and (f) October 26, 2014 in Vinschgau/Venosta. The attached table presents rate
success of reconstructions for each vegetation group (see Appendix). According to the QA layer all original MODIS LST matrices were 100% covered by clouds.

related to the limited number of samples and heterogeneities
of the combined land-use types (orchards and vineyards) incor-
porated in the modeling.

Considering the averaged accuracy statistics in Table VI, we
achieved the strongest performance from ANN for grassland,
while linear model gave the best results for permanent crops
and forest groups. Therefore, only these algorithms were con-
sidered in the further analyses to reconstruct MODIS LST pixels
obscured by clouds.

To compare prediction performance of the vegetation groups
we investigated distribution of ground-based LST with their
corresponding values predicted by the selected algorithms (see
Fig. 6). On average, the interquartile ranges (IQR) of observed
LSTs for all vegetation groups were in accordance with predicted

data. We found that the models were incapable to reconstruct
observations beyond the IQRs, especially over grasslands and
permanent crops [see Fig. 6(a)—(c)]. These patterns were mainly
present for very low and high values (shown as circles), which
appeared rarely in the models. Generally, this demonstrates that
the chosen algorithms were able to capture LST variability with
respect to different landcovers.

D. LST Reconstruction Under Cloudy-Sky Conditions

In the second part of the LST reconstruction the regressions
were applied to gridded variables to estimate missing 250-m
MODIS LST under cloudy-sky conditions. The outcomes of
restoring invalid MODIS LSTs are presented in Fig. 7.
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Fig. 8.

Scatterplots between LST from ground measurements (LSTs) and recovered values (LSTpreq) based on the MODIS acquisition dates for the year 2014

with respect to: (a) instantaneous solar radiation (hourly SWjy,), (b) sky conditions, (c) available stations with reduced number of observations. Noncloudy-sky
conditions in Fig. 8(b) refer to station records that were neither classified as long-term cloudy-sky nor clear-sky observations. The validated sites are located in
relatively uniform areas with minimum 85% of homogeneity for related land-cover types within 250 m pixel [73], [107].

As demonstrated in Fig. 7, the approach proposed in this
article provided a satisfactory data recovery over the study area.
Invalid values were effectively predicted and LST downscaling
to 250 m spatial resolution allowed simulating LST variability
at subpixel level. For all images, regardless their acquisition
date and observing time, more than 92% of blank pixels were
filled properly. The highest reconstruction rate was observed
for scenes recorded in late summer and autumn [see Fig. 7(d)
and (e)] and ranged from 97.59% to 99.66% on October 26th
and 11th, respectively. For other three dates [see Fig. 7(a)—(c)],
however, we noticed larger number of unrecovered pixels (<
7.16%) that were classified as outliers by the models. On June
29th and July 8th areas of nonapplicability were identified for
forests located in the center of the main valley and on its edges
[see Fig. 7(b)—(c)]. Slightly less unpredicted pixels (3.75%)
were found on May 2nd, which corresponded to high-mountain
grasslands and permanent crops in the main valley [see Fig. 7(a)].
We found that the increased proportion of invalid LSTs, as seen
in Fig. 7, may have occurred because of the smaller number
of samples with cloudy-sky conditions and limited variability
of observations to fit the models. This can be explained by
different meteorological conditions in summer, with less intense
and shorter cloud cover periods when compared to spring and
autumn seasons. In addition, some pixels were not predicted due
to coarse resolution of gridded parameters, such as MODIS LAI
or albedo products. These factors had a negative impact on the
LST reconstruction over the entire study area.

The reconstructed maps generally follow thermal patterns of
the study area with higher temperatures in the valleys and colder
conditions at high altitudes. On average, pixels of permanent
crops located in the southwestern part of the region had relatively
higher temperatures when compared to other biome groups
situated at higher altitudes. We found that lower LST values were
obtained over grasslands and forests. In contrast to the permanent
crops, these biomes exhibited higher spatial heterogeneities with
regard to terrain and thermal variability. This was confirmed in
grass-covered areas with high deviations in elevation and LST
equal to 546 m and 3.65 °C, respectively. Although for forest
and grassland we noted similar thermal variability, standard

deviation of elevation for the latter vegetation group was over
200 m greater than for forest.

In addition, the reconstructed LST maps were compared with
clear-sky MODIS LST grids acquired on temporally adjacent
days (May 4th, July 1st, September 22nd, October 27th). Ta-
ble VII shows an overview of statistical measures obtained from
LSTs under cloudy skies (see Fig. 7) and their corresponding
original MODIS images.

