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SADA-Net: A Shape Feature Optimization and
Multiscale Context Information-Based Water
Body Extraction Method for High-Resolution

Remote Sensing Images
Bin Wang, Zhanlong Chen , Liang Wu, Xiaohong Yang , and Yuan Zhou

Abstract—Convolutional neural networks (CNNs) have signifi-
cance in remote sensing image mapping, and pixel-level represen-
tation allows refined results. Due to inconsistencies within a class
and different scales of water bodies, the water body mapping has
challenges, such as insufficient integrity and rough shape segmenta-
tion. To resolve these issues, we proposed an intelligent water bodies
extraction method (named SADA-Net) for high-resolution remote
sensing images. This method considers multiscale information,
context dependence, and shape features. The network framework
integrates three critical components: shape feature optimization
(SFO), atrous spatial pyramid pooling, and dual attention modules.
SADA-Net can accurately extract an extensive range of water
bodies in complex scenarios. SADA-Net has certain advantages
regarding small and dense water bodies extraction, as the SFO
module effectively solves the defects of the unified processing of
low-level features in the encoder stage of CNNs, which highlights
the shape information of a water body. Two data types (red, green,
and blue bands and multispectral images) are employed to verify
the performance of the proposed network. The best result achieved
an evaluation index F1-Score of 96.14% in large-scale image seg-
mentation, and the structural similarity index measure reached
94.70%. Overall, the proposed method achieves the purpose of
maximizing the integrity and optimizing the shape of a water body.
Additionally, the SADA-Net proposed in this article has a specific
reference value for high-resolution remote sensing image water
bodies mapping.

Index Terms—Atrous spatial pyramid pooling, dual attention,
multispectrum, shape feature optimization, small water bodies.
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I. INTRODUCTION

WATER is crucial for human survival. Water provides a
resource that guarantees people’s lives, industrial, and

agricultural production; on the other hand, water is the habitat
of various aquatic plants and animals. Therefore, reasonable
water utilization and protection are vital to the stability of the
ecosystem [1]. With recent advancements in earth observation
technology, obtaining remote sensing images with high spatial,
and time resolution has become more convenient, which greatly
simplifies data collection for field surveyors. Therefore, the
technology for using remote sensing images to analyse and
infer relevant information about ground objects has received
widespread attention. In the field of geospatial information,
efficient and accurate water body mapping results using remote
sensing images have significance for surveying water resources,
natural disaster assessment, flood disaster monitoring, and water
conservation planning [2]–[5].

Early manual interpretation methods have high accuracy, but
they are gradually being replaced by less manual work and
more efficient machine learning methods. Early water bodies
extraction from remote sensing images mainly relied on spectral
information, such as water index method [6]–[8]. However,
the water index method does not pay attention to spatial in-
formation and has poor universal applicability [9]. In addition,
since traditional machine learning algorithms need to manually
construct many features for specific water bodies extraction
tasks, this method is not suitable for different regions and images
[10]–[12].

Currently, with the continuous development of deep learning
technology and the existence of massive remote sensing data,
the application of deep learning technology in remote sensing
image interpretation has become a research hotspot. However,
due to the complexity of water body distribution scenarios,
inconsistencies of each water body, and differences between
water bodies and other similar ground objects, the water body
extraction is still challenging [13], [14]. The convolutional neu-
ral network (CNN), as a powerful tool of end-to-end image
feature learning, is widely employed in water bodies extraction
research of remote sensing images [15]–[17]. Among them, the
fully convolutional network (FCN) is the first batch of networks
utilized for image segmentation [18]. Certain scholars applied
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the improved FCN network to realize water bodies extraction
and verified the performance from data enhancement, input
of different features and transfer learning [19]. However, the
continuous downsampling of the FCN leads to a reduction in
spatial resolution, which is not conducive to a refined water body
extraction. To compensate for the shortcomings of the FCN,
certain networks with encoder-decoder structures, such as U-Net
[20] and SegNet [21], have been proposed. This type of network
realizes the combination of high-level semantic information
and low-level features in the decoder structure, enhancing the
features’ expression. However, compared with natural images,
remote sensing images have higher complexity and multiscale
characteristics, so these characteristics must be considered for
water bodies extraction. Based on an improved U-Net network,
Feng et al. [22] employed superpixel and conditional random
field modules as constraints, greatly preserved the boundary
information of a water body, and suppressed the generated salt
and pepper noise. Analogously, Li et al. [23] increased the
number of connections in the middle layer of the U-Net network,
and fusing a wavelet transform and grey-level co-occurrence
matrix, then achieved rapid and accurate identification of water
bodies based on ultrahigh-resolution unmanned aerial vehicle
images. Additionally, a method combining Google Earth Engine
(GEE) and a multiscale CNN (MSCNN) was proposed to extract
water bodies from Landsat images; the MSCNN was applied
to train the model, and then the model was input into GEE
for water bodies extraction; this method has good performance
and is suitable for large-scale and long-term water body change
detection in urban backgrounds [24]. However, these methods do
not pay more attention to the low-level features of water bodies
when encoding images, such as shape features. The methods still
encounter the problem of insufficient integrity for large-scale
water bodies extraction.

To solve the abovementioned problems, an intelligent water
body mapping network (SADA-Net) is proposed in this article,
aiming to optimize the shape feature of water bodies while
improving the integrity of water bodies, to achieve the purpose
of fine water bodies extraction on a large scale. The proposed
network integrates shape feature optimization (SFO) [25], atrous
spatial pyramid pooling (ASPP) [26], and dual attention (DA)
[27] modules. The SFO module enhances the shape information
of water bodies and is parallelized with the backbone network
in the encoder structure. The ASPP module is utilized to cap-
ture multiscale context information using different receptive
fields. The DA module includes a position attention module
and channel attention module. Water bodies are greatly affected
by illumination and location; the DA module can effectively
aggregate spatial and channel dimension features, strengthen
the context-dependence relationship, and thus, further improve
the accuracy of water body extraction.

In summary, the main contributions of this article are listed
as follows.

1) A water bodies extraction method (SADA-Net) was pro-
posed to achieve the purpose of fine water bodies extrac-
tion on a large scale.

2) The combination of multiple important modules realizes
the extraction of small and dense water bodies.

3) The loss function is designed accordingly, which is more
conducive to stable convergence.

