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Multiscale Densely Connected Attention Network for
Hyperspectral Image Classification

Xin Wang and Yanguo Fan

Abstract—Hyperspectral image classification (HSIC) based on
deep learning has always been a research hot spot in the field of
remote sensing. However, most of the classification models extract
relevant features based on fixed-scales convolution kernels, which
ignores the complex features of hyperspectral images (HSIs) at
different scales and impairs the classification accuracy. To solve
this problem, a multiscale densely connected attention network
(MSDAN) is proposed for HSIC. First, the model adopts three dif-
ferent scales modules with dense connection to enhance classifica-
tion performance, strengthen feature reuse, prevent overfitting and
gradient disappearance. Besides, in order to reduce the model pa-
rameters and strengthen the extraction of spatial–spectral features,
the traditional three-dimensional convolution is replaced by three-
dimensional spectral convolution block and three-dimensional spa-
tial convolution block. Furthermore, the spectral–spatial–channel
attention is embedded into the end of each scale to enhance the
favorable features for classification and further extract the dis-
criminant features of the corresponding scale. Finally, the key
feature extraction module is developed to extract multiscale fusion
features to further enhance the classification performance of the
network. The experimental results carried out on real HSIs show
that the proposed MSDAN architecture has significant advantages
compared with other most advanced methods.

Index Terms—3-D spectral convolution, hyperspectral image
classification (HSIC), multiscale dense connection, spatial–spectral
features, spectral–spatial–channel attention, three-dimensional (3-
D) spatial convolution.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain both hundreds
of narrow spectral bands information and abundant spatial

distribution information of land covers [1], which are widely
used in agriculture, environmental monitoring, geosciences, sur-
veying and mapping, and other fields [2], [3]. However, this
feature also brings a series of challenges for hyperspectral image
classification (HSIC), such as information redundancy caused by
more spectral bands, low classification accuracy caused by less
training samples, and single classification models, which cannot
adapt to the complex data characteristics of HSIs. Therefore, it is
of great significance to research how to classify HSIs accurately.

The early HSIC research focused on utilizing its spectral
information to complete feature matching, such as spectral
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matching based methods [4], [5]. However, this kind of method
cannot effectively distinguish the same kind of land covers with
different reflection spectra and different kinds of land covers
with the same reflection spectrum, and thus this kind of method
tends to impair classification accuracy. Considering the high
spectral resolution and spectral redundancy of HSIs, some basic
feature extraction algorithms are also applied to HSIC, such as
linear feature extraction based [6]–[8], nonlinear feature extrac-
tion based [9]–[11]. In addition, methods based on spectral fea-
tures also include traditional machine learning methods, such as
support vector machine (SVM) [12], extreme learning machine
[13], sparse representation classification (SRC) [14], and so on.
Compared with traditional methods based on spectral matching,
these algorithms have better classification performance, but still
depend on prior knowledge to set parameters. Besides, these
methods rely on artificial feature extraction, when dealing with
different HSI datasets, these features lack sufficient generaliza-
tion ability and expression ability.

To address the above problems, some scholars have explored
the spatial–spectral joint classification method. Zhang et al. [15]
proposed nonlocal weighted joint SRC model, which adopted
different weights for different adjacent pixels according to the
structural similarity. Li et al. [16] proposed spatial–spectral ker-
nel SVM, which extracted spectral–spatial features by principal
component analysis and median filter, respectively, and then
utilized SVM to classify spatial–spectral joint features. This
method can effectively reduce the influence of noise and make
full use of spatial–spectral features to improve the classification
accuracy. However, it has been proved that the spectral and
spatial domains of the original HSI data are highly correlated
and redundant. Jia et al. [17] developed a new subspace-based
multitask learning framework for HSIC. The original HSI data
space was projected into several different subspaces, and SVM
classification was carried out in each subspace. In order to make
full use of the spatial information, Markov random field was
applied to process the results of SVM classification, and finally,
the classification results are determined through the decision
fusion.

In recent years, deep learning (DL) technology has made
a breakthrough. Its powerful feature extraction ability is far
beyond the traditional classification methods, so researchers try
to extend DL to HSIC. Typical DL classification models include
stack autoencoder (SAE) [18], deep belief network (DBN) [19],
recurrent neural network (RNN) [20], [21], and convolutional
neural network (CNN) [22], [23]. Although SAE and DBN can
extract deeper features, they need to transform the input data
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into a one-dimensional (1-D) vector, which leads to the loss of
spatial information. RNN uses a hidden layer or storage unit to
learn state features, which has attracted extensive attention in
sequence data analysis. By considering the spectral signature as
a sequence, RNN has been successfully used to learn discrimina-
tive features from HSIs recently. Zhou et al. [21] used two long
short-term memory networks to learn the features of spectral
and spatial sequences of HSIs, and fused the learning results at
the decision level However, decision level fusion depends on the
previous results, which affects the classification results. In this
situation, CNN has achieved excellent performance on computer
vision tasks and attracts considerable attention. So scholars
began to explore the use of CNN to extract the spatial–spectral
information of HSI. Chen et al. [23] used two CNN frameworks
to extract spectral features and spatial features, respectively.
However, the method can lead to redundant computation by
extracting spectral–spatial features separately. In order to further
extract spatial–spectral joint features, researchers apply a 3-D
convolutional neural network (3D-CNN) to HSIC [24], [25].
For example, Shi and Pun [24] first obtained the preliminary
classification results by using super-pixel segmentation, and then
further extracted the depth features by 3D-CNN. Liu et al. [25]
transport the original features to 3D-CNN without any prepro-
cessing. However, the calculation cost of 3D-CNN is expensive,
and the phenomenon of overfitting is easy to occur.