As shown in Table VII, the averaged differences in LST
between clear-sky MODIS and the reconstructed grids revealed
acooling role of thick cloud cover that reduces amount of incom-
ing shortwave radiation. In general, mean surface temperatures
for clear-sky MODIS maps were higher than for the recon-
structed grid cells, although the differences varied between time
acquisitions. The largest deviations could be observed during
spring and summer, with a maximum difference of 4.54 °C
between June 29th and July Ist (see Table VII). Although
higher values of the clear-sky MODIS LSTs generally indicate a
stronger impact of solar radiation on the surface heating process,
LST hean on October 26th was very close to the average from
MODIS LST acquired one day later (see Table VII).

Due to the complex land surface interactions in highly het-
erogenous mountain ecosystems, the restored LST pixels could
have been additionally explained by other predictors that in-
fluence surface thermal properties, such as landcover classes,
biomass content, or surface albedo (see Fig. 5, Table VI). On the
other hand, 1-km MODIS data may not represent LST variability
at the subpixel scale of the reconstructed maps resulting in lower
LST values over the study area.

E. Validation With In Situ Data

To assess the effectiveness of our LST reconstruction, we
performed a quantitative assessment by comparing station-based
LSTs with their corresponding gap-filled pixels at 250 m spatial
resolution for the entire year of 2014. Validation results are
illustrated in Fig. 8.

The evaluation results indicate a close agreement between
ground measurements (LST.,s) and the LST reconstructions



2050

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE VII
ANALYTICAL COMPARISON BETWEEN THE RECOVERED LST AND THE TIME-COINCIDENT ORIGINAL MODIS DATA, AVERAGED FOR THE STUDY AREA

Reconstructed cloudy LST

Clear-sky MODIS LST

date LSTumean [°C] date LSTmean [°C]
2 May 2014 8.50 4 May 2014 10.41
29 June 2014 12.95 1 July 2014 17.49
19 September 2014 12.56 22 September 2014 13.60
26 October 2014 8.69 27 October 2014 8.72

Clear-sky MODIS LST maps for the remaining recovered days (July 8, 2014, October 11, 2014) were not available.

TABLE VIII
LocAL COMPARISON OF RMSE AND BIAS VALUES BETWEEN /N SiTU DATA AND RECONSTRUCTED GRIDS FOR CLOUD-COVERED MODIS LST PIXELS (DERIVED
FROM QA FLAGS) FOR THE FOUR STATIONS BASED ON TIMESERIES FROM 2014

Reconstructed LST
RMSE [°C] (BIAS [°C))

Station .
all cloudy-sky conditions long-term cloudy-sky conditions
(long- & short-term) & Y-Sy
3.26 2.81
Caldaro (-2.85) (-2.38)
Lavarone 1.37 e
(0.12) (-0.44)
. 2.40 242
Mazia | (:0.29) (-1.47)
. 2.88 1.57
Mazia 2 (1.10) 071)

The reconstruction results are shown for all cloudy-sky conditions and for observations under long-term cloudy-sky conditions [see Fig. 4 and Fig. 8(c)].

(LSTpreq). Considering all available in situ observations for
the time acquisitions in 2014, the proposed approach was able
to predict missing values with average R? of 0.73 and RMSE
equal to 2.50 °C and [see Fig. 8(a) and (b)]. As can be observed
in the scatterplots [see Fig. 8(a)—(c)], the estimated grids have
a relatively strong coherence with the stations, however, some
observations depicted divergence from a 1:1 relationship. The
largest deviations occurred for the agricultural (Caldaro) and
grass-covered sites (Mazia 1, Mazia 2) with higher values of
the RMSE and instantaneous SW;,, (over 500 Wm~2), which
reflects no presence of long-term cloudy skies during MODIS
acquisition times [see Fig. 8(b)]. From this aspect, we eliminated
those points from further analysis and achieved better evaluation
results yielding 2.12 °C and 0.84 for RMSE and R?, respectively
[see Fig. 8(c)]. Considering each station separately, accuracies of
the LST reconstruction under long-term cloudy-sky conditions
differed between stations with the lowest errors for Lavarone and
Mazia 2 (RMSE = 1.24-1.57 °C) and higher ones for Mazia 1
and Caldaro (RMSE = 2.42-2.81 °C) (see Table VIII). Similarly,
biases between observed and predicted LSTs were dependent on
the site location. In general, for Caldaro and Mazia 1, regardless
of sky conditions, the model led to overestimation ranging from
—2.85°Cto —2.38 °C and —0.29 °C to —1.47 °C, respectively
(see Table VIII). While LST under all cloudy-sky conditions
(long-term and short-term cloudy sky) was underestimated at
some sites (specifically at Lavarone and Mazia 2), on average
LST predictions under long-term cloudy skies were higher than
the observed values. Overall, the reconstructions perform better
for long-term cloudy-sky observations with lower RMSE values
when compared to all cloudy-sky conditions (see Table VIII).