4) A water body dataset was constructed using Gaofen 2 re-
mote sensing images, and the proposed network achieves
excellent performance.

II. RELATED WORKS

Different kinds of remote sensing images have various num-
bers of bands and contain different information, such as optical
remote sensing images [28], [29], radar remote sensing images
[30], [31], and images generated from the fusion of multisource
data [32]–[34]. Therefore, some research methods based on
these images have emerged, such as the water index method,
object-oriented analysis method, and pixel-level statistical iden-
tification.

The normalized difference water index (NDWI) was first
proposed by McFeeters [35]. The normalized ratio of the green
and the near infrared (NIR) band was applied to highlight water
bodies. All positive NDWI numerical regions were considered
water bodies, and the areas with negative values were recognized
as nonwater areas. However, this method has certain limitations
in areas with dense buildings. Xu [36] proposed the modified
NDWI by using Landsat imagery to enhance the characteris-
tics of a water body in areas with a large number of built-up
areas. Furthermore, this method replaced the NIR band with
the mid-infrared band, while the green band was unchanged.
An automatic water extraction index was proposed based on
Landsat-5 TM imagery [28]. This index contains two formulas
that can be applied to unshaded and shadow-covered areas,
and they can be associated to improve water bodies mapping.
Sharma et al. [37] proposed a superfine water index (SWI)
based on the Moderate Resolution Imaging Spectroradiometer
(MODIS) multispectral imagery, conducting the robust global
detection and identification of surface water bodies. To accom-
plish this task, the SWI replaces the green band in the NDWI
with saturation (Sat) obtained from the Hue-Saturation-Value
transformation of the red, green, and blue (RGB) bands of the
MODIS data, while the NIR band is not changed, as follows:

SWI =
Sat(RGB) − 7∗NIR

Sat(RGB) + 7∗NIR
. (1)

The index method uses the difference in the reflectance of the
multispectral band. The ratio method is then applied to amplify
the differences between the bands to extract a water body. How-
ever, some optical remote sensing images have only RGB bands
and lack the other bands required for the corresponding water
index. Therefore, this method’s application range is limited, and
the method does not have generalization for different regions or
images.

Object-oriented approaches include two steps: image segmen-
tation and image classification, wherein image segmentation is
a crucial procedure that directly determines the advantages and
disadvantages of the results [38], [39]. Do et al. [40] used Rapid-
Eye and IKONOS imagery of the Lao Cai and Can Tho areas
in Vietnam to study land cover classification and then achieved
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good segmentation performance for water body mapping ac-
cording to a selected optimal threshold. Object-oriented methods
are generally employed in combination with other strategies
[41], [42]. By combining the NDWI and object-oriented tech-
niques, Kaplan and Avdan [43] applied Sentinel-2 imagery in the
mountainous and urban areas of Macedonia to achieve an excel-
lent mapping result, with kappa values (0.90 and 0.88) that were
more than 0.5 higher than those obtained when using NDWI
(0.39 and 0.35) alone. In addition, Zhao et al. [44] combined
NIR spectroscopy and object-oriented methods to extract the
central urban water bodies from IKONOS imagery, alleviating
the difficulty of water body extraction caused by building shad-
ows. In brief, object-oriented methods fully utilize the texture,
shape, and spectrum characteristics of remote sensing images
to produce excellent mapping performance. However, the scale
segmentation process requires a significant amount of time. In
the multiclassification task, certain categories were highlighted
under the same scale conditions, while others performed poorly.
Therefore, significant parameter adjustments are required when
handling the segmentation of massive remote sensing data.

Traditional machine learning such as the support vector ma-
chine (SVM) and decision tree (DT) methods are generally
pixel-level mapping methods. An SVM classification method
is mainly employed to solve binary classification problems and
obtain good results when the sample size is small [45]. An SVM
is usually applied as a classifier, and the model’s generalization
and the reliability of the mapping results can reach a relatively
good level [46]–[48]. In the processing of high-dimensional data,
the SVM method has a significant advantage. Some researchers
combined genetic algorithms with an SVM to the fusion of the
Radarsat-2 SAR image and Thaichote multispectral imagery
data, achieving the mapping of forests, agriculture, residential
areas, and water bodies [49]. Additionally, multifeature fusion
has an enhanced effect on water body extraction. The SVM
method was utilized to handle the fusion result of geometric
and attribute features, and the refined extraction of rivers, lakes,
reservoirs, and ponds was achieved [50]. DT analysis methods
provide high efficiency and descriptiveness, which is helpful
for manual analysis. To accurately extract the categories of the
regions of interest, McIver and Friedl [51] proposed a supervised
DT classification algorithm that merged the prior probability,
which was selected to segment the land cover, and a high water
body extraction accuracy from coarse-resolution remote sensing
images was possible. Acharya et al. [52] explored a J48 DT using
four bands from Landsat-8 OLI imagery to extract water bodies
in the northern part of the Han River basin in Gangwon-do,
South Korea. The result showed that this method could obtain
good results as the image resolution improved and as the image
range gradually increased. Pixel-level water body mapping also
includes other methods, such as the maximum likelihood func-
tion method [53], artificial neural networks, and random forests
[54], which have good extraction effects in different application
requirements.

CNN water body mapping is an end-to-end, pixel-level
extraction method without manual construction of features.
Owing to local connection and parameter sharing characteris-
tics, CNN reduce the number of parameters, especially for the