Through previous studies, it is found that the simple overlay
convolution layers cannot satisfy the requirements of HSIs,
and increasing the depth of the network model requires
more training samples, whereas the HSI training samples
are often less. Therefore researchers began to focus on the
limited training samples to further improve the accuracy of
HSIC. Zhong et al. [26] employed a spatial–spectral residual
3-D convolutional neural network (SSRN) to extract the
spatial–spectral joint features and spatial context discrimination
features of HSIs, which effectively improved the classification
accuracy. Wang et al. [27] proposed an end-to-end fast dense
spectral–spatial convolution (FDSSC) framework for HSIC
to reduce the training time and improve accuracy. Different
from SSRN, FDSSC uses a dense connection structure instead
of residual structure to construct the network model. Li and
Shang [28] applied a spatial–spectral pseudo-three-dimensional
dense connection network (SSP3DNet) to reduce the training
parameters and the overfitting phenomenon in the process of
model training. Li et al. [29] utilized a deep multilayer feature
fusion dense connection network (MFDN) to extract spatial and
spectral features simultaneously based on different input sizes,
and high-level abstract features through 3-D dense blocks,
which effectively alleviated the problem of vanishing gradient,
enhances feature propagation, encourages feature reuse, and
improves the accuracy of HSIC. Wang et al. [30] proposed
a dual-branch spatial–spectral dense residual neural network
(DRN), which adopted 1D-CNN to extract spectral features and
2D-CNN to extract spatial information, and each branch used
dense residual structure to enhance the feature extraction and
reduced the problem of gradient disappearance. Hang et al. [31]
proposed a multitask generative adversarial network to alleviate

the limited samples issue by taking advantage of the rich infor-
mation from unlabeled samples. Through the confrontational
learning method, the discrimination ability and generalization
ability of classification tasks are indirectly improved. However,
these methods can only extract feature information by fixed con-
volution kernel scale, which is not conducive to feature learning,
ignores the complex features of HSIs at different scales, and
damages the classification accuracy. Not only that the increase
of model depth and special connection mode also bring too many
training parameters, resulting in slow convergence of the model.

In order to further extract discriminative features, an atten-
tion mechanism is also applied to DL, which can consciously
extract features beneficial to classification by simulating the
characteristics of human eyes. Gao et al. [32] combined the
attention module with dense connected network (DMSAN) to
enhance the features that are more relevant to classification,
and weaken the features that are less relevant. Yu et al. [33]
employed the multiscale feedforward attention module to extract
semantic features, which effectively improves the computational
efficiency and recognition ability of feature representation. Hang
et al. [34] proposed a spectral attention subnetwork and a spatial
attention subnetwork for spectral and spatial classifications and
combined classification results via adaptively weighted summa-
tion method to aid networks that focus on more discriminative
channels or positions. Based on the above analysis, we propose
a multiscale densely connected attention network (MSDAN)
for HSIC. First, multiscale dense connection blocks are used
to extract different scale features of HSI to avoid the defect
of insufficient information. Second, 3-D convolution blocks in
the network are replaced by 3-D spatial convolution blocks and
3-D spectral convolution blocks in series to reduce training
parameters. Finally, the attention mechanism is embedded into
the end of each scale to enhance the discriminative features that
are beneficial to classification and improve the performance of
the network.

The main contributions of this article are listed as follows.
1) This article adopts a multiscale dense connection model to

synchronously extract the comprehensive features of dif-
ferent scales of HSI, so as to enhance the feature extraction
ability of the network and make it suitable for the complex
data characteristics of HSIs. Through dense connection,
we can realize the close relationship between features of
different layers, strengthen feature reuse, and avoid the
phenomenon of overfitting and gradient disappearance.

2) In the dense connection model, 3-D spatial convolution
block and 3-D spectral convolution block are employed
in series instead of traditional 3-D convolution block
to reduce training parameters and accelerate the model
convergence.

3) An improved attention mechanism module is proposed,
which extracts the weight information of spatial dimen-
sion, spectral dimension, and channel dimension, respec-
tively, and fuses the weight information from the three
dimensions by feature multiplication, and then embeds
it into the end of each scale channel. The convolution
kernel size is the same as that of the channel to strengthen
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Fig. 1. Components of the proposed MSDAN.

the feature information of each channel, enhance features
favorable for classification, and improve the feature ex-
traction ability of the network.

The rest of this article is organized as follows. Section II
introduces the detailed architecture of MSDAN. The experi-
mental results and analysis are illustrated in Section III. Finally,
Section IV concludes this article.

II. METHODOLOGY

The proposed network (MSDAN) is mainly composed of mul-
tiscale dense connection module, attention mechanism module,
and key feature extraction module, as shown in Fig. 1. First,
PCA transformation is adopted to retain the most important
features and remove the interference of noise of the input data.
Then, the features of the inputs are extracted synchronously
by the multiscale dense connection module to adapt to the
complex characteristics of HSIs. Next, the attention mechanism
module composed of the corresponding convolution kernels is
adopted to strengthen the relevant features that are beneficial to
classification, and reduce the weight information of irrelevant
features. Finally, the key feature extraction module is employed
to extract discriminative features along the spectral, spatial, and
channel dimensions.

A. Dense Connection Module

In order to avoid the problem of overfitting and gradient disap-
pearing, researchers proposed DenseNet [35] to enhance feature
transmission, encourage feature reuse and improve information
flow in the network.