Such discrepancies, as shown in Fig. 8 and Table VIII, may
have appeared because of differences in cloud cover condi-
tions defined by the models and MODIS QA layer. A pos-
sible explanation is that although MODIS cells were classi-
fied as overcast during satellite observing time, those LSTs
might not have been influenced by the long-term cloudy-sky
conditions of our approach. This led to lower values of the
reconstructed temperatures when compared to the ground mea-
surements (see Table VIII, Fig. 8). In addition, spatial hetero-
geneities of land surface over the Alps could not have been
captured by coarse resolution of gridded predictors, such as
solar radiation, LAI, and albedo products (see Table III). These
factors would have impacts on the accuracy of the gap-filling
models leading to biases in the computation of the actual LSTs
(see Table VIII).

To test the potential impact of the meteorological input un-
certaintities on the model outputs under cloudy skies, we addi-
tionally predicted LSTs using the gridded datasets that were
perturbated with input uncertainties of Type B by including
their £100% values to the input grids for the year 2014 [108].
The reconstructed pixels were assessed in terms of RMSE and
percentage LST change with respect to in situ observations and
original LST predictions, respectively. In general, among all
predictors analyzed, we observed the biggest model deviations
influenced by TA .« ranging from £16% for Lavarone (forest)
to 8% for grassland (Mazia 1, Mazia 2) and permanent crops
in Caldaro (see Appendix, Fig. 11). For other variables we
observed smaller impact on the LST estimations. As shown in
Fig. 12, RMSEs obtained between ground-derived and modelled
LSTs (using both source and modified parameters) depended
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on model biome with the largest absolute differences (~1 °C)
for permanent crops (Caldaro) when TAean and TA . Were
perturbated.

1V. DiscussIiON
A. Advantages of the Proposed Reconstruction

Thermal remote sensing images are prone to overcast condi-
tions resulting in spatial gaps in LST data. Although many LST
reconstruction methods were developed, their implementation is
hampered either due to rarely available biophysical parameters
or coarse resolution outputs, which makes them irrelevant in
heterogenous environments. To overcome these limitations, the
main objective of this article was to develop a robust proce-
dure for restoring invalid coarse-resolution MODIS LSTs at
250 m spatial resolution by combining data-driven modeling
from meteorological stations with physical-based approach to
retrieve variables under long-term cloudy-sky conditions. The
restored LST maps for six selected MOD11A1 images demon-
strated the effectiveness of the Al-based reconstructions among
all vegetation groups. The fitted models were able to identify
parameters playing a key role in explaining LST variability
driven by different landcovers. SCV with high coefficients of
determination and relatively small errors confirmed the strong
model performance, yielding on average an R? of 0.80 and a
RMSE of 2.19 °C. From a visual assessment of the restored
maps, regardless of different seasons, no notable irregularities
in LST patterns were observed.

Due to lack of in situ measurements in 2014 for all sites, the
gap-filled LST images were validated with observations from
four available stations (see Fig. 8, Table VIII). Results demon-
strated that predicted LST data were in accordance with ground-
based records obtaining R? of 0.84 and RMSE of 2.12 °C.
Compared with other reconstructions dealing with mountainous
areas, our approach showed satisfactory evaluation scores. On
average, Ke et al. [48] and Sun et al. [109] obtained lower
accuracy with RMSEs ranging from 1.42 K to 3.16 K. Similarly,
the SEB-based methods implemented by Yu ef al. [29] and
Yang et al. [32] led to weaker correlation between observed
and predicted LSTs resulting in increased RMSEs ranging from
3.16 °C to 4.78 °C. However, we should keep in mind that these
outcomes depend on site locations and are affected by accuracy
of input data and spatial heterogeneity of study area.

This article demonstrated that surface temperatures under
cloudy-sky conditions differ significantly from those under clear
skies leading to greater differences between LST and daily
TAean (see Fig. 3, Table IV) [60], [110]. Although they are
correct from geostatistical point of view, they should not be used
for retrieval of actual thermal conditions of the surface. On av-
erage, quantitative comparison between reconstructed maps and
temporally adjacent clear-sky MODIS pixels showed that LSTs
under cloudy-sky conditions were smaller when compared to
valid datasets (see Table VII). This indicates an impact of clouds
on amount of incident shortwave radiation, which regulates the
land heating process. In this case findings from this article are not
in agreement with spatio-temporal gap-filling proposed by Weiss
et al. [44], Sun et al. [109], Li et al. [111], and Sarafanov et al.
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[43] who predicted overcast surface temperatures from adjacent
cloud-free pixels.