two-dimensional (2-D) matrix of images, to achieve excellent
processing efficiency. Previously, many researchers have deter-
mined that CNN have a strong effect on water body mapping
from remote sensing images [55]–[57]. Generally, coarse reso-
lution is an important cause for poor extraction results, but data
fusion, and multiscale feature fusion effectively alleviate such
problems. Sun et al. [58] proposed a network model that com-
bined multifilter and multiresolution data using radar data and
high-resolution, optical remote sensing images as fusion input.
The multiresolution data help segment the object boundary by
reducing the impact of noise. Regarding multiscale feature fu-
sion water body mapping, a rational network structure design can
effectively suppress noise interference, such as building shadows
and roads [59], [60]. For instance, a multiscale erasing-attention
module was designed in a network to enhance the expression
of features [61]. Similarly, Xia et al. [62] proposed a dense
skip connection network with multiscale feature fusion and an
attention mechanism for water body extraction. The shallow
features and large-scale attention modules of the network are
applied to locate the global information of the water body,
whereas the depth feature and a small-scale attention module
are used to refine the water body boundary. Li et al. [63]
proposed an automatic water body extraction network that can be
applied to different remote sensing images. The network embeds
DenseNet in each layer to connect different feature maps and
integrates spatial and spectral information through a dense-local-
feature-compression module. The experiments show that the
network has shown excellent performance on multiple datasets.
Additionally, the selection of a loss function in CNN has a
significant influence on the water body extraction. Dong et al.
[64] enhanced the expression of water body features during the
upsampling process of their proposed network and simultane-
ously improved the loss function to achieve strong generalization
for optical remote sensing images. Moreover, a structure that
compressed redundant layers in a deep CNN was proposed, and
excellent water body segmentation results on Google imagery
were achieved by constructing a new loss function to sharpen the
boundary [65]. CNN water body mapping remains in continuous
development because of the need for a large amount of sample
data, the adjustment of the learning rate, and the appropriate
choice of the loss function. Compared with traditional mapping
methods that require expert experience, the CNN method is a
better choice.

III. DATA AND METHODOLOGY

A. Dataset

In this article, Gaofen 2 satellite images were employed. The
dataset, which is referred to as the Gaofen Image Dataset (GID),
was produced and published by researchers at the State Key
Laboratory of Wuhan University, China [66]. Gaofen 2 was the
second high-definition earth observation system satellite that
was launched by the China National Space Agency and the first
civilian optical remote sensing satellite independently developed
by China with a spatial resolution better than 1 m. The satellite is
equipped with two high-resolution, panchromatic/multispectral
cameras with a ground sampling distance of 1 m in panchromatic
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Fig. 1. Fifteen selected RGB, three-band images from the Gaofen Image
Dataset (GID). (a)–(l) are the images selected for training, and (m)–(o) are
selected for inference. Given space limitations, the multispectral images are not
displayed here.

cameras and a ground sampling distance of 4 m in multispectral
cameras. The subsatellite, point spatial resolution can reach
0.8 m, with submetre spatial resolution, and Gaofen 2 has high
positioning accuracy and rapid attitude manoeuvrability. Since
its launch in 2014, Gaofen 2 has been utilized for critical appli-
cations, such as land cover surveys, environmental monitoring,
crop estimation, and construction planning. The GID dataset
contains RGB, three-band images and multispectral, four-band
images (RGB + NIR bands). In addition, the providers have
produced a total of 150 labeled, complete land cover images
that include five classes. The dimensions of each remote sensing
image are 6800 pixels × 7200 pixels, and they cover an area of
506 km2. The dataset includes nearly 60 cities in China and has
a large coverage range. As this article focuses on water body
mapping using remote sensing images, 15 three-band/four-band
images with a wide range of water bodies were selected from
the GID dataset. Only the RGB, three-band images are shown
in Fig. 1; the multispectral bands’ images are not displayed.
The study areas contain numerous small water bodies, including
small ponds, lakes, and rivers, which are generally composed
of a small number of pixels that are densely distributed. Since
the team that provided the dataset labeled the land types using
5 categories, we relabeled only the water bodies.

B. Data Preprocessing

A CNN needs to be trained with a large number of samples
to obtain a well-weighted model. However, the dataset obtained
for this study contains a small number of samples with only 15
images. As the learning outcome of the CNN is not affected
when the dataset is rotated and shifted, the dataset in this article
was enhanced and expanded. First, a remote sensing image and
label data were randomly cropped into 256 × 256 pixel patches,
which alleviates the problem of the graphics card capacity not
being capable of handling large images. After cropping, the
patched images underwent translation, rotation, scaling, vertical

Fig. 2. Data enhancement and expansion. We selected 12 RGB, three-band
images from the GID dataset employed for the training and verification sets.
After data enhancement and expansion operations, such as translation, rotation,
scaling, vertical mirroring, lighting adjustment, and adding pepper and salt noise
points, the 256 × 256 pixel patch images were generated.

mirroring, lighting adjustment, and salt and pepper noise point
additions to enhance sample diversity. The sample dataset after
data enhancement and expansion is shown in Fig. 2.

C. SADA-Net Architecture

A CNN is generally composed of an input layer, hidden
layers, and a fully connected layer. The hidden layers typically
contain multiple convolutions and pooling operations [67]. After
convolution and pooling operations, the features become more
advanced, and the semantic information becomes more affluent.
However, reducing the feature map dimensions leads to a severe
loss of relevant information, such as spatial location, produc-
ing unsatisfactory segmentation results. Researchers have intro-
duced the concept of atrous convolution [68], which reduces the
downsampling rate while ensuring a sufficient receptive field, so
the result produced is more refined. In addition, a CNN mostly
uses an encoder–decoder structure, as indicated in current stud-
ies. This process uses gradual downsampling to extract features
and upsampling to restore the feature map’s size. In general,
low-level features in the encoder structure are connected to the
advanced semantic information in the decoder module, and both
have the same size. The final output segmentation results are
smoother and more accurate.

This article proposed a refined, multiscale water body map-
ping network that is based on water body shape characteristics
and context information. The overall network has an encoder–
decoder structure (see Fig. 3). The backbone network performs
feature learning, while an SFO module is connected in parallel
[25], which enriches the entire network’s shape feature repre-
sentation.

The encoder module of the network extracts different features.
First, a backbone network was selected, and we chose the im-
proved Xception used in DeeplabV3+ [26], [69] as the backbone
network because of its strong feature-learning ability. However,
there is a difference here. The original model output channel
dimension is 2048, we set it in our experiments to 1024. After
downsampling four times, the obtained feature map Layer-4
(16 × 16 pixels) was chosen as the input of two streams. The
first stream is the DA module, which strengthens the spatial
and channel context relationship. The second stream combines
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Fig. 3. Framework of the proposed SADA-Net. The backbone network is the
improved Xception. The multiscale and context information is obtained via the
ASPP and DA modules. In addition, the parallel SFO module strengthens the
shape feature information of the water body.

the multiscale feature information of the water body through the
ASPP module. The enhanced features of both streams were then
connected. During the downsampling process, the parallel SFO
module strengthens the expression of the shape features of the
water body.