The DenseNet is connected layer by layer. The input features
of each layer receive the output feature information from the
previous layer and are superimposed on the channel dimension,
which can be expressed as

xl = H([x0, x1, . . . , xl−1]) (1)

where xl represents the output of the l layer, [x0, x1, . . . , xl−1]
represents the superposition of the characteristic maps from the
input layer to the l − 1 layer on the channel dimension, and
H(•) represents the combination of nonlinear transformation
functions including convolution, normalization, nonlinear acti-
vation, and other operations.

Assuming that the number of input characteristic graphs of the
first layer in the dense connection layer is k0 and the number of
output characteristic graphs of each layer in the dense connection
layer is k, the number of channels of the input characteristic

Fig. 2. Each scale dense connection structure. n represents the convolution
kernel size of each channel.

graphs of the l layer can be formulated as

k0 + (l − 1)k. (2)

Each layer in the dense connection layer receives the features
from all previous layers, which encourages the features propa-
gation, strengthens the feature reuse, and effectively suppresses
the problems of gradient disappearance and overfitting.

B. Multiscale Dense Connection Module

Previous studies have found that the single-scale network
model cannot extract the rich spatial–spectral features of HSIs,
whereas the multiscale network model can extract more compre-
hensive information. In this article, we adopt multiscale dense
connection to extract feature information of different scales
synchronously. Each scale applies dense connection to enhance
feature propagation and reuse, and employs 3-D spectral con-
volution and 3-D spatial convolution in series to replace 3-D
convolution layer to reduce the training parameters caused by
increased model complexity. The structure of each scale is shown
in Fig. 2. The convolution kernels of the three scales are 3,
5, and 7, respectively, which are connected in n× n× 1 and
1× 1× n convolution order to form dense connection blocks.
The n× n× 1 convolution is used to extract spatial informa-
tion, and the 1× 1× n convolution is used to extract spectral
information, where n represents the convolution kernel size
of each scale. The number of output features of each dense
connection layer is 32, and the number of dense connection layer
is 3. Feature information of different scales is fused by feature
addition, which can be expressed as

X = Add (F1([X0, X1, . . . , Xi−1]),

F2([X0, X1, . . . , Xi−1]),

F3([X0, X1, . . . , Xi−1])) (3)
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Fig. 3. Structure of the proposed attention.

where X represents the output features after fusion, Add(•)
represents the additive function of the corresponding elements
of the features, and F1(•), F2(•), F3(•) represent the output
features of the dense connected network of each scale.

C. Attention Mechanism Module

Inspired by the fact that human eyes consciously accept the
characteristics of the region of interest, researchers put for-
ward the attention mechanism and added it to the DL network
model. It can consciously ignore the information irrelevant to
the current task from many features and pay attention to the
information related to the current task. In HSIC, the attention
mechanism can improve the learning ability of the network
by giving more weight to the features that are beneficial to
classification. Common attention mechanism models include
spatial attention mechanism and channel attention mechanism.
The spatial attention mechanism is to redistribute the weight
of the spatial information of the same feature graph to obtain
feature graphs with different spatial weight information. Chan-
nel attention mechanism is to redistribute the weight of feature
graph in channel dimension to obtain the weight feature graph
of different channels.

Inspired by the above ideas, this article proposes an improved
attention mechanism model. The model extracts the correspond-
ing feature information in the spatial dimension, spectral di-
mension, and channel dimension, respectively, to strengthen the
discriminative features favorable to classification and suppress
the unimportant information, and fuses the weight information
of the three features to obtain the weight feature graph. The
structure of the proposed attention mechanism is shown in Fig. 3.

Suppose that the input feature map is expressed as X ∈
RH×W×L×C , where represents the spatial size of the feature
map, L represents the spectral dimension of the feature map,
and C represents the channel number of the feature map.

Spectral attention mechanism can give higher weight todis-
criminant features in spectral dimension to obtain different
spectral feature weight maps. First, we need to transform
the dimension of the feature map X ∈ RH×W×L×C to X ∈
RH×W×C×L, and then, through the global average pooling
(GAP) layer, the dimension of the feature graph is transformed
into X ∈ R1×1×1×L. Next, we need to transform the dimension
X ∈ R1×1×1×H to X ∈ R1×1×L×1, and extract the spectral
features of the feature map by 1× 1×Nconvolution. Finally,
we map the eigenvalues to 0–1 through the sigmoid layer, and
get the weighted feature map of the spectral dimension, where
Ndenotes the convolution kernel size. It can be formulated as

Fse (Sigmoid (Conv (Re (GAP (Re (X))))))H ×W (4)

where Fse(•) represents the final spectral dimension weight
feature map, Sigmoid(•) represents the sigmoid function,
Conv(•) represents the convolution operation, Re(•) repre-
sents the dimension transformation, and GAP (•) represents the
global average pooling.

Spatial attention mechanism can obtain spatial feature maps
with different weights in spatial dimension. First, we need
to use average pooling to transform the feature map from
X ∈ RH×W×L×C to X ∈ RH×W×1×1, and get the feature map
that only contains spatial dimension. Then, we use N ×N ×
1convolution to extract the spatial features of the feature map.
Finally, we map the feature values to 0–1 through sigmoid layer
and get the weighted feature map of spatial dimension, where
N represents the convolution kernel size. It can be expressed as

Fsa (Sigmoid (Conv (Avepool (X)))) (5)

whereFsa(•) represents the final spatial dimension weight char-
acteristic graph, Sigmoid(•) represents the sigmoid function,
Conv(•) represents the convolution operation, and Avepool(•)
represents the average pooling.