The developed Al-based approach provides more accurate
understanding of additional controls on land surface temperature
at local scale. Although strong correlations between LST and
TApean under overcast conditions were observed (see Fig. 4),
applying auxiliary variables to the models helped to explain
LST variations among different vegetation groups. Based on
preliminary tests, a split into separate landcover classes, which
was also found favorable by Huang et al. [7], improved the
accuracy of the models resulting in unique selection of final
algorithms and predictors for each analyzed biome (see Fig. 5,
Table VI). Permanent crops and forest models achieved the
most satisfactory results from multivariate linear regression,
while for grasslands the highest prediction performance was
obtained using neural network algorithm. Forward feature se-
lection revealed impacts of different factors controlling LSTs in
heterogenous ecosystems. Similar to the results of Bertoldi et al.
[53] and Mildrexler et al. [61], forest maintained the strongest
relationship with daily air temperature (TAean/TAmax), While
agricultural and grass-covered areas were additionally influ-
enced by incident shortwave radiation and surface properties,
such as albedo, aerodynamic roughness, and biomass content
(see Figs. 4 and 5). The method developed in this article works
well for the areas with clouds, which makes it comparable to
physical-based LST reconstructions [30], [112]. Additionally,
it does not require rarely available input parameters to describe
complex physical mechanisms between ground and atmosphere.

Although our reconstruction approach showed a strong per-
formance, about 7% of pixels of the study area were not predicted
due to intentionally imposed constraints on the models (see
Fig. 7). Prediction power of the reconstruction is limited by SCV
strategy and similarity factors (Euclidean distance and spectral
similarities in predictor variable space) that compare coherence
between station-based training dataset and gridded predictors.
These factors reduce areas for LST estimation to known envi-
ronments where reconstruction errors apply. In this context, this
approach seems to be objective in terms of spatial predictive
tasks into new areas by avoiding locations with nonstandard
observations identified by models [9], [90], [109].

B. Limitations

The proposed gap-filling approach exhibits large potential for
producing high quality LST maps. Nevertheless, reliable recon-
structions of LST in the Alps still pose challenges, mainly due
to landscape heterogeneities and thermal variability in complex
mountain environments.

Despite strong correlation between gridded data and ground
measurements, the RMSE is 2.12 °C, which reflects that for some
points prediction performance was still poor. Such discrepancies
are likely related to input parameters leading to overestimation
or underestimation of the restored maps. Differences in spatial
scales between station records and gridded predictors, e.g.,
surface albedo, solar radiation, and air temperature can explain
errors in the reconstructed data. Furthermore, the black antihail
net used to protect the orchards (Caldaro) may introduce some
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bias in the final LST output. In addition, some remotely sensed
variables, including leaf area index and surface albedo were
obtained from composite products (4-day MCD15A3H and daily
16-day MCD43A3 products), which introduces uncertainties
associated with neglected temporal variations. In this context,
more advanced daily interpolation methods could be explored
[113]-[115].

When comparing the cross-validation results (see Table VI)
with other data-driven methods [50]-[51], we found that our
evaluation measures had less satisfactory scores. Wu et al.
[50] obtained considerably stronger model performance with
the CNN algorithm, attaining RMSE below 1 °C. Similarly,
good results were reported by Zhao and Duan [51]. The au-
thors applied random forest model from clear-sky pixels to
cloud-covered MODIS LST with RMSE of 1.14 °C and R?
equal to 0.94. Such discrepancies between our method and the
abovementioned [50], [51] could be explained by a relatively
small number of observations for the agricultural landcover
class, which led to instability of the model reflected by greater
deviations in RMSE between cross-validated ensembles. In
fact, diversified character of the permanent crops (orchards and
vineyards) and the resulting data randomness had an additional
impact on the model performance. Therefore, further study will
concentrate on the extension of ground data by augmenting
the timeseries of underrepresented training data for modelling
prior to LST reconstructions [116], [117]. Since recurrent neural
network can learn patterns and associations between sequential
data over time, deep learning models, such as the long short-
term memory (LSTM) algorithm exhibit a great potential in
generating high-quality observable variables for better model
training effects [118]. In addition, combining ancillary ground
observations outside the study area along with postprocessed
outputs from physical models would be beneficiary to learn new
spatio-temporal input parametrizations of predictors [119]. On
the other hand, the performance of the discussed methods [50],
[51] relied on low-resolution satellite-based inputs and random
cross-validation strategy, which makes them less strict and more
prone to autocorrelation than our “leave-one-station-out” SCV
method [9]. Additionally, our approach exploits data that capture
spatial detail at station level, which translates to stronger ther-
mal variability when compared to heterogeneous information
from coarse resolution MODIS and MSG/SEVIRI LST pixels.
Therefore, the prediction errors for our method can be generally
acceptable.