The network’s decoder module fuses multiscale features, con-
text information, and shape feature information. Simultaneously,
the feature map is restored to the size of the input image. First,
the feature map, which is the fusion of the enhanced features
of both streams, is upsampled twice as the output. Second, the
output is connected to the low-level features of Layer-3, and then
the low-level features of Layer-2 and Layer-1 relate to the output
of the previous fusion result. Third, after the low-level features
of Layer-1 are connected to the output features of the previous
unit, their output features are upsampled twice and fused with
the shape features learned by the SFO module. Finally, an
output image is obtained after multiple convolution and batch
normalization operations.

D. ASPP Module

The ASPP module uses atrous convolution for the feature
extraction of multiscale information. Atrous convolution mostly
solves the low-resolution problem caused by the general convo-
lution and pooling operation in downsampling. Atrous convo-
lution is based on general convolution, with the addition of a
dilation rate. In this article, we defined this rate as r (see Fig. 4).
Fig. 4(a) shows the atrous convolution when r is 1, which is the
general convolution. Fig. 4(b) and (c) shows the atrous convo-
lution when r is greater than 1, representing atrous convolution
when the dilation rates are 2 and 4, respectively. The input feature
map samples every r–1 pixel in the feature map (red points in
Fig. 4). Regarding the convolution kernel, atrous convolution
expands the convolution kernel size, inserts r–1 zeros between
adjacent points of the given convolution kernel, and then uses the

Fig. 4. Atrous convolution kernels at dilation rates of 1(a), 2(b), and 4(c).

input feature map and expanded convolution kernel to perform
the convolution operation. Both of these processes increase the
receptive field of the input image. In summary, the mathematical
expression of the convolution kernel size of atrous convolution
and output feature image size are provided in (2) and (3) as
follows [70]:

K = k + (k − 1) ∗ (r − 1) (2)

where K is the size of the convolution kernel of atrous convo-
lution, k is the size of the general convolution kernel, which is
the number of rows and columns of sampled red points shown
in Fig. 4, and r is the dilation rate

O = Floor

(
i+ 2p−K

s

)
+ 1 (3)

where O represents the size of the output feature image,
Floor produces a downward-rounded integer, i is the size of
the input feature image, p is the padding, which represents the
number of zeros at the edge of the matrix, and s is the stride.

Atrous convolution is employed to increase the size of the
receptive field without changing the dimensions of the feature
map. The receptive field calculation is provided in (4), and the
blue grid area in Fig. 4 illustrates its representation. The receptive
field is the size of the receptive range of the neurons at different
positions within the network compared with the original feature
image. The larger is the value, the wider the range of the original
feature image processed by the neurons and the greater the
amount of global information that is contained [71]

rn = rn−1 + (kn − 1)

n−1∏
i = 1

si (4)

where rn is the size of the receptive field in the nth convolutional
layer, rn−1 is the size of the receptive field in the (n − 1)th
convolutional layer, kn is the size of the atrous convolution
kernel in the nth convolutional layer, and si is the stride size
of the ith convolutional layer, which is generally set to 1.
It is common to set the receptive field size of the original
image to 1.

The ASPP module uses atrous convolution with different
dilation rates to extract the multiscale features of water bodies.
To prevent the dilation rate from being the same size as the
input feature map, which will cause the atrous convolution to be
degraded into a 1× 1 convolution kernel, the global information
of the input feature map is obtained using global pooling. The
SADA-Net applies the ASPP structure after downsampling the
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Fig. 5. Location attention module.

input image four times, and the selected dilation rates are 1, 4, 8,
and 12. As water bodies are unevenly distributed and the scale
of each water body is different, local details are enriched via
multiscale feature fusion.

E. DA Module

An attention mechanism [72], [73] imitates the human at-
tention thinking mode and screens the extensive amount of
information to obtain information that is valuable to the research
subject. This information was applied to the field of computer
vision early. In 2014, the Google Mind team added attention
mechanisms to image classification and achieved good results
in recurrent neural networks [74]. Thus, attention mechanisms
became widely utilized in image and natural language process-
ing. A DA mechanism is divided into location attention and
channel attention modules. This research mainly uses a DA
module to strengthen the global dependence of the spatial and
channel dimensions of water bodies in remote sensing images.

1) Location Attention Module: A location attention module
(see Fig. 5) is employed to obtain the weighted sum of the fea-
tures of all the location units, that is, it aggregates the features of
each location regardless of distance. Thus, the location attention
can focus on the global spatial context information of a water
body.

In this article, the feature map A ∈ RC×H×W is the output
of Layer-4 in the encoder structure. Features B, C, and D are
then acquired using convolution operations, where {B, C, D} ∈
RC×H×W . Feature B ∈ RC×H×W is dimensionally reshaped

to B’ ∈ RC×(H×W ) , and B’ ∈ RC×(H×W ) is transposed to ob-
tain feature (B’)T ∈ R(H×W )×C . Subsequently, C ∈ RC×H×W

is reshaped to C’ ∈ RC×(H×W ); matrix multiplication with
(B’)T ∈ R(H×W )×C is performed; and the output result is used to
obtain the position attention map S ∈ R(H×W )×(H×W ) of each
relative position using the Softmax function. The calculation of
each position element value of S is given as (5). D ∈ RC×H×W

is reshaped to D’ ∈ RC×(H×W). Matrix multiplication between
the transposed matrix values of S ∈ R(H×W )×(H×W ) and
D’ ∈ RC×(H×W) is performed. The result is dimensionally
reshaped to O∈ RC×H×W and added to the original feature map
A ∈ RC×H×W to obtain the final feature matrix E∈ RC×H×W .
The calculation for each positioning element in E ∈ RC×H×W

is given by (6)

sji =
exp (Bi · Cj)∑N

i = 1 exp (Bi · Cj)
(5)

Fig. 6. Channel attention module.

where Sji represents the influence of the ith position relative to
the jth position, Bi and Cj represent the ith position value and
jth position value, respectively, of features (B’)T ∈ R(H×W )×C

and C’ ∈ RC×(H×W ), respectively, and N is the total number
of dimensions

Ej = α

N∑
i = 1

(sjiDi) +Aj (6)

where Ej is the element value in feature E ∈ RC×H×W , α is
initialized to 0 and gradually adjusts to a higher weight, Di

represents the i-th position value of D’ ∈ R C×(H×W), and Aj

is the jth position value of A ∈ RC×H×W .
2) Channel Attention Module: The purpose of a channel

attention module is to create a correlation among the channels
and enhance the response capability of the semantic information.
The structure of the channel attention module is shown in Fig. 6.