Channel attention mechanism can obtain feature maps with
different weights in channel dimension. First, we need to use
the GAP to transform the feature maps from X ∈ RH×W×L×C

to X ∈ R1×1×1×C , and get the feature map that only contains
channel dimensions. Then, we use two full connection (FC)
layers to extract the feature information of channel dimensions.
Finally, we map the feature values to 0–1 through the sigmoid
layer, and finally get the channel dimension weight feature map.
It can be expressed as

Fca (Sigmoid (FC (FC (GAP (X))))) (6)

where Fca(•) represents the final channel dimension weight
characteristic graph, Sigmoid(•) represents the sigmoid func-
tion, FC(•) represents the full connection operation, and
GAP (•) represents the global average pooling.

Finally, the obtained spectral, spatial, and channel weight
feature maps are combined to obtain the 3-D weight feature map
Fw ∈ RH×W×L×C , which is weighted by multiplying it with
the input feature graph X ∈ RH×W×L×C , so as to improve the
learning ability of the network. The process can be expressed as

Fw = Fse ⊗ Fsa ⊗ Fca (7)

F = X ⊗ Fw (8)

where F (•) represents the weighted input feature map, Fw(•)
represents the 3-D weighted feature map, and ⊗ represents the
multiplication of corresponding elements.

D. Key Feature Extraction Module

In order to further extract the discriminant features of multi-
scale fusion, this article sets up a key feature extraction module.
The specific information of this module is shown in Fig. 4.

First, 3-D spectral convolution block and dimension transfor-
mation are used to extract the features of spectral dimension and
channel dimension. Finally, the feature information of spatial
dimension is extracted by maximum pooling and 3-D spatial
convolution block. This operation can fully extract the feature
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Fig. 4. Overall network model.

information from the multiscale dense connection layer and
improve the classification performance of the network.

E. Overall Network Model

The proposed network model (MSDAN) is illustrated by the
University of Pavia (UP) dataset, as shown in Fig. 4. The network
is mainly composed of multiscale dense connection module,
attention mechanism module, and key feature extraction module.
First, the HSI has many spectral bands and high correlation
between them, so it is necessary to reduce the feature dimension
of the input data through PCA transformation, so as to retain
the bands with large amount of information and remove the
interference of noise and unnecessary information. The number
of reserved bands is 20, and its spatial neighborhood is taken as
the input of the network. The size of the spatial neighborhood
is 11 × 11, and then through the initial convolution layer 64
3× 3× 3, whose strides are (2,1,1), and the dimension of the fea-
ture graph is transformed from 11× 11× 20 to 64 11× 11× 10.
Then, different features are extracted synchronously by the
multiscale dense connection module to adapt to the complex
characteristics of HSIs. Scale1 uses 3 × 3 × 1 and 1 × 1 × 3 by
the series connection form to form the dense connection block
to extract the spatial features and spectral features of the input
data, respectively. Compared with the traditional 3D-CNN, it
can reduce the training parameters. Second, the spatial–spectral–
channel attention mechanism with a convolution kernel size of
3 is used to extract the important information of features, which
further enhances the learning ability of the network. Scale2 uses
5 × 5 × 1 and 1 × 1 × 5 in series to form a dense connection

block with three dense connection layers. A spatial–spectral–
channel attention mechanism with convolution kernel size of
5 is embedded at the back end of the dense connection layer
to extract discriminative features. Scale3 uses 7 × 7 × 1 and
1 × 1 × 7 to form dense connection blocks, and embeds the
spatial–spectral–channel attention mechanism with convolution
kernel size of 7 to enhance the relevant features that are ben-
eficial to classification while reducing the weight information
of irrelevant features. Finally, the multiscale fusion features are
obtained by adding the corresponding elements, and the size
of the feature map is transformed from 64 11 × 11 × 10 to
160 11 × 11 × 10. Then, the discriminative feature information
of spectral and channel dimensions is extracted by 3-D spectral
convolution block and dimension transformation, and the spatial
features of the input features are further extracted by max
pooling and 3-D spatial convolution block. Finally, through the
FC layer and Softmax layer, the classification results of UP are
obtained.

III. EXPERIMENTAL RESULTS AND ANALYSIS

This part mainly introduces the datasets used in the validation
experiment, a series of parameters of the model training, and the
analysis of the experimental results.

A. Datasets Introduction

In order to verify the effectiveness of the proposed method,
three HSI datasets are used for experimental verification.

Indian Pines (IN) dataset was acquired by airborne visible
infrared imaging spectrometer (AVIRIS) from an Indian Pine
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Fig. 5. IN dataset. (a) RGB composite image of three of the IN dataset.
(b) Ground-truth map of the IN dataset.

Fig. 6. UP dataset. (a) RGB composite image of three of the UP dataset.
(b) Ground-truth map of the UP dataset.

tree in Indiana, USA. The image size is 145 × 145. AVIRIS
imaging wavelength range is 0.4–2.5 μm. The spatial resolution
is about 20 m. After eliminating 20 bands that cannot be reflected
by water, the remaining bands are 200. The dataset contains
21 025 pixels, including 10 249 feature pixels, 10 776 back-
ground pixels, and 16 types of feature types, most of which are
natural landscapes, and the distribution of samples is extremely
uneven. The dataset is shown in Fig. 5.