While the predictions were robust in areas with high-
frequency cloudy-sky conditions, in some cases cloud-covered
pixels from MODIS QA Ilayer could lead to disagreement be-
tween reconstructions and their actual temperatures. When com-
paring our estimations to ground data, we found that increased
proportion of solar radiation caused underestimation of restored
values (see Fig. 8, Table VIII). While LST reconstruction was
resilient in areas with high-frequency cloudy-sky conditions,
the method was limited for short-term cloudy skies. The pro-
posed method assumes that overcast conditions are present
when minimum 5-h constant cloudiness is recorded. Thus, the
approach is suitable for long-term overcast conditions with thick
clouds. Otherwise, it can lead to underestimation of LST values,
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which is related to less intense insolation blocked by clouds.
Thus, developing an extended approach for diversified overcast
conditions could bring to significant accuracy improvements to
the LST reconstruction over complex Alpine ecosystems.
Finally, the developed relationships are tuned to the ecosys-
tems that characterize the study area. However, they could be
easily extended to different regions if new observations (e.g.,
representing unique climatic conditions and surface properties)
were provided. From this point of view, the method is less
general than other data-driven approaches utilizing spatial in-
formation from remote sensing measurements [50], [51], [120],
[121], because it specifically aims to gap-fill LST over Alpine
regions, which are often under-represented in wide-ranging
models. Nonetheless, LST reconstruction over different areas
is still feasible, provided that required variables are available.

V. CONCLUSION

Cloud cover has a significant impact on quality of remotely
sensed LST observations, especially in high-frequency overcast
areas, such as complex mountain regions. Therefore, a robust
reconstruction of actual LST is a major research priority.

To address this problem, we presented a new method to recon-
struct MODIS LST values under cloudy skies from station-based
models at subpixel (250 m) spatial resolution. The proposed
approach reconstructs actual thermal conditions of land surface
under cloudy skies as an alternative way to the SEB-based meth-
ods that require complex parameters and are computationally
expensive. Results demonstrate that the proposed data-driven
analysis is capable of restoring invalid MODIS maps in a very
robust way.

The reconstructed maps have reasonable LST values when
compared to temporally neighboring clear-sky MODIS days.
The validation against in situ data confirmed the strong
agreement between estimations and ground observations. The
performance of the models had satisfactory results. Predic-
tion power showed landcover dependency resulting in in-
dividual predictors for each biome. Overall differences in
RMSEs between machine learning algorithms and linear re-
gression were minor for forest and permanent crops, while
for grassland neural networks slightly improved the perfor-
mance. At level of single vegetation groups, RMSE values
ranged from 1.84 °C in forest to 2.67 °C for permanent
crops.

Notably, it should be mentioned that the restored maps rep-
resent LSTs under long-term cloudy skies and may underesti-
mate LST cells affected by brief overcast conditions. Therefore,
future research should include an implementation of a hybrid
approach for recovering missing pixels affected by short-term
and long-term cloud contamination. Moreover, additional work
will focus on the development of the enhanced reconstructions
under long-term cloudy-sky conditions to increase spatial pre-
diction performance of the established models. In parallel to the
gap-filling procedure, data enhancement will be also applied to
clear-sky observations of 1-km MODIS LST data to produce
the full collection of 250-m resolution images considering dif-
ferent sky conditions. Furthermore, the proposed reconstruction
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method by applying the Al-models can be extended to other
low-resolution TIR sensors, such as Sentinel-3 SLSTR to pro-
vide data continuity for the study area. The availability of a
spatially and temporally continuous set of thermal data would
allow monitoring multitemporal trends of thermal conditions
of the surface. These outputs could be value-added products
for studies related to climatology, drought detection, and sus-
tainable agriculture production, where land surface temperature
is a baseline information for monitoring ecosystem dynamics
over high frequency cloud-covered areas, such as mountain
regions.

APPENDIX
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estimations from source meteorological input and the selected models (see
Table VI) for the year 2014. Each climate predictor (TAmax, TAmeans TAmax—
TAmean, SWin) was perturbated by its uncertainty and included in the model
together with remaining (unchanged) variables.
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by £100% uncertainty values. For each model run only one predictor was
changed.
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