The channel attention and location attention modules have
similarities. First, the feature map A ∈ RC×H×W is reshaped
in dimensions to A′ ∈ RC×(H×W ) to obtain the transposed
(A′)T ∈ R(H×W )×C . Second, after completing the matrix
multiplication operation of A′ ∈ RC×(H×W ) and (A′)T ∈
R(H×W )×C , the channel attention matrix X∈ RC×C is obtained
following Softmax function normalization. The calculation of
each position element value of X ∈ RC×C is given by (7).
Third, matrix multiplication of the transposed X ∈ RC×C and
A′ ∈ RC×(H×W ) matrices are performed, and the results are
reshaped into matrix O ∈ RC×H×W . Last, O ∈ RC×H×W is
added to the original feature map A ∈ RC×H×W to obtain the
output result E ∈ RC×H×W . The calculation for each position-
ing element in E ∈ RC×H×W is given by (8)

xji =
exp(A

′
i ·

(
A

′
)Tj

)
∑C

i = 1 exp(A
′
i ·

(
A′)Tj

) (7)

where xji represents the influence of the ith channel relative to
the jth channel, Ai

’ is the ith position value of A′ ∈ RC×(H×W ),
(A′)Tj represents the value of the jth position of the transposed
matrix (A′)T ∈ R(H×W )×C , and C represents the number of
channels

Ej = β
C∑

i = 1

(xjiA
′
i) +Aj . (8)

Generally, the output feature matrix E ∈ RC×H×W obtained
via the channel attention module and output feature matrix E ∈
RC×H×W obtained via the location attention module are added.
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Fig. 7. Details of the residual block.

Fig. 8. Details of the GCL.

Thus, this article applied fused features to enhance the context
information of the water bodies.

F. SFO Module

The SADA-Net introduced an SFO module in the backbone
network of the encoder structure; its primary function is to
optimize the shape information of water bodies. Shape infor-
mation and other semantic features are connected by a gated
convolutional layer (GCL), thus enriching the expression of
semantic information in the feature fusion stage. The structure
of the SFO module is composed of residual blocks and GCLs.

The detailed structure of the GCL is shown in Fig. 8, and
the output feature size is RC×H×W . The Input Features ∈
RC×H×W and Gating Feature ∈ R1×H×W originate from two

adjacent feature maps in the backbone network. For instance,
Layer-1 successively undergoes a convolution operation (kernel
size is 1 × 1) and residual block (see Fig. 7); After sampling
up 2 times, a feature map of size R32×H×W (Input Features) is
obtained, which is one of the inputs to the GCL. In addition,
the second feature map is obtained by applying a convolution
operation (kernel size is 1 × 1) to Layer-2 and upsampling
by a factor of 4; the result of this operation is Gating Feature
∈ R1×H×W . Similarly, Layer-3 and Layer-4 perform the same
task as Layer-1.

As shown in Fig. 8, the Input Feature to the GCL undergoes
a series of convolution and batch normalization operations after
feature fusion and using a sigmoid function to generate a weight
value, which is referred to as the attention graph αt ∈ R1×H×W

and defined as follows:

αt = σ(C1×1(St||rt)) (9)

where σ represents a sigmoid function, C1×1 represents the
ordinary 1 × 1 convolution kernel, || is the concatenate oper-
ation, rt ∈ RC×(H/m)×(W/m) and st ∈ RC×H×W represent the
middle layers of the backbone network and the SFO module,
respectively, and m is the stride of the backbone network. In this
article, m is 16.

The weight αt ∈ R1×H×W is then multiplied by st, ∈
RC×H×W , which is the middle layer of the SFO module, and the
result is summed with the Input Feature. After a 2-D convolution
layer, the output result is expressed as the Output Feature shown
in Fig. 8. The calculation is given as follows:

ŝ
(i,j)
t = (st ( )wt)(i,j)

=
((
st(i,j) � αt(i,j)

)
+ st(i,j)

)T
wt (10)

where symbolizes the gated convolution operation, ωt is the
weight of the channel-level convolution kernel, � is the matrix
multiplication, and st(i,j) and αt(i,j) represent the value of st
∈ RC×H×W and αt ∈ R1×H×W , respectively.

In this article, the SFO module includes the features obtained
after three gate operations and the features obtained using Canny
edge detection [75]. The two types of features are fused.

G. Loss Function

Extracting water bodies from remote sensing images is a
binary classification problem. Herein, we determined that the
proportions of water bodies and background information after
data enhancement are balanced. Therefore, in this article, the
weighted sum of the binary cross-entropy function BCELoss,
Dice Loss, and Boundary Loss (BD Loss) was adopted as the
loss function [76]–[78] as it can make the loss function converge
stably during the training and validation processes. Dice Loss is
a regional loss metric that alleviates data imbalances. Boundary
Loss focuses on the accuracy of boundaries and acts to refine
boundaries. BCELoss has a role in stabilizing the hybrid loss
function value. The calculations of BCELoss and Dice Loss are
provided by (11) and (12), respectively, as follows:

BCEloss

= − (ygt × log (δ (ypd)) + (1− ygt)× log(1− δ(ypd)))
(11)

where δ is a sigmoid function, ypd is the result of the sample
predicted to be the water body, and ygt is the label of the sample

Diceloss = 1− 2 |ygt ∩ ypd|
|ygt|+ |ypd| (12)

where |ygt ∩ ypd| represents the intersection between ygt and
ypd.