Pavia University (UP) dataset was acquired by German reflec-
tive optics spectral imaging system (ROSIS-03) imaging Pavia
city in Italy. The wavelength range of the image is 0.43–0.86μm,
and the spatial resolution is 1.3 m. After eliminating 12 bands af-
fected by noise, 103 bands are left. The image size is 610 × 340,
including 2 207 400 pixels, 42 776 feature pixels, and nine types
of features, which are trees, asphalt roads, bricks, meadows, etc.
The dataset is shown in Fig. 6.

University of Houston (HT) dataset was acquired by ITRES
CASI-1500 sensor. The wavelength range of the image is 0.38–
1.05 μm. The image is one of the multimodal optical remote
sensing datasets released by the 2018 data fusion competition
of the IEEE Geosciences and Remote Sensing Society [36],
covering the HT campus and its surrounding urban areas. The
original image size is 4172 × 1202, after clipping, selected part

Fig. 7. HT dataset. (a) RGB composite image of three of the HT dataset.
(b) Ground-truth map of the HT dataset.

TABLE I
NUMBER OF RANDOMLY SELECTED TRAINING SET, VERIFICATION SET,

AND TEST SET OF IN DATASET

of the image as the study area, the size of the clipped image is
541 × 710, including 48 bands and 12 categories. The dataset
is shown in Fig. 7. For IN dataset, 20% of training samples are
randomly selected, 10% of verification samples, and 70% test
samples are selected. For UP dataset, 10% of training samples,
10% of validation samples, and 80% of test samples are selected.
For HT dataset, considering its data characteristics, only 5% of
training samples, 10% of validation samples, and 85% of test
samples are selected. The number of three samples selected for
each dataset is shown in Tables I–III.

B. Experimental Configuration

The hardware environment is Intel (R) Core (TM) i5-10400F
CPU 2.90 GHz, the memory is 16.0 GB, and the software
environment is Python 3.7.9, TensorFlow2.0.0, Keras2.2.4.

In the process of model training, the number of batch size is
set to 16, the optimizer is RMSprop, the learning rate is 0.0002,
and the number of training epochs is set to 100.
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TABLE II
NUMBER OF RANDOMLY SELECTED TRAINING SET, VERIFICATION SET,

AND TEST SET OF UP DATASET

TABLE III
NUMBER OF RANDOMLY SELECTED TRAINING SET, VERIFICATION SET,

AND TEST SET OF HT DATASET

In order to quantitatively evaluate the performance of the
proposed method, this article uses three standard evaluation
indexes: overall accuracy (OA), average accuracy (AA), and
Kappa coefficient (κ) to evaluate the classification performance.

C. Parameter Analysis

This part mainly analyzes the influence of various parameters
of the network on the classification results.

The classification performance of the model is not only related
to the structure of the model but also related to the setting of
various parameters in the model. This section mainly discusses
the influence of spatial size, the number of convolution kernels
in dense connection blocks and the number of dense connection
layers in dense connection blocks on the classification accuracy
of network. All experiments used the control variable method to
analyze the influence of parameters.

First, the influence of the spatial size. Because the feature
distribution of HSI is related to the spatial dimension, and the
samples need to take a certain spatial size before inputting to
the network. Different HSIs have different feature distribution,
and different spatial sizes may produce different HSIC results.
Therefore we fixed other factors and set spatial sizes to 7 × 7,
9× 9, 11× 11, 13× 13, and 15× 15 for the three HSI datasets to

compare the overall classification accuracy. Fig. 8(a) shows the
influence of different spatial sizes on the overall classification
accuracy. It can be seen that the value of OA increases at first,
and then decreases as the spatial size reaches 11 × 11 for all
the three datasets. For IN and HT datasets, as the spatial size is
13 × 13, the OA value starts to increases. For UP dataset, as the
spatial size is larger than 11 × 11, the OA value decreases all the
time. Therefore, we choose the space size corresponding to the
maximum accuracy, that is, 15 × 15 for IN dataset and 11 × 11
for UP and HT datasets.

Second, the influence of the number of convolution kernels
in dense connection blocks. Dense connection blocks are com-
posed of convolution layers, and the number of output charac-
teristic graphs of each convolution layer affects the complexity
of the network and the overall performance of classification. In
order to analyze the number of optimal convolution kernels,
the classification results of three HSI datasets are analyzed.
The number of convolution kernels is set to 8, 16, 24, and 32,
respectively. Fig. 8(b) shows the influence of the number of
the convolution kernels on the OA. With the increase of the
number of convolution kernels, the OA value of the three datasets
increases at first, then decreases as the value is 16, and then
increases as the number of convolution kernels is 24. Therefore,
the number of the convolution kernels in the dense connection
blocks of IN, UP, and HT datasets is set to 32.

Third, the influence of the number of dense connection layers
in dense connection blocks. The number of dense connection
layers determines the depth of dense connection blocks, and
indirectly determines the depth and classification accuracy of
network. Therefore, it is of great significance to explore the
influence of the number of dense connection layers on the
classification results. Fig. 8(c) shows the influence of the number
of dense connection layers on the overall classification accuracy.
The number of dense connection layers is set to 2, 3, and 4,
respectively. For the three datasets, with the increase of the
number of dense connection layers, the classification accuracy
first increases and then decreases. When the number of dense
connection layers is 3, the classification accuracy is the highest.
Therefore, the number of dense connection layers of the three
datasets is 3.

Finally, the influence of the percentage of training samples.
In order to test the robustness and generality of the proposed
MSDAN, 1%, 5%, 10%, 15%, and 20% are selected as the
training samples for IN dataset; 1%, 3%, 5%, 7%, and 10% for
UP dataset; and 0.1%, 1%, 5%, 10%, and 20% for HT dataset.
Fig. 9 shows the impact of the proportion of different training
samples of three datasets on classification performance. It can
be seen that the MSDAN is more stable. With the increase of
the proportion of training samples, the classification accuracy
gradually improves and is the highest of other methods.