The Boundary Loss consists of the following calculations:

ybgt = pool (1− ygt, θ0)− (1− ygt) , y
b
pd

= pool (1− ypd, θ0)− (1− ypd) (13)

yb,extgt = pool
(
ybgt, θ

)
, yb,extpd = pool

(
ybpd, θ

)
(14)
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P c =
sum

(
ybpd � yb,extgt

)

sum
(
ybpd

) , Rc =
sum

(
ybgt � yb,extpd

)
sum

(
ybgt

)
(15)

BF c =
2P cRc

P c +Rc
, BDloss = 1− BF c (16)

where pool (·,·) is the max-pooling operation, and θ0 is the
sliding window size, i.e., the convolution kernel size, which
is usually set to 3. yb,extgt and yb,extpd represent the extended
boundaries of the true map and predicted map, respectively,
which are obtained by maximum pooling, where θ represents
the size of the padding operation, which is set to 5 in this article;
P c and Rc represent precision and recall, respectively; sum (·,·)
is the sum operation, and � is the matrix multiplication. Thus,
the Boundary Loss (BDloss) is obtained by calculating BF c,
which is defined by P c and Rc.

The final form of the loss function (Losshybrid) is given by
(17), where μ and ε are weighting coefficients between 0 and
1. In this article, when ω, μ and ε were set to 1.0, 0.5, and 0.5,
respectively, the loss function converges stably

Losshybrid = ω∗Diceloss + μ∗BCEloss + ε∗BDloss. (17)

H. Evaluation Metrics

The performance of the proposed method was evaluated using
five evaluation indicators: precision (P), recall (R), F1-Score
(F1), overall accuracy (OA), and a structural similarity index
measure (SSIM) [79], which are defined as follows:

P =
TP

TP + FP
(18)

R =
TP

TP + FN
(19)

F1 = 2 × P ×R

P +R
(20)

OA =
TP+ TN

TP + TN+ FP + FN
(21)

S (X,Y ) =
(2μxμy + C1) (2σxy + C2)(

μ2
x + μ2

y + C1

) (
σ2
x + σ2

y + C2

) (22)

where TP represents the true positives, the number of correct
extraction pixels in this article, FN indicates the false negatives,
the number of water body pixels not extracted in this article,
FP denotes the false positives, the number of incorrect pixel
extractions, and TN represents the true negatives, the number of
nonwater body pixels that were extracted.

Additionally, X and Y denote the ground truth and prediction
result map, respectively; μx and μy represent the average and
standard deviation, respectively, of X and Y, respectively; σxy

is the covariance of X and Y; and C1 and C2 are constants.
Generally, the larger is the value, the more similar the structure of
the two images, which means that the shape is better optimized.

TABLE I
EXPERIMENTAL RESULTS WITH DIFFERENT STRUCTURE COMBINATIONS

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

The operating system utilized in the experiment was Linux;
the experimental framework was Pytorch 1.4; the training pro-
cess was accelerated on an NVIDIA GeForce RTX 2080Ti GPU,
the video memory is 11 GB; and Python 3.7 was employed.

In this article, each of the 15 selected GID images occupied a
large dimension; the water bodies were scattered; and there were
many small water bodies, including ponds and lakes. In total, 12
images [see Fig. 1(a)—(l)] were applied as training data, and
the remaining 3 images [see Fig. 1(m)—(o)] were utilized as
predictions. Each of the 12 images was randomly divided into
2000 patches, wherein each patch size was 256 × 256 pixels,
and the data were enhanced to obtain the input data. A total of
24000 patch images were obtained, of which 80% were selected
as the training set, and 20% were selected as the validation set.
The epoch of the training set was 50; the batch size was 6; the
initial learning rate adopted a larger setting of 0.001; and the
adaptive learning rate optimizer was Adam.

B. Ablation Experiments

The SADA-Net proposed herein integrates three important
structures: the ASPP, DA, and SFO modules, which enrich
multiscale context information, global dependence, and the ex-
pression of water body shape characteristics. First, this section
discusses the influence of the loss function on the experimental
results. Second, as each module has an important influence on
the proposed network, the influence of the different structural
modules on the quality of the experimental results are discussed.
As shown in Fig. 9, the predicted input images had a size of
1024 × 1024 pixels, and they were cropped from Fig. 1(m)–(o).
Table I summarizes the quantitative results.

As shown in Fig. 9(b) and (c), the prediction results of these
two columns are the results of the original network under the
combination of Dice Loss and BCE Loss, and the original
network under the combination of Dice Loss, BCE Loss, and BD
Loss. The combination of Dice Loss and BCE Loss is applied to
make the loss convergence more stable of the training process.
This combination is also commonly employed in various remote
sensing image feature extraction studies [80]–[82]. Therefore,
this article will not discuss these two loss functions. It can be
seen from the results that the overall difference between the
results of Fig. 9(b) and those of Fig. 9(c) is not particularly
obvious, but it can be seen from the blue and red rectangles that
after adding the BD Loss, it has certain advantages in extracting
smaller dense water bodies, increasing the separation among
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Fig. 9. Experimental results with different structure combinations. Among them, the blue rectangle marks show the experimental results of the original network
(Dice + BCE Loss), while the red rectangle marks show the results under Dice + BCE + BD Loss. (a) Input image. (b) Ground truth. (c) Original network (Dice
+ BCE Loss). (d) Original network. (e) With atrous spatial pyramid pooling module. (f) With ASPP + dual attention (DA) module. (g) Proposed SADA-Net.

small water bodies. Specifically, the small water body in this
article mainly refers to artificial ponds. The distribution of these
water bodies is mainly scattered and dense, and the transition
area between the background and the water body is small and
difficult to divide. In brief, other experiments in this article
are based on the combination of three loss functions to better
promote the boundary separation among water bodies.

The original network extracted image features with Xception
in the encoder structure and connected low-level features in

the decoder stage, to achieve water bodies mapping. How-
ever, missing and incorrect extractions occurred (as shown in
Fig. 9(d), marked with red rectangles). Thus, different modules
were incorporated into the original network to make feature
enhancements.

The ASPP module mainly expands the range of the recep-
tive field, integrating the water body’s context information at
multiple scales. In the GID, the water bodies were different in
terms of their shapes and sizes; certain water bodies account for
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a large proportion of an image, and certain water bodies are too
small. Therefore, the ASPP module is conducive to correlating
context information when the water body size is different. As
shown in Fig. 9(e), based on the precision value (0.9117) and
recall value (0.8926), the result of adding the ASPP module can
strengthen the separation of transitional areas between the water
body and the background compared with the original network
result. However, there are still some missing water bodies, as
shown in the third and seventh prediction results of Fig. 9(e).
It is speculated that the atrous rate setting is not dense enough.
However, a dense atrous rate setting will cause a large increase
in memory, so this article does not set excessively dense atrous
rates.

To mitigate the shortcomings of the ASPP module, the DA
module is integrated. The location and channel attention mod-
ules are beneficial for improving the integrity of water body
extraction [as shown in Fig. 9(f)]. Therefore, with the feature
fusion of the ASPP and DA modules, the water body extraction
integrity was significantly improved. As a result, the recall
reached 91.14%, which was 1.88% higher than when only the
ASPP module was applied. Furthermore, the F1-Score was
91.09%, and the overall accuracy was 96.25%. The SSIM also
increased to 83.25% due to an increase in the integrity of water
bodies.

Although the enhanced features of the ASPP and DA modules
are conducive to multiscale water body mapping and improve-
ment in integrity, other ground objects may be mistaken as
water bodies as the GID contains noise features similar to water
bodies. Hence, the precision of the combination (ASPP+DA) is
slightly lower than only the ASPP module. To resolve this issue,
the SFO module was integrated since it can help enhance the
water body shape feature; thus, it improves the status of incor-
rect extraction. This scenario achieved a precision of 93.45%,
recall of 92.29%, and F1-Score and overall accuracy values of
92.87% and 96.78%, respectively. Furthermore, as shown in
Fig. 9(g), marked with red rectangles, the SFO module enabling
the SADA-Net to reasonably address the relationship between
the water body and the background, which is beneficial to the
extraction of small and dense water bodies. Hence, the SSIM
is better, with a value of 84.60%. Therefore, we selected the
network structure combining the three modules in this article as
the optimal choice.

C. Results and Analysis

To verify the performance of the proposed SADA-Net, it was
compared with SegNet [21], LinkNet [83], DeeplabV3+ [26],
Attention U-Net [84], MECNet [85], and MSResNet [86]. The
inferential input images are applied with a size of 3072 × 3072
pixels, originating from Fig. 1(n)–(o). The experimental results
(RGB bands) are shown in Fig. 10. Given that the Gaofen 2 image
datasets are multispectral images (RGB+NIR), this article also
utilized the multispectral data of the GID to perform water body
mapping and to verify the performance of the proposed network
on multispectral images, as shown in Fig. 11. Quantitative
calculations were performed simultaneously, and the results are
summarized in Tables II and III.

TABLE II
EXPERIMENTAL RESULTS OF SADA-NET COMPARED WITH OTHER

METHODS USING RGB DATA

TABLE III
EXPERIMENTAL RESULTS OF SADA-NET COMPARED WITH OTHER

METHODS USING MULTISPECTRAL DATA

As shown in Fig. 10, the proposed SADA-Net and compared
methods have good water body extraction performance. For the
larger water bodies, each method showed high precision and
F1-Score; all are greater than 80%. However, other methods
are less effective at extracting small and dense water bodies (as
shown in Fig. 10, marked with red ellipses).

SegNet is a classic encoder–decoder structure, which im-
proves the shortcomings of the FCN. The fusion of high-level
and low-level semantic features makes the output result have
a high resolution, enabling it to recover to the original input
image size through stepwise upsampling in the decoder module.
On the GID RGB bands, SegNet achieved good results with
a high precision of 82.83%. However, as it generates sparse
feature maps in the encoder structure and only decodes the
feature maps of the last layer, it is not conducive to describing
the segmentation details. Hence, SegNet failed to show good
performance for the integrity of the water body; its recall is
78.80%.

LinkNet is famous for its small network structure parameters,
fast training speed, and real-time performance. LinkNet directly
connects the encoder and decoder to improve the accuracy
of the output result, which greatly reduces the network train-
ing time. Although LinkNet is aimed at real-time mapping, it
compensates for lost details at different levels of the encoder
layer by directly connecting the encoder and decoder, enabling
high water body extraction precision. In this article, LinkNet
trained a highly effective model within a short period. However,
due to the lack of context information of complex scenes,
there are some missing water body extraction cases, reaching
a low recall of 77.07%, an F1-Score of 81.33%, and overall
accuracy of 93.85%. However, LinkNet performs better than
SegNet in terms of structural similarity, with an SSIM value
of 77.30%.

The DeeplabV3+ network incorporates an ASPP structure for
multiscale context information acquisition, which has significant
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Fig. 10. Water body extraction results using the RGB bands of the GID with (a1–a4) Input images, (b1–b4) Ground truths, (c1–c4) SegNet, (d1–d4) LinkNet,
(e1–e4) DeeplabV3+, (f1–f4) Attention U-Net, (g1–g4) MECNet, (h1–h4) MSResNet, and (i1–i4) Proposed SADA-Net.

advantages for large-scale water body extraction in complex
scenarios. Simultaneously, the network combines high-level se-
mantic features with low-level features in the decoder structure,
making the output water body edge information smoother. How-
ever, the DeeplabV3+ network focuses more on the high-level
semantic information of a water body and less on the low-level
features; it only incorporates a low-level feature in the decoder
stage. Therefore, the DeeplabV3+ network cannot describe the

details for small and dense water bodies. DeeplabV3+ per-
formed well on a wide range of water body extractions, achieving
high precision, and reaching 87.43%, while it had a low recall
because of the missing extraction of both small water bodies and
thin water bodies. Thus, in general, the DeeplabV3+ network is
suitable for large-scale, water body extraction.

With the inclusion of many low-level features, Attention
U-Net well depicts boundaries; the SSIM value is 81.83%.



WANG et al.: SADA-NeT: A SFO AND MULTISCALE CONTEXT INFORMATION-BASED WATER BODY EXTRACTION METHOD 1755

Fig. 11. Water body extraction results using the multispectral data (RGB + NIR) of the GID with (a1–a4) Input images, (b1–b4) Ground truths, (c1–c4) SegNet,
(d1–d4) LinkNet, (e1–e4) DeeplabV3+, (f1–f4) Attention U-Net, (g1–g4) MECNet, (h1–h4) MSResNet, and (i1–i4) Proposed SADA-Net.

However, in this article, as the GID contains complex scenes,
the Attention U-Net cannot help in separating certain small,
intensive water bodies (artificial ponds). As shown in Fig. 10(f2)
and (f4), marked with green and blue circles, a small number of
details are not adequately portrayed, and certain small water
bodies are missing. In general, Attention U-Net has quite good
performance for multiscale, water body mapping in terms of the
high F1-Score (85.03%).