D. Analysis of Classification Results

In order to verify the effectiveness of the proposed method, the
proposed MSDAN is compared with several classical network
models. These classical networks are MFDN [29], FDSSC [27],
SSP3DNet [28], DMSAN [32], SSRN [26], and DRN [30].
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Fig. 8. Parameter analysis. (a) Influence of spatial sizes. (b) Influence of the number of convolution kernels in dense connection blocks. (c) Influence of the
number of dense connection layers in dense connection blocks.

Fig. 9. Percentage of training samples. (a) IN dataset. (b) UP dataset. (c) HT dataset.

Fig. 10. IN dataset and classification results. (a) IN ground-truth map. (b) MFDN. (c) FDSSC. (d) SSP3DNet. (e) DMSAN. (f) SSRN. (g) DRN. (h) MSDAN.

Among them, SSRN and DRN use residual structure to ex-
tract spectral and spatial features, respectively. Compared with
SSRN, FDSSC uses dense connection structure instead of resid-
ual structure to construct network model. MFDN utilized the
deep multilayer feature fusion dense connection structure to ex-
tract spatial and spectral features simultaneously. SSP3DNet and
DMSAN both adopt dense connection structure and pseudo-3D
convolution structure. Besides, DMSAN adds attention mecha-
nism and multiscale module. Different from the MSDAN pro-
posed in this article, DMSAN is based on multiscale blocks to
achieve dense connection between blocks.

In order to ensure the fairness of the experimental verification,
all the methods are trained in the same environment, and the
proportion of training samples is 20% for IN dataset, 10% for
UP dataset, and 5% for HT dataset. In addition, other parameters
of the comparison methods are the same as those of the original
papers. All experiments were conducted for five times with

randomly selected training samples and calculated the mean and
standard deviation as the final main classification metrics.

Figs. 10–12 show the classification results of the three
datasets. Compared with other methods, the classification result
maps of the proposed MSDAN was most consistent with the
ground-truth maps and it delivered the most accurate and smooth
classification maps for all three HSIs.

Tables IV–VI present the accuracy evaluation results of the
three datasets. It can be seen that our proposed MSDAN has
the highest classification accuracy and lower standard deviation
compared with other methods. In all three datasets, the classi-
fication results of FDSSC were worse than other methods and
the standard deviations are large, showing an unstable trend.
For IN dataset, from the classification accuracy of alfalfa and
oats categories with few samples, FDSSC (7.97%, 23.33%),
DMSAN (50%, 68.33%), and SSRN (52.17%, 51.67%) have
worse classification effects on the two categories, whereas the
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Fig. 11. UP dataset and classification results. (a) UP ground-truth map. (b) MFDN. (c) FDSSC. (d) SSP3DNet. (e) DMSAN. (f) SSRN. (g) DRN. (h) MSDAN.

Fig. 12. HT dataset and classification results. (a) HT ground-truth map. (b) MFDN. (c) FDSSC. (d) SSP3DNet. (e) DMSAN. (f) SSRN. (g) DRN. (h) MSDAN.

TABLE IV
ACCURACY EVALUATION RESULTS OF THE IN DATASET

TABLE V
ACCURACY EVALUATION RESULTS OF THE UP DATASET
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TABLE VI
ACCURACY EVALUATION RESULTS OF THE HT DATASET

TABLE VII
TRAINING AND TESTING TIMES OF DIFFERENT MODELS FOR THREE HSI DATASETS

TABLE VIII
TRAINABLE PARAMETERS OF DIFFERENT MODELS FOR UP DATASET

classification accuracy of each category in MSDAN has reached
more than 97%, indirectly indicating that the proposed MSDAN
can be better applied to the classification of categories with un-
balanced samples and has strong adaptability. For UP dataset, the
average classification accuracy of every category for MSDAN
is above 99%, which shows better stability. For HT dataset, all
methods show poor performance in the classification accuracy
of healthy grass, which may be related to the distribution of this
category. Nevertheless, the OA of MSDAN still reaches 96.64%,
about 0.3% higher than that of MFDN. These results validate the
robustness of the MSDAN in the face of difficult conditions.

Besides, the training and testing times can provide a di-
rect measure of computational efficiency for different models.
Table VII records the training and testing times of each model.
All records are the average results obtained by running five times
in the same environment, in which the training times are the
average times taken by each epoch. As shown in Table VII,
the time of DRN is shorter than other models for all the three
datasets, because DRN is simple without involving 3-D con-
volution. However, the MSDAN requires a larger amount of
computational power than others. This is because MSDAN has
multiscale modules, attention mechanism and dense connection
structure, which increases the time of model training. On the
contrary, it is the existence of these structures that improves the

classification performance correspondingly. Therefore, without
considering the computation time of the model, the MSDAN can
be effectively applied to HSIC.

Table VIII presents the total trainable parameters of different
models for UP dataset. As can be seen, DRN and MFDN have
more trainable parameters than others, because they extract spa-
tial and spectral information, respectively, through dual-channel
structure, which causes the phenomenon of computational
redundancy. Compared with SSRN, FDSSC has more train-
able parameters, indicating that dense connection structure can
increase training parameters. The number of parameters of our
proposed MSDAN is less than that of FDSSC, DRN, and MFDN,
but more than that of SSP3DNet, DMSAN, and SSRN. This is
because the multiscale branches and dense connection structure
lead to more training parameters.

E. Ablation Study

In order to further analyze the importance of attention mech-
anism, multiscale module, and dense connection structure in
MSDAN, some comparative experiments are carried out. The
classification results of the model without attention mechanism
(MSDN), without multiscale module (DAN), or without dense
connection structure (MSAN) are compared with MSDAN to
verify the impact of each module on the classification results.
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Fig. 13. Results of comparative experiments.

In Fig. 13, the addition of each module in MSDAN all pro-
motes the model classification performance. First of all, for UP
and HT datasets, the OA of MSDN is lower than that of MSDAN.
For IN dataset, MSDN is 0.07% higher than that of MSDAN.
Nevertheless, MSDAN has high classification accuracy for small
samples, and therefore MSDAN is effective in the case of little
loss of accuracy. Second, for IN, UP, and HT datasets, the OA of
DAN is 0.24%, 0.02%, and 0.09% lower than that of MSDAN,
respectively, which proves that multiscale module is beneficial
for MSDAN to fully extract features. Similarly, compared with
MSDAN, the OA of MSAN is reduced by 0.06%, 0.17%, and
0.04%, respectively, which indicates that the dense connec-
tion structure in MSDAN contributes to feature propagation.
Therefore, to a certain extent, attention mechanism, multiscale
structure and dense connection pattern in MSDAN are effective
to improve the classification performance.

IV. CONCLUSION

In this article, we proposed an MSDAN model. The multiscale
dense connection module integrates the feature information of
different scales and layers to strengthen the feature extraction
and feature propagation of the model. At the same time, the
improved 3-D convolution blocks reduce the model parameters.
Besides, the embedded spectral–spatial–channel attention mod-
ule integrates the weight information of spectral, spatial, and
channel dimensions. It not only fully extracts the discrimination
features of the corresponding scale but also strengthens the
weight information of different dimensions. At the end of the
model, 3-D spectral convolution and 3-D spatial convolution
are used to further extract the fusion features of different scales
to enhance the learning ability of the network. The experimental
results on three HSI datasets show that the proposed model
has strong classification performance and adaptability. Although
the proposed method has shown considerable results, further
research should be developed to achieve higher classification
accuracy with fewer samples in the future work.

ACKNOWLEDGMENT

The authors would like to thank NCALM and the Hyper-
spectral Image Analysis Laboratory at HT for providing the
ITRES CASI-1500 HT dataset, and the Image Analysis and
Data Fusion Technical Committee of the IEEE Geosciences and
Remote Sensing Society for supporting the annual Data Fusion
Contest.

REFERENCES

[1] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “CoSpace: Common
subspace learning from hyperspectral-multispectral correspondences,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 7, pp. 4349–4359,
Jul. 2019.

[2] B. Lu, P. D. Dao, J. Liu, Y. He, and J. Shang, “Recent advances of
hyperspectral imaging technology and applications in agriculture,” Remote
Sens., vol. 12, no. 16, pp. 2659–2702, Aug. 2020.

[3] M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern
trends in hyperspectral image analysis: A review,” IEEE Access, vol. 6,
pp. 14118–14129, 2018.

[4] Y. Sohn and N. S. Rebello, “Supervised and unsupervised spectral
angle classifiers,” Photogramm. Eng. Remote Sens., vol. 68, no. 12,
pp. 1271–1280, Dec. 2002.

[5] C. I. Chang, “An information-theoretic approach to spectral variability,
similarity, and discrimination for hyperspectral image analysis,” IEEE
Trans. Inf. Theory, vol. 46, no. 5, pp. 1927–1932, Aug. 2000.

[6] G. Licciardi, P. R. Marpu, J. Chanussot, and J. A. Benediktsson, “Linear
versus nonlinear PCA for the classification of hyperspectral data based on
the extended morphological profiles,” IEEE Trans. Geosci. Remote Sens.,
vol. 9, no. 3, pp. 447–451, May 2012.

[7] A. Villa, J. A. Benediktsson, J. Chanussot, and C. Jutten, “Hyperspectral
image classification with independent component discriminant analysis,”
IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 4865–4876,
Dec. 2011.

[8] T. V. Bandos, L. Bruzzone, and G. Camps-Valls, “Classification of hy-
perspectral images with regularized linear discriminant analysis,” IEEE
Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862–873, Mar. 2009.

[9] C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, “Improved mani-
fold coordinate representations of large-scale hyperspectral scenes,” IEEE
Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2786–2803, Oct. 2006.

[10] B. Schlkopf and A. Smola, “Nonlinear component analysis as a kernel
eigenvalue problem,” Neural Comput., vol. 10, no. 5, pp. 1300–1319,
Sep. 1998.

[11] D. Lee and H. Seung, “Learning the parts of objects by nonnegative matrix
factorization,” Nature, vol. 401, pp. 788–791, Oct. 1999.

[12] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sens-
ing images with support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[13] Y. Bazi, N. Alajlan, F. Melgani, H. AlHichri, S. Malek, and R. R. Yager,
“Differential evolution extreme learning machine for the classification of
hyperspectral images,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 6,
pp. 1066–1070, Jun. 2014.

[14] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image classifi-
cation using dictionary-based sparse representation,” IEEE Trans. Geosci.
Remote Sens., vol. 49, no. 10, pp. 3973–3985, Oct. 2011.

[15] H. Zhang, J. Li, Y. Huang, and L. Zhang, “A nonlocal weighted joint sparse
representation classification method for hyperspectral imagery,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2056–2065,
Jun. 2014.