MECNet and MSResNet are the most advanced models for
water body extraction, but their performance is not optimal
when applied to the GID RGB bands. MECNet is composed
of multifeature extraction and combination modules, which can
better predict the fine contour of water bodies. MSResNet is a
state-of-the-art water bodies extraction method that can distin-
guish water bodies of different scale sizes and preserve detailed
boundaries of water bodies. It can be seen from the experiment,
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although good experimental results have been achieved in the
large-scale water bodies mapping of GID RGB bands, the F1-
Score of MECNet and MSResNet reached a high level, 84.70%
and 86.65%, respectively. However, for densely distributed small
water bodies, the recognition effect is poor, and the boundaries
are not well separated, as shown in Fig. 10(g2) and (h2), marked
with green circles.

The proposed SADA-Net is a blend of multistage, low-level
features, wherein multiscale context information, global con-
text information, and water body shape characteristics are con-
sidered, enabling it to produce an excellent performance for
water body mapping, with a precision of 92.03%, recall of
85.36%, F1-Score of 88.57%, and an increased overall accuracy
compared with Attention U-Net, reaching 96.18%. In brief,
the SADA-Net proposed herein more accurately separates the
transition zone and water bodies. In addition, from the green
and blue circles marked in Fig. 10, the SADA-Net water body
mapping results are more refined with fewer misclassifications
and missed classifications, which has higher precision and recall,
reaching 92.03% and 85.36%. Additionally, based on the SSIM
value of 85.79%, SADA-Net dominates in shape.

Moreover, as the study area in the GID is highly complex,
some ground objects, such as paddy fields, are misclassified into
water bodies. Multispectrum remote sensing images store a large
amount of information, which is very useful for identifying dif-
ferent features, especially using the NIR band. As an important
influencing factor in water body mapping, multispectrum images
have a large role. Therefore, for the proposed network that still
has some misclassification problems on the GID RGB bands,
experiments are carried out using the multispectral data of the
GID. As shown in Table III, all experimental quantitative results
are better than the RGB band results. The SADA-Net F1-Score
is 7.57% higher than the result of the experiment using only the
RGB, three-band dataset. Thus, multispectral data are helpful
for solving the problem of misclassification and improving the
accuracy and integrity of water body mapping. The yellow
circles in Fig. 11 shows that the detailed description of a water
body is more prominent. The red circles show that the extraction
result of the multispectral band has less misclassification than
that of the RGB band.

V. DISCUSSION

This article proposed a SADA-Net that considers multiscale,
water body context information, global dependence, and water
body shape information. This SADA-Net ensured the complete
extraction results of small and dense water bodies. There were
fewer missing extractions of water bodies in a large-scale image.
In both the vertical comparison experiments and horizontal
comparison experiments, water body extraction performance
was demonstrated well.

The selection of a loss function in this article mainly consid-
ers the imbalance between water bodies and the background,
and highlights the refinement of the water body shape. After
data enhancement, the water body and background proportion
reached approximately 1:10, and the data were more diverse.
As a large number of small water bodies, such as small artificial

Fig. 12. Loss function values for the training and validation sets.

Fig. 13. Visualization of the intermediate layer from GCLs.

ponds and tiny rivers, exist in the GID study area, the Dice
Loss fluctuates when encountering these small water bodies.
The loss during training can be made more stable through the
combination of Dice Loss, BCE Loss, and BD Loss, and it is
beneficial for convergence. Fig. 12 shows the values of the loss
function applied to the training and validation sets.

In this article, the SADA-Net pays attention to optimizing
shape features, which is conducive to highlighting the gaps
between nearby water bodies to obtain fine-mapping perfor-
mance of water bodies. The GCL structure introduced in the
SFO module was mainly employed to force the SFO module to
process shape-related information only. The entire SFO module
includes three gate structures. The first gate structure emphasizes
low-level edge information, while the second and third gates
emphasize object-level boundaries, effectively highlighting a
water body shape feature. Fig. 13 shows the output results of
the intermediate layer after the operation of the three gates,
where Gate1 is the first gate with an output dimension of 32,
Gate2 is the second gate with a dimension of 16, and Gate3
is the last gate with a dimension of 8. For all gate outputs,
the maximum sequence values of the channel dimension are
shown in Fig. 13. Through the operation of the three gates,
the high-level semantic information was gradually enhanced.
The output of Gate1 mainly displayed coarse texture and shape
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information of the entire object. Gate2 obtained the low-level,
water body boundary and shape features, and Gate3 obtained
higher-level semantic information of the water body. Through
the operation of the GCLs, a perfect shape map can be obtained,
and a description of the shape of a water body was enhanced.

In conclusion, the SADA-Net has a strong generalization
performance regarding the complex study areas and data types
(RGB bands and multispectral images) in the GID dataset.
Furthermore, the high F1-Score and SSIM indicate that the
proposed network is excellent for water body mapping. In brief,
the method proposed herein has a particular reference value
when applied to high-resolution remote sensing image mapping.

VI. CONCLUSION

This article proposed a new intelligent convolutional neural
network, SADA-Net, for water body mapping in high-resolution
remote sensing images with complex scenes. The proposed
network structure integrates ASPP, DA, and SFO modules
and comprehensively considers multiscale context information,
global dependence, shape information of water bodies. On the
grounds of the comparison experiments, the performance of the
SADA-Net (multispectral images) method is better, reaching
a precision of 92.57% and recall of 94.73%. Moreover, the
F1-Score, OA, and SSIM were improved by 7.51%, 2.34%,
and 8.64%, respectively, compared with the Attention U-Net
network, which is suitable for small water bodies extraction
in complex scenes. Moreover, compared with MECNet and
MSResNet, the most advanced water body mapping networks,
the F1-Score, OA and SSIM have been greatly improved. As
a result, these results suggest that the SADA-Net can extract
large-scale water bodies and has good extraction performance
for small and dense water bodies, such as small ponds, lakes, and
narrow rivers. Furthermore, this method is robust in terms of data
types and complexity of the study area. Future work will focus
more on optimizing the network structure. Multisource data and
multifeature fusion methods could be employed to improve the
precision and integrity of water body mapping and to achieve
larger-range fine-mapping.
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