[16] L. Li, H. Ge, and J. Gao, “A spectral-spatial kernel-based method for
hyperspectral imagery classification,” Adv. Space Res., vol. 59, no. 4,
pp. 954–967, Feb. 2017.

[17] S. Jia, B. Deng, J. Zhu, X. Jia, and Q. Li, “Superpixel-based multitask
learning framework for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 55, no. 5, pp. 2575–2588, May 2017.

[18] J. Feng, L. Liu, X. Zhang, R. Wang, and H. Liu, “Hyperspectral image
classification based on stacked marginal discriminative autoencoder,” in
Proc. IEEE Int. Geosci. Remote Sens. Symp., Dec. 2017, pp. 3668–3671.

[19] Y. Chen, X. Zhao, and X. Jia, “Spectral-spatial classification of hyperspec-
tral data based on deep belief network,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 8, no. 6, pp. 2381–2392, Jun. 2015.



1628 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[20] R. Hang, Q. Liu, D. Hong, and P. Ghamisi, “Cascaded recurrent neural
networks for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 8, pp. 5384–5394, Aug. 2019.

[21] F. Zhou, R. L. Hang, Q. S. Liu, and X. T. Yuan, “Hyperspectral image
classification using spectral-spatial LSTMs,” Neurocomputing, vol. 328,
pp. 39–47, Feb. 2019.

[22] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural
networks for hyperspectral image classification,” J. Sensors, vol. 2015,
no. 2, Jul. 2015, Art. no. 258619.

[23] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extrac-
tion and classification of hyperspectral images based on convolutional
neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10,
pp. 6232–6251, Oct. 2016.

[24] C. Shi and C. M. Pun, “Superpixel-based 3D deep neural networks for hy-
perspectral image classification,” Pattern Recognit., vol. 74, pp. 600–616,
Feb. 2018.

[25] B. Liu, X. Yu, P. Zhang, X. Tan, R. Wang, and L. Zhi, “Spectral-spatial
classification of hyperspectral image using three-dimensional convolution
network,” J. Appl. Remote Sens., vol. 12, no. 1, 2018, Art. no. 016005.

[26] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral-spatial residual
network for hyperspectral image classification: A 3-D deep learning frame-
work,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 847–858,
Feb. 2018.

[27] W. Wang, S. Dou, Z. Jiang, and L. Sun, “A fast dense spectral-spatial
convolution network framework for hyperspectral images classification,”
Remote Sens., vol. 10, no. 7, pp. 1068–1086, 2018.

[28] A. Li and Z. Shang, “A new spectral-spatial pseudo-3D dense network for
hyperspectral image classification,” in Proc. IEEE Int. Joint Conf. Neural
Netw., Jul. 2019, pp. 1–7.

[29] Z. Li et al., “Deep multilayer fusion dense network for hyperspectral image
classification,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 13, pp. 1258–1270, Mar. 2020, doi: 10.1109/JSTARS.2020.2982614.

[30] Y. Wang, B. Liang, M. Ding, and J. Li, “Dual-branch dense residual
network for hyperspectral imagery classification,” Int. J. Remote Sens.,
vol. 41, no. 7, pp. 2581–2602, Nov. 2019.

[31] R. Hang, F. Zhou, Q. Liu, and P. Ghamisi, “Classification of hyperspec-
tral images via multitask generative adversarial networks,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 2, pp. 1424–1436, Feb. 2021.

[32] H. Gao, Y. Miao, X. Cao, and C. Li, “Densely connected multiscale
attention network for hyperspectral image classification,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 2563–2576,
Feb. 2021.

[33] C. Yu, R. Han, M. Song, C. Liu, and C.-I. Chang, “Feedback
attention-based dense CNN for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 60, Feb. 2021, Art. no. 5501916,
doi: 10.1109/TGRS.2021.3058549.

[34] R. Hang, Z. Li, Q. Liu, P. Ghamisi, and S. S. Bhattacharyya, “Hyperspectral
image classification with attention-aided CNNs,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 3, pp. 2281–2293, Mar. 2021.

[35] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit., Nov. 2017, pp. 2261–2269.

[36] Y. Xu et al., “Advanced multi-sensor optical remote sensing for urban land
use and land cover classification: Outcome of the 2018 IEEE GRSS Data
Fusion Contest,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 12, no. 6, pp. 1709–1724, Jun. 2019.

Xin Wang received the B.Eng. degree in surveying
and mapping engineering from the Xi’an University
of Science and Technology, Xi’an, China, in 2019.
She is currently working toward the M.Sc. degree in
surveying and mapping with the China University of
Petroleum (East China), Qingdao, China.

Her research interests include hyperspectral remote
sensing, depth learning, and image classification.

Yanguo Fan received the B.S. and M.S. degrees in
engineering survey from Wuhan University of Sur-
veying and Mapping, Wuhan, China, in 1992 and
1998, respectively, and the Ph.D. degree in cartog-
raphy and geographic information engineering from
China University of Mining and Technology, Beijing,
China, in 2007.

He is currently a Professor with the China Uni-
versity of Petroleum (East China), Qingdao, China,
undertaking and completing more than 30 provincial,
ministerial, and bureau level topics, and more than 40

papers have been published in Chinese core journals and international confer-
ences. His research interests include hyperspectral remote sensing, intelligent
remote sensing image processing, and the application of remote sensing in
geoscience.

https://dx.doi.org/10.1109/JSTARS.2020.2982614
https://dx.doi.org/10.1109/TGRS.2021.3058549


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


